P

CodeWarrior
Development Studio for

ColdFire®
Architectures,

Linux® Edition
Targeting Manual

2

Z“ freescale

Revised: 14 June 2006 semiconductor

h -

y
A

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. CodeWarrior is a trademark or reg-
istered trademark of Freescale Semiconductor, Inc. in the United States and/or other countries. All other product or ser-
vice names are the property of their respective owners.

Copyright © 2004-2006 by Freescale Semiconductor, Inc. All rights reserved.

Information in this document is provided solely to enable system and software implementers to use Freescale Semicon-
ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte-
grated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic-
ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental dam-
ages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typ-
icals”, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not de-
signed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semi-
conductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

How to Contact Us

Corporate Headquarters Freescale Semiconductor, Inc.
7700 West Parmer Lane
Austin, TX 78729

U.S.A.

World Wide Web http://www.freescale.com/codewarrior

Technical Support http://www.freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

b -

g |

Table of Contents

1 Introduction 7
Overview of ThisManual i 7

Related Documentation.ttt 8
CodeWarrior Information 8

CodeWarrior Compiler Architecture.c. ... 9
CodeWarrior Development Tools o i, 9

Overview of the CodeWarrior IDE 9

Cross Compilers, Linkers, and Related Tools 10

CodeWarrior Debugger 10

CodeWarrior Target Resident Kernel 11

CodeWarrior Development Process 11

Projects . o 11

Editing Source Codet 12

Compiling 12

Linking o 13

Debuggingo 13

Viewing Preprocessor OUutputttt 13

Checking Syntaxt 13

Disassembling e 13

Supported Target Boards. i 14

2 Working With Projects 15
Creating Projects. 15

Importing Makefile Projects i 20

Sample Projects. 20

3 Working With the Debugger 23
Using Remote Connections.ttt 23

Accessing Remote Connectionsueuirvnnenenen.... 24

Understanding Remote Connections.o.viiinenaenon.. 25

Editing Remote Connections.c.uvuitttntn e, 26

Using CodeWarrior Target-Resident Kernel 31

ColdFire Architectures, Linux Edition Targeting Manual 3

y
A

Table of Contents

Customizing CodeWarrior TRK 32
Projectand Binary Files. 32
Installing CodeWarrior TRK On Remote Systems 33
Debugging Remote Executable Files 33
Debugging Shared Librariest 39
Build the Project 43
Configure the Executable Build Target 44
Configure the Library Build Target 50
Debug the Shared Library i 52
Debugging Multiple Threads. i 55
Debugging Binary Files With No Source Code 65
Debugging Applications that use fork() and exec() System Calls............ 67
Viewing Process Information L. 79
Viewing Multiple Processes and Threads 81
Attaching to Processes 85
Stripping Debug Information From Binary Files 90
Creating Stripped Binary Files 91
Downloading Stripped Files i 93

4 Debugging Boot Loaders, Kernels, Modules, and Threads 95

Debugging Boot Loaders. 95
Debugging Kernels 96
Prerequisites.o 97
Kernel Debugging Methods. i 98
Buildthe Kernel. 98
Create a CodeWarrior Project for the Kernel. 98
Set Up the Kernel Project for Debugging 100
Download and Bootthe Kernel 105
Debugging Kernel Modules i 108
Linux Kernel Modules - An Introduction 108
Display the Kernel Modules List. 110
Load the Module’s Symbolic Information. 111
Viewing Loaded Kernel Modules 113
Debugging Kernel Threads i 114

4 ColdFire Architectures, Linux Edition Targeting Manual

g |

Table of Contents

5 Target Settings Reference 117
Target Settings OVEIrVIEWottt ettt et 117

Other Settings Panels Documentation 118

Target Settings. . .« oottt 119

GNU TArget. . .ottt e e e e e e 122

GNU Assembler 123

GNU Disassembler.t e 124

GNU Compiler e 125

GNU Post Linker e 127

GNU LInker e e 127

CF Debugger Settingso vvt ettt e e e 128

Source Folder Mapping.t e 131

Current Folder 133

Console I/O Settingso vt 133
Console I/0 Redirection Optionsc..vuiuinenennenenen.. 135

GNU Environmentttt 135

GNU T00IS &« ottt e e e e e e e e e 137

6 Working With Hardware Tools 139
Flash Programmer. e 139
Hardware Diagnostics.ttt e 141

A Shell Tool Post-Linker 143
Shell Tool Setupot 143
Environment Variables 145

Shell Tool Example. e 145

Third Party Cross Compiler Tools 149
Debug Initialization Files 153
Using Debug Initialization Files 153

Debug Initialization File Commands 153
ANDmem.l 154

ORmem.l. ... 154

hreseto 155

ColdFire Architectures, Linux Edition Targeting Manual 5

y
A

Table of Contents

] (ST A 155
TUIL & ottt et et e e e e e e e e e e e e e e 155
] 1< o BN 156
170 o J 156
physicalbase. 156
virtualbase 157
SEMINOSHINGo 157
WItEmMemMLb . ..o 158
WIEMEIMLW . o\ttt et et e e e e e et e e e 158
Writemem.l. 159
WIILETEZ o ot vttt e e e e e e e e 159
D Memory Configuration Files 161
Command SYNAX . ..ottt e 161
Memory Configuration File Commands 161
TANZE « . ettt et e e e e e e e e e e e e 161
TESETVEA . . ottt e 162
reservedchar. 163
E Frequently Asked Questions 165
SOttINES .« oottt 165
Debug@ingo 165
CodeWarrior IDE 166
Index 167
6 ColdFire Architectures, Linux Edition Targeting Manual

b -

g |

Introduction

This manual explains how to use the CodeWarrior™ Integrated Development
Environment (IDE) to develop software for the embedded Linux® operating system
running on ColdFire® hardware. This chapter has these sections:

e Qverview of This Manual

e Related Documentation

e CodeWarrior Compiler Architecture

e CodeWarrior Development Tools

e CodeWarrior Development Process

¢ Supported Target Boards

Overview of This Manual

Table 1.1 describes the information contained in each chapter of this manual.

Table 1.1 Manual Contents

Chapter

Description

Introduction

(this chapter)

Working With Projects

describes how to create embedded Linux
projects with the CodeWarrior IDE

Working With the Debugger

describes how to use the CodeWarrior tools to
debug embedded Linux programs on ColdFire
hardware

Debugging Boot Loaders, Kernels,

Modules, and Threads

describes how to use the CodeWarrior IDE to
debug boot loaders, kernels, kernel modules,
and kernel threads

Target Settings Reference

describes the various target settings in all
CodeWarrior projects

ColdFire Architectures, Linux Edition Targeting Manual

y
A

Introduction
Related Documentation

Table 1.1 Manual Contents (continued)

Chapter

Description

Working With Hardware Tools

describes how to use the CodeWarrior IDE
hardware tools for board bring-up, test, and
analysis

Shell Tool Post-Linker

shows how to automatically run shell scripts as
part of the IDE’s build process

Third Party Cross Compiler Tools

describes how to use third-party compiler tools
to build CodeWarrior projects

Debug Initialization Files

describes the syntax of debug initialization files
you can use to initialize target boards before the
debugger downloads code to them

Memory Configuration Files

describes the syntax of memory initialization
files that define the accessible areas of memory
for target boards

Frequently Asked Questions

gives answers to common questions about this
product

Related Documentation

This section provides information about documentation, web sites, and example source
code related to the CodeWarrior IDE and Embedded PowerPC development.

CodeWarrior Information

* Before using the CodeWarrior IDE, read the release notes. The release notes contain
important information about last minute changes, bug fixes, incompatible elements,
or topics that may not be included in the documentation. Release notes are here
(where, CWInstall is the directory where you installed the CodeWarrior IDE

software):

CWinstall/CodeWarriorIDE/Release Notes/

e For system requirements and instructions showing how to install this CodeWarrior
product, refer the Quick Start located in the CWInstall/CodeWarriorIDE/
directory, where CWInstall is the directory where you installed the CodeWarrior

IDE software.

* For general information about the CodeWarrior IDE and debugger, read the

CodeWarrior IDE User’s Guide.

ColdFire Architectures, Linux Edition Targeting Manual

g |

Introduction
CodeWarrior Compiler Architecture

 For information specific to the C/C++ front-end compiler, see the C Compilers
Reference.

* For information scripting the CodeWarrior IDE, see the CodeWarrior IDE
Automation Guide manual.

* To learn how to write device drivers for Linux systems, see:
http://www.xml.com/1dd/chapter/book/

* Look for the CodeWarrior tutorials projects on the installation CD.

CodeWarrior Compiler Architecture

A proprietary, multi-language, multi-target compiler architecture is at the heart of the
CodeWarrior IDE. Front-end language compilers generate a memory-resident,
unambiguous, language-independent intermediate representation (IR) of syntactically
correct source code. Back-end compilers generate code from the IR for specific targets.
The CodeWarrior IDE manages the whole process.

CodeWarrior plug-in compilers generate object code. CodeWarrior plug-in linkers
generate final executable files from the object code. Multiple linkers that support different
object code formats are available for some targets.

As a result of this architecture, the same front-end compiler is used to support multiple
back-end compilers. In some cases, the same back-end compiler can generate code from a
variety of languages.

All CodeWarrior compilers and linkers are built as plug-in modules. The interface
between the IDE and compilers and linkers is public; so third parties can create compilers
that work with the CodeWarrior IDE.

CodeWarrior Development Tools

With the CodeWarrior Integrated Development Environment (IDE), programming for
embedded Linux® on a supported target platform is much like programming for any other
target platform. If you have never used the CodeWarrior IDE, then you should read this
section.

Overview of the CodeWarrior IDE

The CodeWarrior IDE lets you write, compile, and debug your software. The
CodeWarrior IDE has a project manager, source code editor, compilers and linkers, and a
debugger.

ColdFire Architectures, Linux Edition Targeting Manual 9

http://www.xml.com/ldd/chapter/book/

\
Y

y
A

Introduction
CodeWarrior Development Tools

The project manager may be new to those more familiar with command-line development
tools. All files and settings related to your project are organized in the project manager.
The project manager lets you see your project at a glance, and eases the organization of
and navigation among your source code files. The CodeWarrior IDE also manages all
build dependencies.

A project may contain multiple build targets. A build target is a separate build (with its
own settings) that uses some or all of the files of the project. For example, you can have a
debug version and a release version of your software as separate build targets in the same
project.

For more information about how the CodeWarrior IDE compares to a command-line
environment, see “CodeWarrior Development Process’ on page 11 That short section
discusses how various parts of the CodeWarrior IDE implement the features of a
command-line development system based on Makefiles.

The CodeWarrior IDE has an extensible architecture that uses plug-in compilers and
linkers to target various operating systems and microprocessors.

For more information about the CodeWarrior IDE, read the CodeWarrior IDE User’s
Guide.

Cross Compilers, Linkers, and Related
Tools

The CodeWarrior IDE uses the cross compiler tools created using GNU Compiler
Collection (GCC) sources to generate code that runs on the embedded Linux® platform.

The CodeWarrior IDE setup program installs the proper cross GCC components. GCC
components are cross compiler tools that let you build your project files on a Linux® host
PC.

The GNU Tools settings panel lets you select the cross compilers and linkers used by the
CodeWarrior IDE. For more information about this settings panel, see “GNU Tools” on
page 137.

“Target Settings Reference” on page 117 describes the various embedded Linux® linker
and compiler settings.

CodeWarrior Debugger

The CodeWarrior™ debugger controls the execution of your program and allows you to
see what is happening internally as your program runs.

You use the debugger to find problems in your program. The debugger can execute your
program one statement at a time, and suspend execution when control reaches a specified
point. When the debugger stops a program, you can view the chain of function calls,
examine and change the values of variables and registers.

10

ColdFire Architectures, Linux Edition Targeting Manual

g |

Introduction
CodeWarrior Development Process

For general information about the debugger, including all of its common features and its
visual interface, you should read the CodeWarrior IDE User’s Guide.

For more information about debugging software, see “Working With the Debugger” on
page 23.

CodeWarrior Target Resident Kernel

The CodeWarrior Target Resident Kernel (CodeWarrior TRK) is a highly-modular,
reusable debug server that resides on the target system and communicates with the
CodeWarrior debugger.

On embedded Linux systems, CodeWarrior TRK is packaged as a regular Linux
application for use with the CodeWarrior debugger.

The CodeWarrior TRK source code is provided to you so that you can modify it to work in
custom situations.

For more information about CodeWarrior TRK, see “Using CodeWarrior Target-Resident
Kernel” on page 31.

CodeWarrior Development Process

While working with the CodeWarrior IDE, you will proceed through the development
stages familiar to all programmers: writing code, compiling and linking, and debugging.
For complete information about performing tasks like editing, compiling, debugging, and
linking, refer to the CodeWarrior IDE User’s Guide.

The difference between the CodeWarrior IDE and traditional command-line environments
is in how the software helps you manage your work more efficiently. If you are unfamiliar
with an integrated environment in general, or with the CodeWarrior IDE in particular, you
may find the topics in this section helpful. Each topic explains how one component of the
CodeWarrior IDE relates to a traditional command-line environment.

Projects

The CodeWarrior project is analogous to a Makefile, or a collection of makefiles. A
CodeWarrior project can contain multiple build targets. For example, a project might be
configured to build both a debug version and a release version of your executable file.

A major difference between the CodeWarrior IDE and make is that make works
backwards from object files to source code files (backward chaining). In contrast, the
CodeWarrior IDE works forward from source code files to object files (forward chaining).

Another major difference is that make defines each step of the build process (such as
source to object, object to library, library to executable file) and there may be an arbitrary

ColdFire Architectures, Linux Edition Targeting Manual 11

\
Y

y
A

Introduction
CodeWarrior Development Process

number of steps during a build. By contrast, the CodeWarrior IDE uses a fixed build
model for each target: build sub-targets, precompile, compile, pre-link, link, and post-link.

The CodeWarrior IDE lists all the project’s files in the project window. The input files
include source code files, third-party object code files, libraries, scripts and sub-project
files. Header files and documentation files are sometimes included in a project for the
convenience of having all files listed in one place; but these files are ignored during the
build process.

The CodeWarrior IDE also lets you add source code files with unsupported file extensions
to your project. You can use the CodeWarrior IDE to associate the unsupported file
extensions to a CodeWarrior plug-in compiler. For details, refer to the CodeWarrior IDE
User’s Guide.

You can add or remove files easily. You can assign files to one or more different targets
within the project, so files common to multiple targets can be managed simply.

The CodeWarrior IDE manages all the dependencies between files automatically, and
tracks which files have been changed since the last build. When you rebuild, only those
files that have changed are recompiled.

Editing Source Code

The CodeWarrior IDE provides an integral text editor. It reads and writes text files in
UNIX, Mac OS, Linux, and MS-DOS/Windows formats.

To edit a source code file, or any other text file that is in a project, just double-click the
file’s name in the project window to open the file.

The editor window has excellent navigational (code browsing) features that let you switch
between related files, locate a particular function, mark a location within a file, or go to a
specific line of code.

Compiling
To compile a source code file, it must be among the files that are part of the current build

target. If it is, you simply select it in the project window and select Project > Compile.

To compile all the files in the current build target that have been modified since they were
last compiled, select Project > Bring Up To Date.

In Linux, and other command-line environments, object code compiled from a source
code file is stored in a binary file. The CodeWarrior IDE stores and manages object files
transparently.

12

ColdFire Architectures, Linux Edition Targeting Manual

g |

Introduction
CodeWarrior Development Process

Linking
To link object code into a final binary file, select Project > Make. This command brings
the current project up to date, then links the resulting object code into a final output file.

You control the linker through the CodeWarrior IDE. There is no need to specify a list of
object files. The CodeWarrior IDE keeps track of all object files automatically. Use the
CodeWarrior IDE project window Link Order view to control link order by arranging
files in the order in which you want them to be linked.

Use the GNU Target settings panel to set the name of the final output file. See “GNU
Tools” on page 137 and “GNU Linker” on page 127 for more information.

Debugging
To debug a project, make sure that the source file you want to debug has a debug mark

next to it in the debugging column of the project window.

When debugging code on remote target systems you will need to make sure that the Use
third party debugger option is disabled, and that compiler optimizations is set to 0.

To debug applications on the remote target, make sure that you have set up a remote
connection, specified remote debugging options, and launched CodeWarrior TRK on the
target.

For details, see “Using CodeWarrior Target-Resident Kernel” on page 31.

Viewing Preprocessor Output

To view preprocessor output, select the file in the project window and select Project >
Preprocess. A new window appears that shows you how your preprocessed file looks
like. You can use this feature to track down bugs caused by macro expansion or other
subtleties of the preprocessor.

Checking Syntax

To check the syntax of a file in your project, select the file in the project window and
select Project > Check Syntax. If syntax or compilation errors are detected in the
selected file, a message window appears and displays the information about the errors.

Disassembling

To disassemble a compiled file in your project, select the file in the project window and
select Project > Disassemble. After disassembling a file, the CodeWarrior IDE creates
a.dump file that contains the disassembled file’s object code in stabs format. The . dump
file appears in a new window.

ColdFire Architectures, Linux Edition Targeting Manual 13

4
A

Introduction

Supported Target Boards

Supported Target Boards

Table 1.2 lists the target boards supported by this product.

Table 1.2 Supported Target Boards

Manufacturer

Boards

Freescale

MCF5329EVB

M5208EVB

M5272C3

M5282EVB

M5475EVB

M5485EVB

M5474LITEKIT

M5484LITEKIT

14

ColdFire Architectures, Linux Edition Targeting Manual

h

Working With Projects

This chapter explains how to create embedded Linux projects with the CodeWarrior IDE.
This chapter contains these sections:

* Creating Projects
e Importing Makefile Projects

* Sample Projects

Creating Projects

This section explains how to use the Linux Stationery Wizard to create a new project.
After you create the project, you can modify project settings, and compile, run, and debug
the code in the project.

1. Run the CodeWarrior IDE startup script in this location:
CWInstall/CodeWarriorIDE/cwide

NOTE CWinstall is the location where you installed this product. For example, if you
installed the product at /usr/local/Freescale/CW_ColdFire 2.2/, the
path to the cwide script would be:

/usr/local/Freescale/CW_ColdFire 2.2/CodeWarriorIDE/
cwide

The CodeWarrior menu bar (Figure 2.1) appears.

Figure 2.1 CodeWarrior Menu Bar

CodeWarrior

File Edit Search fptect Debug Tools Window Help -E

2. From the CodeWarrior menu bar, select File > New.

The New dialog box (Figure 2.2) appears.

ColdFire Architectures, Linux Edition Targeting Manual 15

(

Working With Projects
Creating Projects

Figure 2.2 New Dialog Box

|' = New
Project’, / File '\, / Object
o rojoct \VSER)

'}’@ Empty Project

) Excter nal Build wizard
ih Linux Stationery Wizard Location:

|fhome.fdh1ache;’ducuments!projects#ﬂ [Set...]

N Project name:
IHeHoWnr]d.mcp I

[#dd to project:

[:]

-]

(Ccancel | |_ok_|

3. Select Linux Stationery Wizard.

4. In the Project name text box, enter a name for the project, such as
MyKillerApplication.mcp.

5. In the Location text box, enter the full path to the folder where you want the IDE to
create the new project (or click the Set button to navigate to and select a location).

6. Click OK.
The Linux Stationery Wizard (Figure 2.3) appears.

16 ColdFire Architectures, Linux Edition Targeting Manual

g |

Working With Projects
Creating Projects

Figure 2.3 Wizard — Cross Tool Page

Select a cross tool for which the stationery is to be created

gece-2.95.3
gce-3.4.0-glibc-2.3.2-vde
yee-3.4.0-u Clibe-20050919

grack| Mext| fasn| Ccancel

7. From the cross tools list, select the cross compiler tool the CodeWarrior IDE should
use to build the project.

8. Click Next.
The Output Type and Language page (Figure 2.4) appears.
Figure 2.4 Wizard — Output Type and Language Page

Select the Output & Language type used in this stationery
Application ____________[Iilfe

SharedLibrary C&CPP
StaticLibrary CPP

Loadahble Module

Back| Mext| faxsn| Cancel

9. Select the output type and the programming language you want to use for this project.
10. Click Next.

The Download Location page (Figure 2.5) appears.

ColdFire Architectures, Linux Edition Targeting Manual 17

Working With Projects
Creating Projects

Figure 2.5 Wizard — Download Location Page

Linux Stationery Wizard

Back| Next| fussh| Cancel|

11.In the text box, enter the full path, on the target system, to the folder where you want
the IDE to place the executable files it generates when you build the project.

12. Click Next.

The Core Selection page (Figure 2.6) appears.

Figure 2.6 Wizard — Core Selection Page

Linux Stationery Wizard

Sack| Newt] Fuish| Cancel|

13. From the list, select the core on the target system.
14. Click Next.
The Connection page(Figure 2.7) appears.

18 ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

Working With Projects
Creating Projects

Figure 2.7 Wizard — Connection Page

Linux Stationery Wizard

Select one of the connection protocols belows.

ColdFire PEMICRO USB
ColdFire CodeWarriorTRK Serial
ColdFire Abatron TCP/IP
ColdFire Abatron Seral

Hostname I 10.83.45.120:1000] |

Back| &exi| Fnish| Cancell

in this format:

IPAddress: PortNumber

17. Click Finish.

15. From the list, select the method by which the IDE should connect to the target system.

16.In the Hostname text box, enter the IP address and listening port of the target system,

The Linux Stationery Wizard window disappears. The IDE generates a new project
according to your specifications. The project window (Figure 2.8) appears.

Figure 2.8 Project Window

| = HelloWorld.mcp

==

File Edit Search Project Debug Tools Window Help

E|

Bommin Bl E]
M Link Order) / Targets

@ File | Code | Data [4E0[aE |
- & ‘Source 1] 0« « = A
¥ M rmain.cpp 0 0« + @
@ e a0 0+ @

£
2 files u} u}

ColdFire Architectures, Linux Edition Targeting Manual

19

h -

4
A

Working With Projects
Importing Makefile Projects

Importing Makefile Projects

The External Build Wizard lets you import Makefile-based projects into CodeWarrior
IDE projects so that you can use the IDE to manage and debug the projects. When you
invoke this wizard, it prompts you for information about the makefile you want to import.
The wizard then collects data about the make file and creates a CodeWarrior project with a
single target configured to build the user-specified make file.

To learn more about the External Build Wizard, read the CodeWarrior IDE User’s Guide

in this folder:
CWinstall /Help/PDF

Sample Projects

We have provided ready-made projects, containing all the required settings for
successfully running and debugging code on ColdFire target systems. These sample
projects may help you to understand the features and capabilities of this product.

The examples are located here:

CwInstall/CodeWarriorIDE/Examples

Figure 2.9 shows the directory structure of the Examples folder.

Figure 2.9 Examples Directory Structure

Name « ad

+ -[EdCodeWarrior

| T <
i--cal«:h‘ir{-:
%-Advanced
i--Prﬂjects
%-Basic
i--Prﬂjects
2-[ETarget-Specific €—
J;--{Notes}
J;--Prajects —
i--Sau rces
- [ECommon <

T

er--lncludes
J;r--{Nates}
+-[ESources 3

< | E |_

application-level example projects for ColdFire-
based target platforms

target-specific example projects such as kernel
modules for ColdFire-based target platforms

source files, header files, and notes common to the
application-level example projects

20 ColdFire Architectures, Linux Edition Targeting Manual

g |

Working With Projects
Sample Projects

Each top-level directory has a Readme. txt file that explains the intent of each example

in that directory.

To use any of the examples, the following are required:

¢ all executable files must be downloaded to the /var directory

e CodeWarrior TRK should be executed by the user sample

¢ a properly-configured remote connection

Table 2.1 shows some of the sample application projects and the kernel module project
available in your CodeWarrior installation directory. For a complete list, examine the
Examples directory in a file browser.

Table 2.1 Example Projects and Their Location

File Name

Location Description

Beginners.mcp

CWinstalllCodeWarriorIDE/Examples/ | application
coldfire/Basic/Projects

ForkAndExec.mcp CWinstalllCodeWarriorIDE/Examples/ Fork() and Exec ()

coldfire/Advanced/Projects/

KernelModule.mcp CWinstalllCodeWarriorIDE/Examples/ Kernel module

coldfire/Target-Specific/Projects/

Table 2.2 shows where you can find the header and source files for the above mentioned
sample Linux application projects.

Table 2.2 Header and Source Files for Sample Projects

Source files

CWinstalllCodeWarriorDE/Examples/Common/Sources

Header files

CWinstalllCodeWarriorDE/Examples/Common/Includes

NOTE For information about how to work with the sample projects, read the project
notes at: CWInstall/Examples/Common/{Notes}.

Table 2.3 Source Files for Sample Kernel Module Project

Source files

CWinstalllCodeWarriorDE/Examples/ColdFire/Target-Specific/Sources

ColdFire Architectures, Linux Edition Targeting Manual 21

h -

4
A

Working With Projects
Sample Projects

NOTE For information about how to work with the sample kernel module project, see

the project notes located at: CWInstall/Examples/ColdFire/Target—
Specific/{Notes}.

22

ColdFire Architectures, Linux Edition Targeting Manual

(O
P

3
Working With the Debugger

This chapter explains how to use the CodeWarrior tools to debug embedded Linux®

programs on ColdFire® hardware.

NOTE The chapter covers those aspects of debugging that are specific to the ColdFire
platform. Refer to the CodeWarrior IDE User’s Guide for debugger
information that applies to all CodeWarrior products.

This chapter contains these sections:

¢ Using Remote Connections

e Using CodeWarrior Target-Resident Kernel

¢ Debugging Remote Executable Files
¢ Debugging Shared Libraries

¢ Debugging Multiple Threads
¢ Debugging Binary Files With No Source Code

¢ Debugging Applications that use fork() and exec() System Calls

¢ Viewing Process Information

¢ Viewing Multiple Processes and Threads

¢ Attaching to Processes

e Stripping Debug Information From Binary Files

Using Remote Connections

Remote connections are settings that describe how the CodeWarrior IDE should connect
to and control program execution on target boards or systems. These settings include
settings such as the debugger protocol, connection type, and connection parameters the
IDE should use when it connects to the target system. This section shows you how to
access remote connections in the CodeWarrior IDE, and describes the various debugger
protocols and connection types the IDE supports.

ColdFire Architectures, Linux Edition Targeting Manual 23

r
4\

Working With the Debugger
Using Remote Connections

NOTE We have included several types of remote connections in the default
CodeWarrior installation. You can modify these default remote connections to
suit your particular needs.

TIP When you import a Makefile into the CodeWarrior IDE to create a CodeWarrior
project, the IDE asks you to specify the type of debugger interface (remote
connection) you want to use. To debug the generated CodeWarrior project, you

must properly configure the remote connection you selected when you created the
project.

Accessing Remote Connections

You access remote connections in the CodeWarrior IDE Preferences window. Remote
connections listed in the preferences window are available for use in all CodeWarrior
projects and build targets.

To access remote connections:
1. From the CodeWarrior menu bar, select Edit > Preferences.

The IDE Preferences window (Figure 3.1) appears.

Figure 3.1 IDE Preferences Window

hd IDE Preferences E x

ﬁ IDE Preference Panels Build Settings

= General Y
Euild Settings — [Play sound after “Bring Up To Date’ & ‘Make’
Concurrent Compiles . =~ . . =
Concurrer Sucorss:(SemBeep %) Folure: (Sutem Beep [2]
Help Preferences
Plugin Settings — Other Settings
Shielded Folders EBuild before running: [Save open files before build
Source Trees . .

< Editar [Show message after building up-to-date project

Code Completion
Code Formatting
Editor Settings

Fant & Tabs — [Use Local Project Data Storage

Text Colors #hame fdblache /Codetwar rior _Storage
= Debugger

Display Settings Used when the project data folder cannot be created on read-anly valumes.

‘Window Settings
Global Settings
Remote Connections

£

l_[Factory Settings] [Revert Panel] [Export Panel. ..] [Import Panel. ..] [Save]

2. From the IDE Preference Panels list, select Remote Connections.

The Remote Connections preference panel (Figure 3.2) appears.

24

ColdFire Architectures, Linux Edition Targeting Manual

g |

Working With the Debugger
Using Remote Connections

Figure 3.2 Remote Connections Preference Panel

E Rernote Connections

R Name | Type |
ColdFire Abatron Serial Serial A
ColdFire Abatron TCRAIP TCRAIP
ColdFire CodeWarriorTRE Serial Serial
ColdFire CodewWarriorTRE TCRAIP TCRAIP
ColdFire PEMICRO USE USE

¥
[Add...] [Change...] [Remove]

NOTE The specific default remote connections that appear in the Remote
Connections list differ between CodeWarrior products and hosts.

The Remote Connections preference panel lists all of the remote connections of which
the CodeWarrior IDE is aware. You use this preference panel to add your own remote
connections, remove remote connections, and configure existing remote connections to
suit your needs.

To add a new remote connection, click Add.
To configure an existing remote connection, select it and click Change.

To remove an existing remote connection, select it and click Remove.

TIP To specify a remote connection for a particular build target in a CodeWarrior
project, you select the remote connection from the Connection list box in the
Remote Debugging target settings panel. For an overview of the Remote
Debugging settings panel, see the CodeWarrior IDE User’s Guide.

Understanding Remote Connections

Every remote connection specifies a debugger protocol and a connection type.

A debugger protocol is the protocol the IDE uses to debug the target system. This setting
generally relates specifically to the particular device you use to physically connect to the
target system.

ColdFire Architectures, Linux Edition Targeting Manual 25

y
A

Working With the Debugger
Using Remote Connections

A connection type is the type of connection (such as Serial, TCP/IP, and so on) the
CodeWarrior IDE uses to communicate with and control the target system.

Table 3.1 describes each of the supported debugger protocols.

Table 3.1 Debugger Protocols

Debugger Protocol Description

ColdFire Abatron Select to use serial or TCP/IP connections and an
Abatron device with and debug a target system.

CF Linux CodeWarrior TRK Select to use a serial or TCP/IP connection with
CodeWarrior TRK to debug a target system.

ColdFire PEMicro Select to use a USB connection with a P&E
Microcomputer Systems USB device to debug a target
system.

Each of these protocols supports one or more types of connections (Serial, TCP/IP, and so

on). “Editing Remote Connections” describes each supported connection type and how to
configure them.

Editing Remote Connections

Based on the specified debugger protocol and connection type, the IDE makes different
settings available to you. For example, if you specify a Serial connection type, the IDE

presents settings for baud rate, stop bits, flow control, and so on. Table 3.2 describes the
supported connection types for each debugger protocol.

Table 3.2 Supported Connection Types

Debugger Protocol Supported Connection Types

ColdFire Abatron Serial, TCP/IP

CF Linux CodeWarrior TRK Serial, TCP/IP

ColdFire PEMicro uUsB

To configure a remote connection to correspond to your particular setup, you must edit the
connection settings. You access the settings with the Edit Connection dialog box. You
can view this dialog box in one of these ways:

¢ In the Remote Connections IDE preference panel, select a connection from the list,
and click Edit. The Edit Connection dialog box appears.

26 ColdFire Architectures, Linux Edition Targeting Manual

g |

Working With the Debugger
Using Remote Connections

* In the Remote Connections IDE preference panel, click Add to create a new remote
connection. The New Connection dialog box appears.

¢ In the Remote Debugging target settings panel, select a connection from the
Connection list box, then click the Edit Connection button. The Edit Connection
dialog box appears.

This section describes the settings for each connection type:
* Serial
* TCP/IP
« USB

Serial

Use this connection type to configure how the IDE uses the serial interface of the host
computer to connect with the target system. This connection type is available when the
ColdFire Abatron or CF Linux CodeWarrior TRK debugger protocol is selected.

Figure 3.3 shows the settings that are available to you when you select Serial from the
Connection Type list box in the Edit Connection dialog box.

Figure 3.3 Serial Connection Settings

b4 ColdFire Abatron Serial
Mame: IColdFi re Abatron Serial I
Dehugger:[ColdFire &batran i] [Show in processes 1ist
— Connection Type:| Serial ¥
Part:| fdev/ttysd : Parity:[None =]
Rate:[115200 g Stop Bits:[1 =]
Data Bits: Flow Control:[Mone =]
1 Log Communications Data to Log Window
|_[Factory Settings | | Revert Panel cancel | [OK J |

ColdFire Architectures, Linux Edition Targeting Manual 27

y
A

Working With the Debugger
Using Remote Connections

Table 3.3 describes the options in this dialog box.

Table 3.3 Serial Options

Option Description

Name Enter the name you want to use to refer to this remote connection
within the CodeWarrior IDE.

Debugger Select ColdFire Abatron or CF Linux CodeWarrior TRK.
Connection Type Select Serial.
Port Select the serial port device to which the target system is

connected on the host computer.

Rate For Abatron device connections, select the communication rate
that the device supports.

For CodeWarrior TRK connections, select the CodeWarrior TRK
communication rate on the target system.

Data Bits Select the number of data bits the IDE should use when it
communicates with the target system.

Parity Select the parity the IDE should use when it communicates with
the target system.

Stop Bits Select the stop bits the IDE should use when it communicates
with the target system.

Flow Control Select the flow control the IDE should use when it communicates
with the target system.

TCP/IP

Use this connection type to configure how the IDE uses the TCP/IP protocol to connect
with the target system. This connection type is available when the ColdFire Abatron or
CF Linux CodeWarrior TRK debugger protocol is selected.

Figure 3.4 shows the settings that are available to you when you select TCP/IP from the
Connection Type list box in the Edit Connection dialog box.

28 ColdFire Architectures, Linux Edition Targeting Manual

g |

Working With the Debugger
Using Remote Connections

Figure 3.4 TCP/IP Connection Settings

Marme: |ColdFire MetraTRK TCP/IP |

Dehugger:[CF Linux MetroTRE i] [Show in processes list

__Connection Type:| TCP#IP B !

IP#ddress: | 10.62.181.8:1000] |

Enter an IP address in the format of 127.0.0.1:1000 or host.damain.com: 1000,

BA Log Communications Data to Log 'Window

|_[Factory Settings | [Revert Panel | [cancel | [oK J |

Table 3.4 describes the options in this dialog box.

Table 3.4 TCP/IP Options

Option Description

Name Enter the name you want to use to refer to this remote connection
within the CodeWarrior IDE.

Debugger Select ColdFire Abatron or CF Linux CodeWarrior TRK.

Connection Type Select TCP/IP.

IP Address Enter the Internet Protocol (IP) address and listening port number
assigned to the target system, in the form:

IPAddress: PortNumber

ColdFire Architectures, Linux Edition Targeting Manual 29

y
A

Working With the Debugger
Using Remote Connections

usSB

Use this connection type to configure how the IDE uses the Universal Serial Bus (USB)
interface of the host computer to connect with the target system. This connection type is
available only when the ColdFire PEMicro debugger protocol is selected.

Figure 3.3 shows the settings that are available to you when you select USB from the
Connection Type list box in the Edit Connection dialog box.

Figure 3.5 USB Connection Settings

b i ColdFire PEMICRO USB

Narne: |ColdFire PEMICRO USE |

Dehugger:[ColdFire PEMicra i] [Show in processes list

__Connection Type:| USE s !

[Log Communications Data to Log 'indosw

| Factory Settings | | Revert Panel | [cancel | [0K J |

Table 3.3 describes the options in this dialog box.

Table 3.5 Serial Options

Option Description

Name Enter the name you want to use to refer to this remote
connection within the CodeWarrior IDE.

Debugger Select ColdFire PEMicro.

30 ColdFire Architectures, Linux Edition Targeting Manual

g |

Working With the Debugger
Using CodeWarrior Target-Resident Kernel

Table 3.5 Serial Options (continued)

Option Description
Connection Type Select USB.
USB Port Select the USB port device to which the target system is

connected on the host computer.

Show In Processes List Check to have the IDE display processes for this debug
session in the System Browser window.

Speed Enter an integer value, in the range 0-31, representing the
data stream transfer rate. The debugger calculates the
transfer speed, in hertz, using this expression:

1000000 / (Speed + 1) = Hertz

For example, if you specify 1, the debugger calculates:
1000000 / (1+1) = 500000 (0.5 megahertz)

If you specify 31, the debugger calculates:

1000000 / (31+1) = 31250 (0.031 megahertz, the
slowest transfer rate)

Log Communications Check to have the IDE display communications data in a log
Data to Log Window window when you use this connconnection.

Using CodeWarrior Target-Resident Kernel

This section describes CodeWarrior TRK and provides information related to using
CodeWarrior TRK with the CodeWarrior IDE.

The CodeWarrior debugger uses a Linux program called CodeWarrior Target Resident
Kernel (CodeWarrior TRK) to control the debug session on the remote target system.
CodeWarrior TRK allows the CodeWarrior IDE to connect to a remote target system via
serial or ethernet connections.

CodeWarrior TRK is a user-level application for use with the CodeWarrior debugger. You
use CodeWarrior TRK to download and debug applications built with the CodeWarrior
IDE. On the host computer, the CodeWarrior debugger connects to CodeWarrior TRK
running on the target system via an ethernet link or serial port. For an overview of remote
debugging, read the CodeWarrior IDE User’s Guide. For an example of how the process
works, see “Debugging Remote Executable Files” on page 33.

On embedded Linux systems, CodeWarrior TRK is packaged as a regular Linux
application. CodeWarrior TRK resides on the remote target system with the program you
are debugging to provide debug services to the CodeWarrior debugger.

ColdFire Architectures, Linux Edition Targeting Manual 31

\
Y

4
A

Working With the Debugger
Using CodeWarrior Target-Resident Kernel

Customizing CodeWarrior TRK

You may customize the CodeWarrior TRK source code and recreate the CodeWarrior
TRK binary for your specific needs. You can either make a copy of the project (and its
associated source files) or directly edit the original source.

The CodeWarrior installer places target-specific versions of the CodeWarrior TRK source
files in the CodeWarrior installation directory.

The CodeWarrior TRK project has build targets for:
¢ building a debug version
¢ building a release version

* building all the versions, one after another

NOTE While we recommend that you build the CodeWarrior TRK binary as
explained in this section, you can also use the pre-built CodeWarrior TRK
binary available in your CodeWarrior installation directory.

Project and Binary Files

Table 3.6 lists the location where you can find the CodeWarrior TRK project and binary
files applicable for your target platform.

Table 3.6 CodeWarrior TRK Project and Binary File Location

Type Available at

Binary Files CodeWarriorIDE/CodeWarrior/ThirdPartyTools/
TargetBoardDir/AppTrk BINARY

Project CodeWarriorIDE/CodeWarrior/ColdFire Tools/
CodeWarriorTRK/Os/unix/linux/cf/
trk linux cf.mcp

Table 3.7 lists the build targets available in the CodeWarrior TRK project.

Table 3.7 CodeWarrior TRK Project Build Targets

Build Target Name Description

APP_TRK_mcf5272_5282[D] debug version for MCF5272 and MCF5282

APP_TRK_mcf5272_5282[R] release version for MCF5272 and MCF5282

32

ColdFire Architectures, Linux Edition Targeting Manual

g |

Working With the Debugger
Debugging Remote Executable Files

Table 3.7 CodeWarrior TRK Project Build Targets (continued)

Build Target Name Description

APP_TRK_mcf5475_5485[D] debug version for MCF5475 and MCF5485

APP_TRK_mcf5475_5485[R] release version for MCF5475 and MCF5485

APP_TRK_mcf5208[D] debug version for MCF5208
APP_TRK_mcf5208|[R] release version for MCF5208
APP_TRK_mcf5329[D] debug version for MCP5329
APP_TRK_mcf5329[R] release version for MCP5329
build_all all versions

Installing CodeWarrior TRK On Remote
Systems

To use CodeWarrior TRK for debugging, you must install and launch the compiled binary
file on a remote system. After you have launched CodeWarrior TRK on the remote target,
you can use the CodeWarrior debugger to upload your application to the remote target
system and debug the application.

To install CodeWarrior TRK on the remote target system, you need to download the
CodeWarrior TRK binary file to a suitable location on the root file system of the remote
target system.

You can use any of the available network utilities, such as File Transfer Protocol (FTP), to
transfer the CodeWarrior TRK binary file from the host computer to the root file system of
the remote target system.

The procedure for launching CodeWarrior TRK is covered in “Start CodeWarrior TRK on
the Remote Target” on page 37.

Debugging Remote Executable Files

In order to debug a remote executable file, you must have a CodeWarrior project open in
the CodeWarrior IDE on the local computer. The project you are using on the local
computer must be the same project used to create the executable file that is running on the
remote target system.

Perform these steps to debug remote executable files:

e “Create a Remote Connection” on page 34

ColdFire Architectures, Linux Edition Targeting Manual 33

r
4\

Working With the Debugger
Debugging Remote Executable Files

3

¢ “Specify Remote Debugging Options” on page 36
o “Start CodeWarrior TRK on the Remote Target” on page 37

e “Start the Debugger” on page 39

Create a Remote Connection

First, you need to define the characteristics of the remote connection so that the
CodeWarrior IDE can connect to the remote machine. This example explains how to
specify the settings for a remote TCP/IP connection.

NOTE For more detailed information about the Remote Connections preference
panel, refer to the CodeWarrior IDE User’s Guide.

The steps to define a remote connection are as follows:
1. Display the Remote Connections panel.
a. Select Edit > Preferences. The IDE Preferences window appears.

b. Select Remote Connections from the IDE Preference Panels list to display the
Remote Connections panel (Figure 3.6).

Figure 3.6 Remote Connections Preference Panel

H Remaote Connections
EName | Type |
ColdFire Abatron Serial Serial A
ColdFire Abatron TCP/IP TCR/AP
ColdFire CodewarriorTRK Serial Serial
ColdFire CodewarriorTRE TCPAIP TCRAIP
ColdFire PEMICRO USE UsE
[Add. ..] [Change...] [Rernove

2. Add a new remote connection.

34 ColdFire Architectures, Linux Edition Targeting Manual

g |

Working With the Debugger
Debugging Remote Executable Files

a. Click Add. The New Connection dialog box appears. This dialog box is where
you specity all information about the remote connection.

NOTE The New Connection dialog box displays the options for creating a serial
connection by default. For example, if you want to use a serial connection for
debugging, specify the connection name in the Name text box and select COM2,
115200, 8, None, 1, and None from the Port, Rate, Data Bits, Parity, Stop
Bits, and Flow Control list boxes.

b. Select TCP/IP from the Connection Type list box. The New Connection dialog
box (Figure 3.7) display changes.

Figure 3.7 New TCP/IP Connection

bl New Connection E x

Hame: | |

Dehugger:[CF Linux Code'arrior TRE ij [Show in processes Tist
__Connection Type:| TCPAIP = !

1P dddress: | |

Enter an | P address in the farmat of 127.0.0.1:1000 ar host.domain.com: 1000,

[Log Cormrnunications Data to Log Wi ndow

[Factory Settings] [Revert Panel] _|

NOTE The Debugger list box displays the target platform-specific CodeWarrior TRK
name. For example, CF Linux CodeWarrior TRK for ColdFire target

platform.

c. Type the remote connection name in the Name text box. You will use this name to
identify the remote connection in other CodeWarrior IDE windows and dialog

boxes.

ColdFire Architectures, Linux Edition Targeting Manual 35

\
Y

y
A

Working With the Debugger
Debugging Remote Executable Files

d. Inthe IP Address text box, type the IP address of the remote target system and the
TCP/IP port number used for connecting to CodeWarrior TRK. For example, if the
IP address is 127.0.0.1 and the port number is 6969, type 127.0.0.1:6969.

e. Check the Show in processes list checkbox.
f. Save the new remote connection.

g. Click OK. The system saves the remote connection and closes the New
Connection dialog box.

h. Click Save.

i. Close the IDE Preferences window.

Specify Remote Debugging Options

Once the remote connection is set up, you must specify remote debugging options for the
build target.

1. Verity source code file debug settings.

Ensure that the source code files you want to debug have a mark next to their names in
the debug column of the project window.

2. Switch to the debug build target.

If the project has a debug build target, switch to the debug build target. Select the
target name from the build target list box in the project window.

3. Select a remote connection.

a. Open the Target Settings window by choosing Edit > Target Settings, where
Target is the name of the debug build target displayed in the project window.

b. Select Remote Debugging from the list of settings panels. The Remote
Debugging settings panel (Figure 3.8) appears.

36 ColdFire Architectures, Linux Edition Targeting Manual

g |

Working With the Debugger
Debugging Remote Executable Files

Figure 3.8 Remote Debugging Settings Panel

E Rernote [rebugaing

— Connection Settings

Connection:[Sample_Connection_TCFIP = Edit Connection... I

Femote download path

|7| /home./sample |

[Launch remote host application

(I |

[Dowenload 05

’7C0nnect10n:[:] Edit Connection...

05 Image Path: [| Choose...

c. Select the remote connection by using the Connection list box. The remote
connection you select here is the same remote connection you specified in “Create
a Remote Connection” on page 34.

d. Inthe Remote download path text box, specify the location where the executable
binary is to reside on the remote target system. CodeWarrior TRK transfers the
executable binary to this location immediately before starting the debugger.

NOTE The Download OS checkbox lets you specify the location of the compressed
kernel image that should be downloaded to the target platform for a specific
remote connection.

e. Ensure that external debugging is disabled.

Ensure that the Use External Debugger checkbox in the Build Extras settings
panel is cleared.

Start CodeWarrior TRK on the Remote Target

CodeWarrior TRK must be running on the remote target system before the debugger can
connect to the remote target system. The steps to launch CodeWarrior TRK on a remote
target system depend on the type of remote connection you are using.

Start CodeWarrior TRK Using TCP/IP Connection

To launch CodeWarrior TRK through a TCP/IP connection:

ColdFire Architectures, Linux Edition Targeting Manual 37

\
Y

y
A

Working With the Debugger
Debugging Remote Executable Files

1.

Connect to the remote target system.
a. Start the Terminal application.

b. At the command prompt, type telnet IP address, where IP address is the
IP address of the remote target system, and press Enter. Your computer connects to
the remote target.

2. Navigate to the target-system directory that contains the CodeWarrior TRK binary file.

Enter the command cd /TRKDir (where TRKDir is the name of the target-system
directory where you downloaded the CodeWarrior TRK binary file). The current
directory changes.

. Launch CodeWarrior TRK on the remote target system.

Type./TRKBinary :port,where TRKBinary is the name of the target-specific
CodeWarrior TRK binary file and port is the TCP/IP port number you specified
while creating a remote connection. For example, type . /AppTrk.elf :6969.

4. Press Enter. CodeWarrior TRK starts on the remote target system.

NOTE To reuse the console, you may start CodeWarrior TRK as a background

process. For example, if you want to start CodeWarrior TRK as a background
process on the TCP/IP port number 6969, the syntax is as follows: ./
TRKBinary :6969&.

Start CodeWarrior TRK Using Serial Connection

It is recommended that your computer have two serial ports if you want to debug
applications through a serial connection. This is because one serial port (for example,
COM1) of the host is connected to the first serial port (SO) of the target board while setting
up the target board. This connection is used for startup and console log messages from the
target board. You need to use another serial port (for example, COM2) of the host for
connecting to the second serial port (S1) of the target. This connection will be used by the
CodeWarrior™ debugger to communicate with CodeWarrior TRK.

To launch CodeWarrior TRK on the remote target by using a serial connection:

1.

Connect a serial cable between the host computer serial port COM(x) and the second
serial port (S1) of the board. Here, x is the port number.

Launch the Terminal application with these settings: 115200, 8, N, 1, N.

3. Navigate to the target-system directory where you downloaded the prebuilt

CodeWarrior TRK binary file.

In the Terminal serial connection console, type cd /TRKDir, where TRKDir is the
name of the target-system directory where the prebuilt CodeWarrior TRK binary file
exists, and press Enter. The current directory changes.

38

ColdFire Architectures, Linux Edition Targeting Manual

g |

Working With the Debugger
Debugging Shared Libraries

4. Launch CodeWarrior TRK on the remote target platform.

Type ./TRKBinary/dev/ttyS1 command in the Terminal console and press Enter.
CodeWarrior TRK launches on the remote target board.

Start the Debugger

Select Project > Debug to start the CodeWarrior™ debugger. When you start the
debugger, the CodeWarrior IDE:

1.

builds the target

2. connects to the remote CodeWarrior TRK process
3. transfers the executable file to the remote system
4.

5. starts the debugger

launches the executable file

Debugging Shared Libraries

The CodeWarrior IDE allows source-level debugging of non-executable files, such as
shared libraries. When you debug an executable file with which a shared library interacts,
you can step into the shared library code.

The tutorial that follows demonstrates the shared library debugging feature for an
implicitly linked shared library.

In this tutorial, you will do the following:

1.

¢ Create and build an example shared library

¢ Create and build an example application that implicitly links the example shared

library and debug the application

As a first step, create a project using the EPPC New Project Wizard and create two
new build targets with the following settings (Table 3.8):

Table 3.8 Shared Library Project Settings

Project Name: SharedLibrary Example
Project Location: /home/usrl/SharedSample
Languages: C

ColdFire Architectures, Linux Edition Targeting Manual 39

y
A

Working With the Debugger
Debugging Shared Libraries

Table 3.8 Shared Library Project Settings (continued)

Build Targets: + Lib_Example_debug
generates a shared library

+ Application_debug
generates an executable binary

Lib_Example_debug Build Target -
- Output Type: Shared Library

- Output File: LibExample.so (implements the
add_example function)

- Output File Location: /home/usrl/SharedSample/Output

Application_debug Build Target -
- Output Type: Application

- Output File: SharedLib Application.elf (makes
a call to the add_example function routine)

- Output File Location: /home/usrl/SharedSample/Output

NOTE For detailed information about how to create or remove build targets, refer the
CodeWarrior IDE User’s Guide.

2. Remove the default main.c file and add the source files (SharedLibImplicit.c
and Library Examples.c) to the project. The project window appears as shown in
Figure 3.9.

Figure 3.9 Source Files Added to the SharedLibrary_Example.mcp Project

L=kl
File Edit Search Project Debug Tools Window Helpl

|-n. Application_debug vI E

Fles / Link Order', / Targets

SharedLibrary_Example.mcp

o[File [Code [Data (AW |
= & [Source 0 0« « @S
L3 Hl Library_Examples.c 1] 0« « =
L3 M sharediiblmplicit.c u} 0« « =

{
2 files o] [u]

3. Create two header files; LibExample.h and CWExample.h in your project directory.
4. Enter the source code of Listing 3.1 into the editor window of LibExample.h file.

40 ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

Working With the Debugger
Debugging Shared Libraries

Listing 3.1 Source Code for LibExample.h

/* LibExample.h */
int add example(int x,int y);
int add example local(int x,int y)

5. Enter the source code of Listing 3.2 into the editor window of CWExample.h file.

Listing 3.2 Source Code for CWExample.h

/* CWExample.h */
#define INFINITE LOOP while(1l);

6. Enter the source code of Listing 3.3 into the editor window of
SharedLibImplicit.c file.

Listing 3.3 Source Code for SharedLiblmplicit.c

/* SharedlibImplicit.c */

/* Demonstrates implicit linking.*/
/*
User Include files

*/

#include “LibExample.h”
#include “CWExample.h”

/*

Function Prototype Declaration

*/

int temp(int, int);

/*
Main Program

*/

int main()
{
int ret;
int a,b;
a= 10;
b= 20;
ret = temp(a,b);
ret = add example(a,b);//Step In here
return ret;

ColdFire Architectures, Linux Edition Targeting Manual 41

h -

4
A

Working With the Debugger
Debugging Shared Libraries

int temp(int i,int j)

{
}

return i+j;

7. Enter the source code of Listing 3.4 into the editor window of
Library Examples.c file.

Listing 3.4 Source Code for Library_Examples.c

/* LibExample.c */

/*
User Include files
*/
#include "LibExample.h"
/*
Functions Definitions
*/
int add example(int x,int y)
{
int p,q;
p=100;
g=p+200;
add_example local(2,3);//Step In here
return x+y+q;
}
int add example local(int x,int y)
{
int p,q;
p=100;
g=p+200;
return x+y+q;
}

8. Add the path of the header files (CWExamples.h and LibExample.h) to both the
build targets.

a. Select the Lib_Example_debug build target from the build target list box in the
project window.

b. Click Target Settings button in the project window. The Target Settings window
appears.

42 ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

Working With the Debugger
Debugging Shared Libraries

c. Click Access Paths in the Target Settings Panels list. The Access Paths settings
panel appears, which displays the current search paths for locating and accessing
the build target’s system and header files.

d. Click in the User Paths list to select it.
e. Click Add. A file navigation dialog box appears.

f. Search for the location where the header files (CWExample.h and
LibExample.h) are stored in the project folder.

g. Select both the header files.

h. Click “Select <project folder>" in the file navigation dialog box. The header files
path location gets added to the User Paths list.

i. Repeat steps b to g for the Application_debug build target also.

NOTE Make sure that your project is using the correct cross compiler tools. To verify
or change the cross compiler tools path, click the System Paths option button
in the Access Paths settings panel.

Now, let us generate the shared library application and debug it. The following sections
describe how to debug a shared library:

¢ Build the Project
¢ Configure the Executable Build Target

e Configure the Library Build Target
¢ Debug the Shared Library

Build the Project

You first need to build the project to generate the shared library file and the executable
binary.

1. Build the SharedLibrary Example.mcp project

a. Select the Lib_Example_debug build target from the build target list box in the
project window.

b. Select Project > Make. The CodeWarrior IDE builds the project and stores the
output file LibExample.so in the Output directory within the project directory.

c. Now, select the Application_debug build target from the build target list box in
the project window.

d. Select Project > Make. The CodeWarrior IDE builds the project and stores the
final output file SharedLib Application.elf in the Output directory within
the project directory.

ColdFire Architectures, Linux Edition Targeting Manual 43

4
A

Working With the Debugger
Debugging Shared Libraries

Configure the Executable Build Target

You need to set up the Application_debug build target by:
¢ verifying the final output file name
¢ adding LibExample. so to the Application_debug build target
¢ specitying the linker settings
* specifying the remote download path of the final executable file
¢ specifying the host-side location and the remote download path of the shared library

* specifying the environment variable that enables the shared object loader to locate
the shared library on the remote target at runtime

1. Make the Application_debug build target in the project window active, if it not
already active.

2. Verity the final output file name.

a. Select Edit > Target Settings, where Target is the name of the build target. The
Target Settings window appears.

b. Click GNU Target in the Target Settings Panels list. The GNU Target settings
panel (Figure 3.10) appears.

Figure 3.10 GNU Target Settings Panel

E GHNU Tatget

Project Tupe:[_Application = |

Output File Name: |SharedLih_AppHcation.e]f |

Custom SONAME: | |

c. Make sure that the Output File Name text box displays the name of the final
executable binary as SharedLib Application.elf.

3. Add LibExample. so file to the Application_debug build target.

44 ColdFire Architectures, Linux Edition Targeting Manual

h -

g |

Working With the Debugger
Debugging Shared Libraries

a. Right-click on the project window and select Add Files from the contextual menu.

b. Navigate to the directory where you have stored the LibExample. so file in your
project folder. For this tutorial it is:
/home/usrl/SharedSample/Output.

c. Select the LibExample. so file and click Open. The Add Files dialog box
(Figure 3.11) appears.

Figure 3.11 Add Files Dialog Box

hd Add Files

Add files to targets:

E Tatgets I
B Debug A
b tipplication_debug

B Lib_Example_debug

o

d. Clear the checkbox adjacent to the Lib_Example_debug build target. This will
ensure that the LibExample. so file is not added to the Lib_Example_debug

build target.
e. Click OK. The LibExample. so file gets added to the Application_debug build
target (Figure 3.12).

Figure 3.12 LibExample.so Added to the Application_debug Build Target

SharedLibrary_Example.mcp
File Edit Search Project Debug Tools Window Helpl

[D]

Fles \ / Link Order ' / Targets

¥ [File [Code [Data [MDL[E |
= [Source 358 0« « @
m SharedLiblrmplicit .. 176 0« =
Ml Library_Examples.c 21z 0« « =
3 LibEsxarmple.so li] 0 =
Fi
3 files 385 o

4. Specify the linker settings.

ColdFire Architectures, Linux Edition Targeting Manual 45

A 4
A

Working With the Debugger
Debugging Shared Libraries

a. Click GNU Linker in the Target Settings Panels list. The GNU Linker settings
panel (Figure 3.13) appears.

Figure 3.13 GNU Linker Settings Panel

[/ GHu Linker

Linker Flags:

Libraries:

-lexample_dbg

b. Type these command line arguments in the Libraries text box:
-lexample dbg
NOTE The -lexample dbg linker command line argument enables the
CodeWarrior IDE linker to locate the shared library LibExample.so. For

detailed information about other linker command line arguments, refer GNU
linker manuals. The manuals can be found at www.gnu.org.

5. Specify the remote download path of the final executable file.

46 ColdFire Architectures, Linux Edition Targeting Manual

g |

Working With the Debugger
Debugging Shared Libraries

a. Click Remote Debugging in the Target Settings Panels list. The Remote
Debugging settings panel (Figure 3.14) appears.

Figure 3.14 Remote Debugging Settings Panel

E Remote Debugging

— Connection Settings

Connection:[Sample_Connection_TCPIP = Edit Connection... I

Femote download path
ﬂa’homea"sampﬂe |

[Launch remote host application

(I |

b. Make sure that the correct remote connection name is selected in the Connection
list box of the Remote Debugging settings panel.

c. Type /home/sample in the Remote Download Path text box. This specifies that
the final executable file will be downloaded to this location on the target platform
for debugging.

NOTE For this tutorial, the remote download path is specified as /home/sample. If
you wish, you may specify an alternate remote download path for the
executable file.

6. Specify the host-side location and the remote download path of the shared library.

a. Click Other Executables in the Target Settings Panels list. The Other
Executables settings panel (Figure 3.15) appears.

NOTE The Other Executables settings panel is displayed in the Target Settings
Panels list only when you select the CodeWarrior TRK-based remote
connection from the Connection list box in the Remote Connection settings
panel.

ColdFire Architectures, Linux Edition Targeting Manual 47

h -

4
A

Working With the Debugger
Debugging Shared Libraries

Figure 3.15 Other Executables Settings Panel

E Other Executablesz
Specify other executable files to debug while debugging this target:
[Frie 3
A
o
[Add...] [Change...] [Rernove]

b. Click Add. The Debug Additional Executable dialog box (Figure 3.16) appears.

Figure 3.16 Debug Additional Executable Dialog Box

hd Debug Additional Executable

— File location

[{Proiect}DutpuU LibExample so I

— [+ Download file during remaote debugging

Rermnote download path:

|a"h0me.-’sam|:ﬂe |

— [Debug merged executable

Specify the original file containing the executable that has been merged:

| |

L [cancel | [T oK LI

c. Click Choose in the File Location areca. The Choose an Executable to Debug
dialog box appears.

d. Navigate to the location where you have stored the LibExample. so file in your
project directory. For this tutorial it is:
/home/usrl/SharedSample/Output.

e. Select the LibExample. so filename.

f. In Relative To list box, select Project.

48 ColdFire Architectures, Linux Edition Targeting Manual

g |

Working With the Debugger
Debugging Shared Libraries

g. Click Open. The host-side location of the shared library appears in the File
location text box.

h. Check the Download file during remote debugging checkbox.

NOTE If you do not want to download the selected file on the target platform, do not
check the Download file during remote debugging checkbox.

i. Type /home/sample in the Remote download path text box. The shared library
will be downloaded at this location when you debug or run the executable file.

The default location of shared libraries on the embedded Linux operating system is
/usr/1ib. For this tutorial, the remote download location of LibExample. so is
/home/sample.

j- Click OK. The settings are saved.

7. Specify the environment variable that enables the shared object loader to locate the
shared library on the remote target at runtime.

At runtime, the shared object loader first searches for a shared library in the path
specified by the LD_LIBRARY PATH environment variable’s value. In this case, the
value of this environment variable will be /home/sample, which is the remote
download path for the shared library you specified in the Debug Additional
Executable dialog box. If you have not specified the environment variable or have
assigned an incorrect value, the shared object loader searches for the shared library in
the default location /usr/1ib.

a. Click Runtime Settings in the Target Settings Panels list. The Runtime Settings
panel appears.

b. In the Environment Settings area, type LD_LIBRARY PATH in the Variable text
box (Figure 3.17).

c. Type /home/sample in the Value text box.

ColdFire Architectures, Linux Edition Targeting Manual 49

4
A

Working With the Debugger
Debugging Shared Libraries

Figure 3.17 Runtime Settings Panel

E Runtime Settings

— Host dpplication for Libraries & Code Resources

Choose...

| Clear

— General Settings
‘Warking Directory: |.-"h0me.-"samp1e

Program Argurments: |

_ Environment Settings

LD_LIBRARY_PATH=7home/sample T [_Add]
J
i

Variable:| LD_LIBRARY_PATH | vatue:[homessampte

NOTE Make sure you type the same remote download path in the Value text box that
you specified in the Debug Additional Executable dialog box.

d. Click Add. The environment variable is added to the build target.
e. Click Save. The target settings are saved.
f. Close the Runtime Settings panel.

8. Build the project.

Select Project > Make. The final executable is built with new target settings.

Configure the Library Build Target

You need to configure the Lib_Example_debug build target by:
e verifying the final output file name

 specifying the host-side location of the executable file to be used for debugging the
shared library

¢ specifying remote debugging options
1. Make the Lib_Example_debug build target in the project window active.
2. Verify the final output file name.
a. Select Edit > Target Settings, where Target is the name of the build target. The
Target Settings window appears.
b. Click GNU Target in the Target Settings Panels list. The GNU Target settings
panel (Figure 3.18) appears.

50

ColdFire Architectures, Linux Edition Targeting Manual

g |

Working With the Debugger
Debugging Shared Libraries

Figure 3.18 GNU Target Settings Panel

|E GHNU Tatget

Project Type:[_Shared Library =]

Dutput File Name: |L1bExamD1e-so |

Custom SONAME: | |

c. Make sure that the Output File Name text box displays the name of the final
executable as LibExample.so.

3. Specify the host-side location of the executable file to be used for debugging the
shared library.

a. Click Runtime Settings in the Target Settings Panels list. The Runtime Settings
panel appears.

b. Click Choose in the Host Application for Libraries & Code Resources section.
The Choose the Host Application dialog box appears.

c. Navigate to the location where you have stored the
SharedLib Application.elf file in your project directory. For this tutorial it
is: /home/usrl/SharedSample/Output.

d. Select the SharedLib Application.elf filename.

NOTE If the contents of the Output folder are not visible in the Choose the Host
Application dialog box, select All Files from the Files of Type list box.

e. Click Open. The location of the final executable file appears in the Host
Application for Libraries & Code Resources text box (Figure 3.19).

ColdFire Architectures, Linux Edition Targeting Manual 51

4
A

Working With the Debugger
Debugging Shared Libraries

Figure 3.19 SharedLib_Application.elf Selected

g.
h.

E Runtime Settings

— Host dpplication for Libraries & Code Resources

Choose...

|[F‘r0iect} Output #SharedLib_Application.elf

Clear

— General Settings
‘Warking Directory: |

Program Argurments: |

_ Environment Settings

5w
J
7 (Cromwe]

Variah]e:| | Va]ue:|

In the Environment Settings area, type LD_LIBRARY PATH in the Variable text
box.

Type /home/sample in the Value text box.
Click Add. The environment variable is added to the build target.

4. Specify remote debugging options.

a.

f.
g.

Click Remote Debugging in the Target Settings Panels list. The Remote
Debugging settings panel appears.

. Make sure that the correct remote connection name is selected in the Connection

list box of the Remote Debugging settings panel.

Type /home/sample in the Remote download path text box. This is the location
where the shared library will be downloaded on the target for debugging.

Check the Launch remote host application checkbox.

Type /home/sample/SharedLib Application.elf in the text box below
the Launch remote host application checkbox.

Click Save to save the target settings.

Close the Remote Debugging settings panel.

5. Build the project.

Select Project > Make. The library is built with the new settings.

Debug the Shared Library

In the steps that follow, you will launch the debugger. Next, you will step through the
code of the executable file SharedLib Application.elf until you reach the code

52

ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

Working With the Debugger
Debugging Shared Libraries

that makes a call to the add_example function implemented in the shared library. At this
point, you will step into the code of the add_example function to debug it.

1. Make the Application_debug build target in the project window active.

2. Select Project > Debug. The debugger starts and downloads the
SharedLib Application.elf and LibExample. so files to the specified
location on the remote target, one after another. The debugger (Figure 3.20) and
symbolics (Figure 3.21) windows appear.

Figure 3.20 Debugger Window

SharedLib_application.elf (<tid: 0> <lwpid: 1117> Stopped B%]
File Edit Search Project Debug Data Tools Window Help
EStack | value | Location [=1]
0x400514D9 <0x40051409> 10 0:BFFFFBAD | %

main 20 0:BFFFFBAC
30 O:BFFFFBAL
¥]
=
Source: fhomes usr 1/ SharedS ample S haredLibl mplicit. ¢ (=]
int templ): Y
int add e=ample(int.int}):
int maing)
int ret;
int a.b
= a= 10:
= b= 20:
- ret = tempi{a.bl:
- ret = add_example{a.b); Shared library function
4] return ret:
- r
int templ(int i.int 33
s
- return 143: i
I_{} W[Line 11 Col1 | Seurce M-l [=

NOTE The Thread ID (TID) and Process ID (PID) format may vary across different
target platforms supported by the CodeWarrior™ Development Studio for
Embedded Linux.

ColdFire Architectures, Linux Edition Targeting Manual 53

h -

y
A

Working With the Debugger
Debugging Shared Libraries

Figure 3.21 Symbolics Window

hd Symbolics Window

Fle Edit Search

Help

g=ptE00;
add_emanple local(2, 3) ://Stap In here
return aty+d;

Project Debugy Data Linux Tools Window
IEExecutables El Functions El
LibE xample. so AN | ibrary Eramples.c A | |add_example A
SharedLib_Application. elf SharedLiblmplicit.c add_example_local
- A -
4
Source: fhome fusr1/ SharedSampledLibrary Examples.c (=]
B A
int add_ssamplei(int x,ink y)
-1
ink pog
=100

[Seurce M-l [

I £ [Line 22 Col 1

-

NOTE
User’s Guide.

3. Step Over the code.

For detailed information about symbolics window, see the CodeWarrior IDE

Click the Step Over button in the debugger window until you reach this line of code:
ret=add_example(a,b);.

4. Step into the code of the add_example function.

In the debugger window, click the Step Into button a couple of times to step into the
code of the add_example function. The debugger steps into the source code of the
add_example function in the Library Examples.c file (Figure 3.22).

54

ColdFire Architectures, Linux Edition Targeting Manual

g |

Working With the Debugger
Debugging Multiple Threads

Figure 3.22 Source Code of Library_Examples.c File

SharedLib_application.elf (<tid: 0= <lwpid: 1117> Stopped)’ - Ei
File Edit Search Project Debugy Data Tools Window Help

EStack =] @ Yariables : All | value | Location (=]

0400514019 <0«400514093 A P 1073834332 0:BFFFFE74 | %
main q 1073541764 0:BFFFFETD
add_example S 10 0:BFFFFEE0
¥ 20 0:BFFFFES4

7 7

~

ESource: Ahome £ usr1/ SharedS ampole L ibrary Examples.c

]

int add_emample{int =. int ¥}

|t

int p.g
- p=100;
| g=p+200
= return =+v+Hg;
o

£
L{} [Line 2 Col1 | Seurce M-l [P

5. Step through rest of the code.
After stepping in, you can step through the rest of the code.
6. Run the rest of the application.

7. Click the Run button. The rest of the code is executed and the output appears in the
CodeWarrior TRK Console window. You may also use the sample shared library
project available in the CodeWarrior installation directory. For more information
about sample projects, see “Sample Projects” on page 20.

Debugging Multiple Threads

In multi-threaded debugging, the breakpoints you set in the parent code are valid for all
the threads generated by the parent code. Execution of all the generated threads stops at
the breakpoint set in the parent code.

You can also set a thread-specific breakpoint (thread point), which is only valid for a
particular thread ID. The procedure for setting a thread point is similar to that of setting
any other eventpoint. Refer the CodeWarrior IDE User’s Guide for details.

While debugging programs that have multiple threads, the CodeWarrior™ debugger
enables you to view separate debug windows for each thread being debugged. Each thread
debug window displays its own stack crawl, source, and variable views.

ColdFire Architectures, Linux Edition Targeting Manual 55

y
A

Working With the Debugger
Debugging Multiple Threads

NOTE The CodeWarrior™ debugger also allows you to show all the threads being
debugged in a single thread window. For details, see “Viewing Multiple
Processes and Threads” on page 81.

The tutorial that follows, demonstrates multi-threaded debugging.

1. Create a new project with the following settings (Table 3.9):

Table 3.9 Multithread Project Settings

Project Name: multithread

Project Location: /home/usri/multithread
Languages: C

Output Type: Application

Output File Name: Multithread_Example.elf
Location of the Output File: /home/usr1/multithread/Output

The above step creates two build targets: ¢_app_debug and ¢_app_release. Since this
tutorial relates to debugging, only the first target is relevant.

2. Enter the source code of Listing 3.5 into the editor window of main.c file.

Listing 3.5 Source Code for main.c File

/* main.c */
/*
System Include files

*/
#include <pthread.h>
#include <stdio.h>
/*
User Include files

*/
#include "CWExample.h"
/*
Constants and Globals

*/
#define MAX NUM OF THREADS 3
int sum; /* this data is shared by the thread(s) */
/*
Function Prototypes

*/

56 ColdFire Architectures, Linux Edition Targeting Manual

P

Working With the Debugger
Debugging Multiple Threads

void *thread(void); // Thread routine

Main Program

*/

int main(int argc, char *argv[])

pthread t tid[MAX NUM OF THREADS]; /* the thread identifier */
pthread attr t attr[MAX NUM OF THREADS];/*set of thread attributes*/
int i;
if (argc != 2)

{
fprintf(stderr, “Please enter the number of threads you want
to create!!\n");

exit();

}

if ((atoi(argv[l]) < 0) || (atoi(argv[l]) > MAX NUM OF THREADS))
fprintf(stderr, "The number of threads(%d) must be > 0 OR < %d
\n atoi(argv[1l]),MAX NUM OF THREADS);

exit();
}

printf ("Number of threads to be created are :%d",atoi(argv[l]));
fflush(stdout);
/* get the default attributes */
for (i=0;i<atoi(argv[l]);i++)
pthread attr init(&attr[i]);
/* create threads */
for (i=0;i<atoi(argv[l]);i++)
pthread create(&tid[i], &attr[i], (void*)thread,NULL);
/* now wait for the thread to exit */
INFINITE LOOP
pthread join(tid[i-1],NULL);
printf("sum = %d\n", sum);
fflush(stdout);
return 0;

/* The thread will begin control in this function */
void *thread(void)

int i,3;

sum=0;

i++; // Set Thread BreakPoint Here
j++; // Set Thread BreakPoint Here
sum = i+j;

INFINITE LOOP

pthread exit(0);

ColdFire Architectures, Linux Edition Targeting Manual 57

h -

4
A

Working With the Debugger
Debugging Multiple Threads

NOTE Make sure that you include the CWExamples.h file in your project. You can
do this using the Access Paths settings panel.
3. Set a breakpoint in the thread code.

a. Double-click the main.c filename in the project window. The source code of the
main.c file is displayed in the editor window (Figure 3.23).

Figure 3.23 Editor Window

File Edit Search Project Debug Tools Window Help |
= o
e - @
System Include files 3
* Y
#include <pthread. h»
#include <stdio. b
i *
User Include files
* * 7
#include "CWExample. h"
)n’* *
Constants and Globals
* *7
#define MAX NUM_OF_THREADS 3
int sum; /% this data is shared by the thread(s) */
s *
Function Protobypes
* *)l'
woid *threadivoid); // Thread routine
i *
Main Program
* * 7
£
Line 100 Coli II\J—I =

b. Set a breakpoint at the following line in the editor window:

i++; // Set Thread BreakPoint Here

NOTE Setting breakpoints may affect the performance of the debugger. Care should
be taken while setting them.

c. Close the editor window.
4. Specify program arguments.
Open the Runtime Settings panel.

b. Type 2 as value in the Program Arguments text box under the General Settings
group.

c. Click Save to save the settings.

d. Close the Runtime Settings panel.

58 ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

Working With the Debugger
Debugging Multiple Threads

5. Specify the linker settings.
a. Open the GNU Linker settings panel.
b. Type -1lpthread in the Libraries text box.
c. Click Save to save the settings.
d. Close the GNU Linker settings panel.
6. Build the project.

Select Project > Make. The final output file Multithread Example.elf is
generated and is placed in the project folder.

7. Start the debugger.
Select Project > Debug. The debugger window (Figure 3.24) appears.

NOTE To be able to successfully debug multi-threaded applications, the following
library file 1ibpthread.so.0 must exist unstripped on the target platform. If
the above library is a symbolic link then the file it points to must be unstripped.

ColdFire Architectures, Linux Edition Targeting Manual 59

h -

4
A

Working With the Debugger
Debugging Multiple Threads

Figure 3.24 Debugger Window
Thread ID Process ID

bd Multithread_Example.elf (<tid: 0= <lwpid: 1110> Stopped)

B
Fle Edit Search Project Debug Data Tools Window

Help

8 0 oy e

ﬁstack 4] @ Variables : All | value | Location (=]

0x00000000 {0x00000000) Y arge 214745329584 Ox7FFFFDOS | %

0x0F DCADEC (0x0F DCADEC) [arge Ox7FFFFDE4 0x7FFFFDOC

main [» attr Ox7FFFFDZE Ox7FFFFDZE

i 2147483468 0x7FFFFD9S
[tid 0= 7FFFFD18 0x7FFFFD13
¥]
-
iSouroe: Fhome f usr1/multithread /Seures Amain .o]
wvoid *thread(void); // Thread routine Y
)l'*
Main Program
*
int mainf{int arge, char *argv[])

B2 J
pthread_t tid[MAX NUM OF THREADS|; /* the thread identifier +/
pthread_attr_t attr [MAX NUM_OF_THREADS]; A% set of thread attribu
int i;

- if farge 1= 2)

- fprintf (stderr, "Please enter the rumber of threads you want to creal

[Line 54 Coll | Seurce Ml I

]
-
The thread window displays the Process ID (PID) and Thread ID (TID) for the
currently running process. In this case, the PID is 1110 and the TID is 0.

NOTE The Thread ID (TID) and Process ID (PID) format may vary across different

target platforms supported by the CodeWarrior™ Development Studio for
Embedded Linux.

In the following steps, you will create multiple threads for the same process.

NOTE The Thread ID (TID) on the thread window is the ID assigned by the debugger/

CodeWarrior TRK to a particular thread. The debugger uses this ID to identify
a thread.

8. Create the first thread.

Step through the code by clicking the Step Over button. When the following code is
executed, the first thread is created, thread execution stops at the breakpoint, and the

60 ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

Working With the Debugger
Debugging Multiple Threads

first thread window (Figure 3.25) appears. This thread window has the same PID, but a

new TID (2):

for (i=0;i<atoi(argv[l]);it+)

pthread create(&tid[i], &attr[i], (void*)thread,NULL);

Figure 3.25 First Thread Window

hd Multithread_Example.elf (<tid: 2> <lwpid: 1110> Stopped)

Fle Edit Search Project Debug Data Tools Window Help

BB W]
EStack @ Variables: All | Yalue | Losation [41]
0x0FEB0EF 4 (0xOFESOEF 4) i 2130095039 0x7F7FFAFE | %
0xOFFDO4CO { 0x0FFDO4C0) i 1] 0z 7F7FFAFC
0x0FFDO47C { 0x0FFDO47C)
thread{}

|7 7

=4

E Source: fhome fusr1Amultithread /Source fmain.c

4% The thread will hegin control 1n this function +/
void *thread(void)
B
int i,7;
=um=0;
i++; // Set Thread BreakPoint Here
j++; /4 Set Thread BreakPoint Here
SUIL = 1+];
INFINITE_LOOP
pthread_exit(0);
i

[. 2
¥

|

I [Line 77 Coll | Source M-l I

-J

Once the thread window appears, you can step through the thread code.

Create the second thread.

Step through the code in the parent debugger window once. When the for loop code is
executed again, the second thread is created, thread execution stops at the breakpoint,

and the second thread window (Figure 3.26) appears.

ColdFire Architectures, Linux Edition Targeting Manual

61

h -

4
A

Working With the Debugger
Debugging Multiple Threads

Figure 3.26 Second Thread Window

b4 Multithread_Example.elf (<tid: 3> <lwpid: 1110> Stopped) 8%
Fle Edit Search Project Debug Data Tools Window Help

FJEEEWE

@ Yariables : All | Value | Location

0x0FESOEF4 (0xOFEGOEF4) i 3 Ox7FSFFAFE
0xOFFDO4CO {0x0FFD04C0) i 2147482764 Ox7FSFFAFC
O0xOFFDO47C {0x0FFD047C)

thread(}

L
[I P |

Source: Shome fusr1/multithread /Source fmain.c

]

#* The thread will hegin control in this function */
void *thread(void)

-t

int 1i,73;

sum=0;

i++; // Set Thread BreakPoint Here

j++; f/ Set Thread BreakPoint Here

sun = i+3;

INFINITE LOOE

pthread_exit(0);

(.)
¥

£
{3] Line 77 Coll | Source [| a I

10. Set a breakpoint, which is specific for the second thread.
a. Set a breakpoint at this line of code in the parent debugger window:
j++; // Set Thread BreakPoint Here
b. Select Window > Breakpoints Window. The Breakpoints window (Figure

3.27) appears. For more information, refer the CodeWarrior IDE User’s Guide.

Figure 3.27 Breakpoints Window

hd Breakpoints
File Edit Search Project Debug Data Breakpoints Tools
Help
_/ GmupsVlnstancesVTemplates\
| Location [«] Conditian Praject |
=3 Breakpoints
& main.c, lined3 + 08B0 rnuttithread.mey
& main., line9s + 0x8BC rrw ThreadlD == 3 raultithread.mey
[Eventpoints
Watchpaints £
I Special I

c. Double-click the Condition field corresponding to the breakpoint you have set in
the parent debugger window. A cursor appears in the condition field. For this
example, it is line 96.

62 ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

Working With the Debugger
Debugging Multiple Threads

d. Type this condition:
mwThreadID == 3.

This condition specifies that the breakpoint is valid for the second thread, which
has the thread ID 3.

NOTE The thread ID appears on the title bar of the thread window.

e. Close the Breakpoints window. A breakpoint specific to the second thread is set.
11. Set a breakpoint just after the conditional breakpoint.

This breakpoint lets you verify that the conditional breakpoint is only valid for the
second thread.

12. Execute the first thread.

Click the Run button in the first thread window. The debugger ignores the conditional
breakpoint; thread execution stops at the breakpoint just after the conditional
breakpoint (Figure 3.28).

Figure 3.28 First Thread Ignores Conditional Breakpoint

b4 Multithread_Example.elf (<tid: 2> <lwpid: 1110> Stopped) 8%
File Edit Search Project Debug Data Tools Window Help

[

EStack @ Variables: All_ | Value | Losation E
0x0FEB0EF 4 (0xOFESOEF 4) i 2139095040 0x7F7FFAFE | %
0x0FFDO4C0 { 0x0FFDO4CO) i 1 0= 7F7FFAFC
0x0FFDO47C {0x0FFD047C)
thread{}

-

-
E Source: fhome fusr1fmultithread/Source fmain.c E

4% The thread will begin control in this function */
void *thread(void)
-t
int 1,7;
sum=0;
i++; // Set Thread BreakPoint Here
j++; // Set Thread BreakPoint Here
B sunm = i+3;
INFINITE_LOOP
pthread_exit(0);
i

L

I 3 [Line 57 Coll | Source MH-d] -

ColdFire Architectures, Linux Edition Targeting Manual 63

h -

4
A

Working With the Debugger
Debugging Multiple Threads

13. Execute the second thread.

Click Run in the second thread window. The thread execution stops at the conditional

breakpoint (Figure 3.29) set at the following line of code: j++; // Set Thread
BreakPoint Here.

Figure 3.29 Execution of Second Thread Stopped at Conditional Breakpoint

hd Multithread_Example.elf (<tid: 3= <lwpid: 1110> Stopped

Fle Edit Search Project Debug Data Tools Window Help |

& - xR0 HEE
EStack =] @ Variables: All | Yalue | Losation [=1]
0x0FEB0EF 4 (0xOFESOEF 4) iy i L 0x7FSFFaFE | %
0xOFFDO4CO { 0x0FFDO4C0) i 2147452764 0z 7FSFFAFC
0x0FFDO47C { 0x0FFDO47C)
thread{}

|7 7

-
E Source: fhome fusr1fmultithread/Source fmain.c

4% The thread will hegin control 1n this function +/
void *thread(void)

B

int i,7;

=um=0;

i++; // Set Thread BreakPoint Here

j++; /4 Set Thread BreakPoint Here

SUIL = 1+];

INFINITE_LOOP

pthread_exit(0);

|)

I_{} [Line 56 Coll | Source M-l I -

o e
¥

14. While debugging, if you wish to view the list of threads associated with a process,
select Window > Processes Window. The Processes window (Figure 3.30) as in
the following example appears. For more information about the Processes window,
see CodeWarrior IDE User’s Guide.

64 ColdFire Architectures, Linux Edition Targeting Manual

g |

Working With the Debugger
Debugging Binary Files With No Source Code

Figure 3.30 Example of Multi-thread Processes Window

hd FProcesses

Fle Edit Search Project Debug Data Tools Window

Help
‘ EPPC Linux MetroTRK -l
Process El Tazk | Status]|
Tl || | i 1> <hwpid: 55 ... Running Y
AppTik_rel_be_b <5579 Running <tid: 23 ¢hwpid: 55 ... Stopped
Multi_fork 2. elf <B576> Stopped <tid: 3> ¢hwpid: 55 ... Stopped
Multi_fork2.elf <5575 Stopped <tid: 0> ¢hwpid: 55 ... Stopped

Multi_fork 2. elf <5574 Stopped
Multi_fork2 elf <5573> Sleeping[can be int
Multi_fork2.elf <5572 Stopped
AppTik_rel_be.e <55705 Sleeping(can be |- 4

You may also use the sample multithreading project available in the CodeWarrior
installation directory. For more information about sample projects, see “Sample Projects”
on page 20.

Debugging Binary Files With No Source
Code

The CodeWarrior IDE lets you download and run on the target platform, a binary file
(.elf or .so) whose source code is not available to you. When you drag a binary file into
the CodeWarrior IDE window, the CodeWarrior IDE creates a dummy project for the
binary file. You can specify the runtime settings and remote debugging options in the
dummy project and download and run the binary file on the target platform.

NOTE For debugging a shared library (.so) file on the target platform, you must
associate a host file with the shared library.

To download and run on the target platform, an executable file (.elf) whose source code is
not available to you, follow these steps:

1. Create a dummy project.

Drag an executable file (.el£f) for which there is no source code available into the
CodeWarrior IDE window. The CodeWarrior IDE creates a dummy project with the
same name as the file name of the elf file. For example, if the elf filename is
cw_elf drop.elf, the dummy project created will be cw_elf drop.mcp
(Figure 3.31).

ColdFire Architectures, Linux Edition Targeting Manual 65

h -

4
A

Working With the Debugger
Debugging Binary Files With No Source Code

Figure 3.31 Dummy Project Window

cw_elf_drop.mcp

I o app_debug

Files | Lirk: Drderl Targetsl

By &5

=10l x|

¢ | Fike

ata |96k

w #{] Source
« [maincpp

| Code | D
0

0

0 e
0 e

=~
s o~

2 files

i

1]

4

2. Change the default output file name to the name of the file you want to run.

a. Select Edit > Target Settings. The target settings window appears.

b. Click GNU Target in the Target Settings Panels list. The GNU Target Settings

panel appears.

c. Type the name of the executable file in the Output File Name text box.

NOTE

If the executable file uses a shared library, you need to specify the host-side

location and remote download path of the shared library in the Other
Executables settings panel. Additionally, you need to specify the
LD_LIBRARY PATH environment variable in the Runtime Settings panel to
enable the shared object loader to locate the shared library on the target system.

3. Specify the remote download path of the executable file.

a. Click Remote Debugging in the Target Settings Panels list. The Remote

Debugging settings panel appears.

b. Select the remote connection name by using the Connection list box.

c. Type the remote download path of the executable file in the Remote Download

Path text box.

d. Click Save in the Remote Debugging settings panel. The target settings are saved.

e. Close the Remote Debugging settings panel.

4. Run the executable file.

Click Run in the project window. The executable file is downloaded to the specified

location on the target and executed.

NOTE

If the executable file you want to run was compiled with the debug build target

selected, you may step through the assembly language code of the executable

file by clicking Debug.

66

ColdFire Architectures, Linux Edition Targeting Manual

g |

Working With the Debugger
Debugging Applications that use fork() and exec() System Calls

Debugging Applications that use fork() and
exec() System Calls

The CodeWarrior™ debugger lets you debug a program that contains fork () and
exec () system calls. Table 3.10 summarizes the descriptions of these system calls.

Table 3.10 fork() and exec() description

System Call

Description

fork()

The fork () system call is used as a generic call on Linux systems
to create a new process. The fork () call creates a new process,
which is the exact replica of the process that creates it. The only
difference is in the PID (Process ID) returned by the fork system
call. The value of PID returned in the parent process is the PID of
the child, whereas in the child process the PID value returned is
zero.

exec()

The exec () system call launches a new executable in an already
running process. The debugger destroys the instance of the
previous executable loaded into that address space and a new
instance is created.

For debugging applications that use the fork() system call, the fork () system call is
overridden by the clone () system call. The clone () system call is called with the flag
CLONE PTRACE instead of the fork () system call. Calling the clone() system call
with the flag CLONE_PTRACE causes:

e the operating system to attach CodeWarrior TRK to the child process.

e the child process to stop with a SIGTRAP on return from the clone() system call.

To call the clone () system call transparently while debugging programs that contain the
fork () system call, you need to add a static library to your project. The source code for
building the static library is described later in this section.

NOTE The static library necessary for debugging programs that contain the fork()
system call must be added to the project. A pre-built version of the static
library is available at this location:
CWinstall/CodeWarriorIDE/Examples)/arm/Binaries/arch
where, arch is the platform architecture you are using (for example,
dbmx1_le for DragonBallMX1 platform architecture).

Before you start the tutorial, make sure you have:

o created a TCP/IP connection between the host computer and the remote target

ColdFire Architectures, Linux Edition Targeting Manual 67

r
4\

Working With the Debugger
Debugging Applications that use fork() and exec() System Calls

» checked the Show in processes list checkbox in the New Connection dialog box
while creating the new connection

* checked the checkbox in the C (catch) column corresponding to the SIGCHLD
debugger signal in the Debugger Signals settings panel

¢ Jaunched CodeWarrior TRK on the remote target

The tutorial that follows demonstrates the functionality for debugging programs that
contain fork () and exec () system calls:

1. As afirst step, create a static library project with the following settings (Table 3.11).

Table 3.11 Static Library Project Settings

Project Name: ForkToCloneLib.mcp
Location of the Project: /home/usr1/Fork&Exec
Languages: C

Output Type: Static Library

Output File Name: fork2clonelLib.a

Location of the Output File: /home/usr1/Fork&Exec/Output

The above step creates two targets: ¢_lib_static_debug and c_lib_static_release.
Since this tutorial relates to debugging, only the first target is relevant.

a. Remove the default main.c file from the project.
b. Add anew Libstaticfork.c file to the project.

a. Enter the source code of Listing 3.6 into the editor window of Libstaticfork.c
file.

Listing 3.6 Source Code for Libstaticfork.c

/*
User Include files
*/
#include "db fork.h"
/*
Main Program
*/

int _ libc fork(void)
{
return(_ db fork());

68 ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

Working With the Debugger
Debugging Applications that use fork() and exec() System Calls

extern __ typeof (__ libc fork) _ fork _ attribute ((weak, alias
(" _1libc fork")));

extern _ typeof (__libc_fork) fork _ attribute ((weak, alias
("__libc fork"))):;

b. Create a header file db_fork.h in your project directory and add the code in
Listing 3.7 into the header file.

Listing 3.7 Source Code for db_fork.h

#include <asm/unistd.h>

#include <errno.h>

#include <signal.h>

#include <sched.h>

#define _ NR__ db clone NR_clone

_syscall2(int, _ db clone, int, flags, int, stack);

c. Make the c_lib_static_debug build target active.

d. Open the Access Paths settings panel and add the path of the header file
(db_fork.h) to the project.

e. Build the ForkToCloneLib.mcp project by choosing Project > Make. The
CodeWarrior IDE builds the project and stores the output file fork2cloneLib.a
in the Output directory within the project directory.

2. Create another project; Fork&ExecExample .mcp and create two new build targets
with the following settings (Table 3.12):

Table 3.12 Fork and Exec Example Project Settings

Project Name: Fork&ExecExample
Location of the Project /home/usri1/Fork&Exec
Languages: C
Output Type: Application
Build Targets: - Parent_debug

- ChildA_debug

- ChildB_debug

ColdFire Architectures, Linux Edition Targeting Manual 69

y
A

Working With the Debugger
Debugging Applications that use fork() and exec() System Calls

Table 3.12 Fork and Exec Example Project Settings (continued)

Parent_debug Build Target -
- Output Type:
- Output File:

- Output File Location:

Application
Parent.elf

/home/usri/Fork&Exec/Output

Child_A_debug Build Target
) Application
Child-A.elf

/home/usri1/Fork&Exec/Output

- Output Type:
- Output File:

- Output File Location:

Child_B_debug Build Target
) Application
Child-B.elf

/home/usr1/Fork&Exec/Output

- Output Type:
- Output File:

- Output File Location:

3. Add the source files fork.c, ChildA.c, and ChildB.c to the

Fork&ExecExample.mcp project.

e fork.c — will contain the code of the parent process

* ChildA.c — will generate the executable file Child-A.elf
* ChildB.c — will generate the executable file Child-B.elf

The code of the parent process creates a forked process (child process) when the
__db_fork function executes. The debugger opens a separate thread window for the
child process. When the child process finishes executing, the debugger closes the
thread window. To debug the code of the child process, you need to set a breakpoint in
the child process code or stop the execution of the child process by clicking the Break
button. You can debug the code of the child process the same way you debug code of
any other process.

The code of both child and parent processes contain exec (') function calls that
execute the Child-A.elf and Child-B.elf files, respectively.

As you step through the code of the child process, the exec () function call executes
and a separate debugger window for the Child-A.elf appears. You can perform
normal debug operations in this window. Similarly, you step through the code of the
parent process to execute the exec () system call. The debugger destroys the instance
of the previous file (Parent.elf) and creates a new instance for the Child-B.elf
file.

70

ColdFire Architectures, Linux Edition Targeting Manual

g |

Working With the Debugger
Debugging Applications that use fork() and exec() System Calls

4. Enter the source code of Listing 3.8 into the editor window of fork.c file.

Listing 3.8 Source Code for fork.c

/*
System Include files
*/

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/ptrace.h>
#include <sys/errno.h>
#include <sys/types.h>
#include <signal.h>
#include <sched.h>
#include <fcntl.h>
#include <dlfcn.h>
/*
User Include files

*/
#include "CWExample.h"
/*
Function Prototypes

*/
int fnl(int j);
int fn2(int i);
/*
Globals and Constants

*/

int gint;

#define CHILDA DBG "/home/sample/Child-A.elf"
#define CHILDB DBG "/home/sample/Child-B.elf"
/*
Main Program

*/

int main(void)

{
int pid,x;
int shared local;
char *argv([5];
printf("Fork Testing!\r\n");
fflush(stdout);
gint = 5;
shared local =5;
pid = fork();
if(pid == 0)

ColdFire Architectures, Linux Edition Targeting Manual 71

r
4\

Working With the Debugger
Debugging Applications that use fork() and exec() System Calls

x=0;
gint = 10;
shared local =10;
printf("I am the child,my process ID is %d\n",getpid());
printf("The child's parent process ID is %d\n",getppid());
argv[0] = CHILDA DBG;
argv[l] = NULL;
execv(argv([0],argv);

}

else

{
x=0;
gint = 12;
shared local =12;
printf("I am the parent,my process ID is %d\n",getpid());
printf("The parent's parent process ID is %d\n",getppid());
argv[0] = CHILDB DBG;

argv[1l] = NULL;

execv(argv[0],argv);

}

return 0;

}

NOTE Make sure that you include the CWExamples.h file in your project. You can
do this using the Access Paths settings panel.

5. Enter the source code of Listing 3.9 into the editor window of ChildA.c file.

Listing 3.9 Source Code for ChildA.c

/*
System Include files
*/
#include <stdio.h>
/*
Main Program
*/
int main(int argc, char **argv)
{
printf("This is a message from the child-A.elf\n");
return 0;
}

6. Enter the source code of Listing 3.10 into the editor window of ChildB.c file.

72 ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

Working With the Debugger
Debugging Applications that use fork() and exec() System Calls

Listing 3.10 Source code for ChildB.c

/*
System Include files
*/
#include <stdio.h>
/*
Main Program
*/
int main(int argc, char **argv)
{
printf("This is a message from the child-B.elf\n");
return 0;
}

7. Add fork2cloneLib.a file to the Fork&ExecExample.mcp project.
a. Right-click on the project window and select Add Files from the context menu.

b. Navigate to the directory where you have stored the fork2cloneLib.a file in
your project folder. For this tutorial it is:
/home/usrl/Fork&Exec/Output.

c. Select the fork2cloneLib.a file and click Open. The Add Files dialog box
appears.

d. Click OK. The fork2cloneLib.a file gets added to the project (Figure 3.32).

Figure 3.32 Fork&ExecExample.mcp Project Window

b d Fork&ExecExample.mcp
File Edit Search Project Debug Tools Window Help |

|ﬂ Parent_debug vI J J

Files Link Order, / Targets

W[File | Code | Data [4[e€ |
=% [Source a = Y
E3 M Forks il 0« « @
¥ M childas i 0D o« 3
¥ M chiB.c 0 0+ EIJ
[forkZelone_dba.a] O =

£
4 files i 0

8. Build Fork&ExecExample .mcp project.

a. Select the Parent_debug build target from the build target list box in the project
window, if not selected.

b. Select Project > Make. The CodeWarrior IDE generates the Parent.elf,
Child-A.elf, and Child-B.elf executable files and places them in the project

ColdFire Architectures, Linux Edition Targeting Manual 73

r
4\

Working With the Debugger
Debugging Applications that use fork() and exec() System Calls

folder. For this tutorial it is:
/home/usrl/Fork&ExecExample/Output.

9. Specify the host-side location and remote download path of the executable files to be
launched by the exec () system call.

a.

e

=0

—-

k.

1.

Select Edit > Parent_debug Settings. The Parent_debug Settings window
appears.

. Click Other Executables in the Target Settings Panels list. The Other

Executables settings panel appears.

. Click Add in the Other Executables settings panel. The Debug Additional

Executable dialog box appears.

Click Choose in the Debug Additional Executable dialog box. The Choose an
Executable to Debug dialog box appears.

. Navigate to the project directory (the /home/usrl/Fork&ExecExample/

Output directory)

Select Child-A .elf.

Click Open. The path of the selected file appears in the File Location text box.
Check the Download file during remote debugging checkbox.

In the Remote Download Path text box, type the path where you want to
download the executable. For example, you may specify /home/sample.

Click OK. The File list in the Other Executable settings panel shows the path of
the selected executable file.

Repeat steps ¢ through e.
Select ChildB.elf.

m. Repeat steps g through j.

10. Specify remote debugging options.

a.

Click Remote Debugging from the list of settings panels. The Remote Debugging
settings panel appears.

Select the remote connection name by using the Connection list box.

. In the Remote download path text box, specify the location where the executable

file Parent.elf is to reside on the remote target. For example, you may specity /
home/sample.

11. Set breakpoints in the child and parent processes.

74

ColdFire Architectures, Linux Edition Targeting Manual

h -

g |

Working With the Debugger
Debugging Applications that use fork() and exec() System Calls

a. Double-click the fork.c filename in the project window. The editor window
(Figure 3.33) appears.

Figure 3.33 Source Code of fork.c File

File Edit Search Project Debug Tools Window r;lp |
IE Path: | fhome fusr1/Fork&E wecE rampledfork. o o3
=
) i
(x=0;
gint = 10;

shared_local =10;

printf ("I am the child, my process ID iz %d'wn", getpid(});
printf("The child’'s parent process ID iz &dwn", getppid());
argv[0] = CHILDZ DEG;

argv[l] = NULL;

execv{argv[0], argv);

else

* ==0;

gint = 12;

shared_local =12;

printf ("I am the parent. my process ID is &dwn", getpid()):
printf("The parent’s parent process ID is &dwn", getppidil);

argv(0] = CHILDE_DEG;

argv[l] = NULL;

execviargv[0], argv);

Line 1 cali ||] - I

b. Set a breakpoint in the code of the child process at this line: x=0;.
c. Set a breakpoint in the code of the parent process.
d. Close the fork.c file.
12. Start the debugger.
Select Project > Debug. The debugger window (Figure 3.34) appears. The debugger

downloads the Parent.elf, Child-A.elf, and Child-B.elf executable files to
the specified location on the remote target one by one.

ColdFire Architectures, Linux Edition Targeting Manual 75

h -

y
A

Working With the Debugger
Debugging Applications that use fork() and exec() System Calls

Figure 3.34 Debugger Window for Parent Process

b d Parent.elf (<tid: 0> <lwpid: 1110> Stopped
File Edit Search Project Debug Data Tools Window Help
mStack @ Yariables: All | Yalue | Location B
hit <0004 0062C> - argy Ox7FFF7E38 0«7FFFVB3E |
0x24B14T04 <0x24B1470 4> pid 2147450368 0=7FFF7BZ28
main shared_local 2147450368 0=7FFF7B30
% 2E8501640 O=7FFF7B2C
7]

-

Source: /home/usr1/FarkiErecE vample/fark.c |
int fn2{int i); A
S S5 s Global Variables »/ores s s
int gint:

ST I LT T T TS LLLLL LSS SIS E LSS SL LS ELS SIS
mainivoid)
LA
int pid.=;
int shared_local;
char *®argv[5]:
= printf{ "Forlk Testing!-r>n" }:
- fflush{ stdout): J
= gint = 5:
- shared_local =5: £
L{} [Line 25 Coll | Source H=d I -

13. Step over the code until you reach the line of code that calls the fork () system call:
pid = fork ();

When the fork () system call is called, the child process debugger window (Figure
3.35) appears. You can now perform normal debugging operations in this window.

76 ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

Working With the Debugger
Debugging Applications that use fork() and exec() System Calls

Figure 3.35 Debugger Window for Child Process

b d Parent.elf(<tid: 0> <Iwpid: 1117> Stopped
File Edit Search Project Debug Data Tools Window Help
ﬁStack @ Yariables: All | Yalue | Location B
hit <0004 0062C> - argy Ox7FFF70E0 0«FFFF7DE0 |4
0x24B14T04 <0x24B1470 4> pid a O=FFFF7070
fhain shared_local 5 0«7FFF7D78
® a O=7FFFF7074
7]
-
Source: #home / usr1/Fark §EvecE vample/fark.c |
#* process code (otherwise. 1t might just A
* run for comnpletion OR it might loop somnewhere).
#* put a breakpoint on both places at convenient
* location.
*.
- pid = fork():
- if (pid == 0}
{
L]0 =z=0;
= gint = 10:
- shared_local =10;
= printf("Forked : Child"}:
S J
* Hote: The define TARGET_LITTLE_EHDIAN i
L{} W[Line 21 Coll | Source [I =

14. Step over the code in the child process debugger window a couple of times. When the
exec () function call in the child process code executes, a new debugger window
(Figure 3.36) appears. This window displays the code of the Child-A.elf
executable file. You can now perform normal debugging operations in this window.

ColdFire Architectures, Linux Edition Targeting Manual 77

h -

4
A

Working With the Debugger
Debugging Applications that use fork() and exec() System Calls

Figure 3.36 Debugger Window for File Executed by Child Process

File Edit Search Project Debug Data Tools Window Help

ﬁStack H @ Mariables: Al | Value | Location B

hit <0004 0062C: A argec 716226608 0<7FFF70E8 | &
0228814704 <0x24B1470 4> - argy Dx2AAB386C 0=7FFF70EC
main i 4196430 0=7FFF70E0
pid 268468272 0=7FFF7070
¥ 4195472 0=7FFF7074
[717913520 0«7FFF707E

- z i] 0=7FFF707C 7

-

Source: /home/usr1/Fark iExecE vample/childd. |
tinclude <stdic hi : a ' A
int main(int argc, char **argv)

~pi
- int pid:

int X.¥.2;

int 1 = 10;
_ printf("Thi=z iz a messzage from the child A.elfn"):
= return 0
-

I
L{} s Coll | Source H=d I -

15. Next, step over the code in the parent process debugger window a couple of times.
When the exec () function call in the parent process code executes, the debugger
destroys the instance of the previous executable file (Parent.elf) and creates a new
instance for the Child-B.elf file (Figure 3.37). You can now perform normal
debugging operations in this window.

78 ColdFire Architectures, Linux Edition Targeting Manual

g |

Working With the Debugger
Viewing Process Information

Figure 3.37 Debugger Window for File Executed by Parent Process

File Edit Search Project Debug Data Tools Window Help

mStack @ Yariables: All | Yalue | Location B

hit <0004 0062C> arge 716226608 O=7FFF709E |5
0x24B14T04 <0x24B1470 4> - argy Ox244B386C 0=7FFF70AC
main i 4196430 0=7FFF70E0
pid 2B04E8272 O=7FFF7D70
% 4195472 O=7FFF7074
Y 717913520 O=TFFF7O7E

- z i 0=7FFF7D7C 7

-

Source: /home/usr1/Fark iExecE vample/childB.c |
tinclude <stdio h> A
int mainf{int argc. char **argwv)

e

int pid:

int ®.¥.Z;
= int 1 = 10;
_ printf("Thiz iz a messzage from the child B.elfn"):
= return 0;
-t

£
L{} s Coll | Source H=d I -

16. The console window of the parent process is shared by the child process.

Viewing Process Information

When you open a debug session (Project > Debug) or connect to the target platform
(Debug > Connect), the CodeWarrior IDE displays the Linux Info menu that you may
use to view details about the processes running on your target platform.

The Linux Info menu (Figure 3.38) contains commands that enable you to view and
refresh the processes running on the target platform.

Figure 3.38 Linux Info Menu

Linux Info |

Process Info

Hairash inip

Table 3.13 describes the menu commands provided by the Linux Info menu.

ColdFire Architectures, Linux Edition Targeting Manual 79

4
A

Working With the Debugger
Viewing Process Information

Table 3.13 Linux Info Menu - Description of Commands

Commands

Descriptions

Process Info

process

Displays the list of currently running
processes on the target platform

with a detailed description about each

Refresh Info

Refreshes the processes list

To view details of the currently running process, the steps are:

1. Start a debug session.

2. Select Linux Info > Process Info. The Process Information Window (Figure

3.39) appears.

Figure 3.39 Process Information Window

Process

sh 376>

myapp_

myapp_cpp.elf <173>
tty <37>

e portmap <325

inetd <23>

syslogd 20>
init <>

£ Process ini srmation Window:

Process Details

— ApPTRK_debug.el <3%6> Info
CmdLine:

- Environ
LOGNAME-agancevl
REMOTEHOST=bery
MAlL-lvarispoolimailiagancev1
TERM=xterm
HOSTTYPE-powerpc

P

TAppTRK debug.elf

HOME-home/agancevi
SHELL-hin/sh
PS1=[u@h WS
USER-agancev1
DISPLAY-bery mdcr.sps.mot.com:0
OSTYPE=Linux
SHLVL=1
_=.JApTRK_debug.elf
o Maps
+ Process Status
- memory status
Total program size: 131
resident set size: 131
shared pages: 112
text(code): 12
dataistack: 0
library: Rt
dirty pages: 36

Cose

1 Rebin:.

The Process Information Window displays the currently running processes in the left-

hand side of the window.

3. Select the process for which you want to view the details from the processes list.

The left-hand side of the window displays the details for the selected process, such as
environment settings, process status, and address mappings.

NOTE You may not be able to view information for processes for which you do not
have read/write permissions on /proc files for that particular process. For
example, the environment details for a process might not be displayed, if the

80

ColdFire Architectures, Linux Edition Targeting Manual

g |

Working With the Debugger
Viewing Multiple Processes and Threads

AppTRK owner on the target platform does not have read/right permissions on
the /proc files for that process.c

4. Select Linux Info > Refresh Info to refresh the current state of the processes.

5. Close the Process Information Window.

Viewing Multiple Processes and Threads

Whenever an application which forks a new process is debugged a new thread window is
created and is displayed in the debugger window. If you debug an application that creates
many new processes, a number of thread windows appear in the CodeWarrior IDE
window. Making the CodeWarrior IDE window cluttered with thread windows leading to
a lot of confusion about which thread window to debug.

To overcome this problem, a new option is added in the IDE Preferences panel that
allows you to specify whether you want to display the new processes and associated
threads in separate thread windows or in a single thread window.

NOTE You can display all the processes in a single thread window for a given remote
connection only.

For example, let us take the example of the ForkAndExec .mcp project you created and
debugged in the previous section. The parent process; Parent .elf forks a new child
process; Child-A.elf. The child process appears in a separate thread window. You can
show the parent process and the child process in a single thread window using the option
made available in the IDE Preferences panel.

The steps to do this are as follows:
1. Open the Display Settings panel.

a. From the project window, select Edit > Preferences. The IDE Preferences
window appears.

b. Click Display Settings in the list of settings panels in the left pane. The Display
Settings panel appears in the right pane.

2. Specify the settings to show all the processes and threads in a single debugger window.

a. Ensure that the Show processes in separate window and Show threads in
separate window checkboxes are cleared in the Display Settings panel (Figure
3.40).

NOTE If you check the Show processes in separate window and Show threads in
separate window checkboxes, each process and its associated thread will be
displayed in a separate thread window.

ColdFire Architectures, Linux Edition Targeting Manual 81

4
A

Working With the Debugger
Viewing Multiple Processes and Threads

Figure 3.40 Display Settings Panel

|E Dizplay Settings

_ Colar Settings
‘Yariable val ues change: - ‘watchpaint indicator: -

— Wariable Default Settings
[Show variable types B Show variable location
[Show all Tocals B Smart variable formatting

[Show values as decimal instead of hex

— Other Settings

[Sort functions by method name in symbolics window
[Atternpt to show the dynamic Funtime type of objects
] Show threads in separate windows

] Show processzes in separate windows

[Show variable values in source cods

Default size for unbounded arrays:

b. Click Save to save the settings.

c. Close the IDE Preferences panel.
3. Start the debugger.

82 ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

Working With the Debugger
Viewing Multiple Processes and Threads

a. Select Project > Debug. The thread window (Figure 3.41) for
Multithread Example.elf appears.

Figure 3.41 Thread Window for Multithread_Example.elf

Remote Connection .
Process Selection

Thread Selection

» Eample_Connectio n_TCPIP
File Edit Search Project

(5 - [#]m]@lol

Bstack

0x00000000 {0x00000000)
0x0FDCADEC {0x0FDCADEC)
main

A ctid: 1> <lwpid: 1116 Sleeping [2HON
ctid: 2> clupid: 117> Stopped _)x TFFFFCAE

El
A
b argy 0x7FFFFDSC 0x7FFFFCAC J
£

0% 7FFFFCAS 0% 7FFFFCAS
1 0x7FFFFCD3
Ox?FFFFCS8 Ox?FFFFCS8

O I |
~ =

~
E Source: /home fshivk /multithread /Source fmain.c

1]
- prinktf{"Mumber of threads to be created are :%d", atoifargv([1])}); S
- fflush{stdout) ;
/% get the default attributes */
- for (i=0;i<atoi{argw[1]);i++)
- pthread attr_init(&atbc[i]);

/* create threads */
-wl for (i=0;i<atoliargw[l]);i++)
- pthread_create(&tid[i], Sattr[i], (void*)thread, NULL});

#* now wait for the thread to exit +/

INFINITE_LOOP J
pthread join(tid[i-1], NULL);

prinktf{"sum = zdn", sum);
fflush{stdout);

£
0 [Cne 77 Col1 | Source Ml T - I

The thread window shows two list boxes that display the name of the currently
debugged process (Multithread Example.elf),the Process ID (PID) of the
current process, and the Thread ID (TID) of the current thread. The thread window
title bar shows the remote connection name used for debugging the current process.
In this example it is Sample_Connection TCP/IP.

b. Step over the code in the debugger window until the exec () function call in the
child process code executes, the Child-A.elf thread window (Figure 3.42)
appears in the same thread window. This window displays the code of the Child-
A.elf executable file.

ColdFire Architectures, Linux Edition Targeting Manual 83

y
A

Working With the Debugger
Viewing Multiple Processes and Threads

Figure 3.42 Thread Window Showing Child Process in the Same Thread Window

Figure 3.43 CodeWarrior Message Box

NOTE

i mSample_Connection_TCP/IP _1ol x|

Kill Button——————9 % 3 & (h[& chicaa B ESRCERC e = = =

Parent_elf

All | Value | Location
2EB4ER272 O+7FFF7DES
0x24CATDEO 0x7FFF7DEC

i 2EB4ER272 O+7FFFZD70

hit <0:0040050C
0x24B 14704 <0x;

pid 260458272 0x7FFF7DED
w 0 Ox7FFFTDEA
» 4195480 0x7FFF7DES
z 2147450356 DATFFFIDEC
-
[BH Sowee:CProjectiForkRE ecE kamplet childé.o &l

Ped
% Copyright @ 2001-2002 Hetrowerks Corporation. All Rights Re

Process Selection
(showing child process)

Tuestions and comments to
nailto: support@netroverks coms
¢http: www. metrowerks . coms >

EKOK KKK

i

#includs <stdio h>
int main(int argc. char *xxargwv)

- int i = 10:

4] Line13 Coll | Sowce 4] | _‘I_L

You can now toggle between both the processes (Parent.elf and child-
A.elf) and debug both of them, alternatively.Click the Kill button of the currently
active thread window to kill that process.

If you click the (X) button at the top right hand corner of the thread window, a
message box (Figure 3.43) appears.

v

Processes on machine
"Sample_Connection_TCPIP" are running.
Processes on machine “Sample_Connection_TCPIP ¥ are being

debugged by Codew'arrior. Do you want to kill or resume these
processes before closing this window ?

L

This message box informs you that currently processes are running on remote
connection machine and waits for your instruction. You can perform the following
actions:

 Click Kill to stop all the currently running processes in the thread window.

* Click Resume to close the current debug session and resume it later. All thread
windows that are currently open are closed. The project window remains open.

* Click Cancel to cancel the action. The thread window remains open and the
currently running processes are not affected.

If you debug a multi-threaded application, any new thread created is listed in
the Thread Selection list box (Figure 3.44).

84

ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

Working With the Debugger
Attaching to Processes

Figure 3.44 Multi threaded Application - Multiple Threads in Same Thread Window

n Sample_Connection_TCPIP
File Edit Search Project Debug Data Tools Window

5] /oo

Stack =] @AY chid: 1> Qwpid: 11163 Sleeping (AEON 1]
0x00000000 {0x00000000) A || argel_stid:Ze <wpid: 1117> Stopped Wx7FFFFC4E |

~obid: O {lwpid: 1115> Stopped

Attaching to Processes

You can use the Attach function of the CodeWarrior debugger to attach the debugger to
running processes on a target system. The debugger can control execution of any process
to which you attach it.

If the target board is running an operating system, or is running multiple processes, you
can use the CodeWarrior System Browser window to view and attach to processes
running on the board. To view this window:

1. Open a CodeWarrior project.
2. Ensure that a linker is selected in the Target Settings panel.

3. Ensure that a TCP/IP remote connection is selected in the Remote Debugging target
settings panel.

4. Check the Show in processes list checkbox in the remote connection settings.
5. Build the CodeWarrior project to generate a valid executable file.

6. Select View > System > Connection from the CodeWarrior menu bar (where
Connection is the name of the selected remote connection).

The System Browser window appears, displaying a list of the processes running on
the target board.

7. In the System Browser window, select the process to which you want to attach, then
click the Attach To Process button ().

NOTE For more details about the System Browser window, refer to the CodeWarrior
IDE User’s Guide.

If the target board is not running an operating system, and is only running a single process,
you can use the Debug > Attach To Process CodeWarrior menu to attach directly to the
running executable process on the board.

ColdFire Architectures, Linux Edition Targeting Manual 85

y
A

Working With

the Debugger

Attaching to Processes

NOTE If you do not have a CodeWarrior project open when you select Debug >

Attach To Process, the IDE asks you to specify which debugger and remote
connection you want to use.

The Attach function differs from the Connect function in these ways:

¢ The Connect function runs the hardware initialization file specified in the CF

Debugger Settings panel to set up the board before connecting to it.

¢ The Attach function assumes that code is already running on the board, and therefore

does not run a hardware initialization file. The state of the running program is
undisturbed.

¢ The Connect function does not load any symbolic information for the current build

target’s generated executable. You therefore do not have access to source-level
debugging and variable display.

* When you attach to a process, however, the debugger loads symbolic information for

the current build target’s generated executable. The result is that you have the same
source-level debugging facilities you would have if you were to started a normal
debug session (the ability to view source code and variables, and so on).

NOTE The debugger assumes that the current build target’s generated executable

matches the code currently running on the target.

In the steps that follow, you will create a sample project where the code causes a process
to run in an infinite loop on the target platform. Next, you will attach the debugger to the
running process, halt the process, and debug it.

Before you start the tutorial, make sure you have:

1.

created a TCP/IP connection between the host computer and the remote target

checked the Show in processes list checkbox in the New Connection dialog box
while creating the new connection

specified remote debugging options in the Remote Debugging settings panel
launched CodeWarrior TRK on the remote target

Create a new project using the Linux Stationery Wizard with the following settings:

Table 3.14 Attach to Process Project Settings

Project Name: ProcessAttach
Location of the Project: /home/usri/ProcessAttach
Languages: C

86

ColdFire Architectures, Linux Edition Targeting Manual

g |

Working With the Debugger
Attaching to Processes

Table 3.14 Attach to Process Project Settings (continued)

Output Type: Application
Output File Name: AttachToProcess.flt
Location of the Output File: /home/usri1/ProcessAttach/Output

The above step creates two targets: ¢_app_debug and c_app_release. Since this tutorial
relates to debugging, only the first target is relevant.

2. Enter the source code of Listing 3.11 into the editor window of main.c file.

Listing 3.11 Source Code for main.c File

#include <stdio.h>

int main(int argc, char **argv)
{

int pid;

int x;

int 1 = 10;

printf("This is a message from the AttachToProcess.elf");
x=0;

while(1)

{
xX++;
if(x > 500000)
{

}
}

return 0;

x=0;

3. Build the project.

a. Select the c_app_debug build target from the build target list box in the project
window, if not selected.

b. Select Project > Make. The final output file AttachToProcess.flt is
generated and is placed in the specified location in the project folder.

4. Run the code.

Select Project > Run. The process starts to run in an infinite loop on the target
Platform.

ColdFire Architectures, Linux Edition Targeting Manual 87

4
A

Working With the Debugger
Attaching to Processes

5. Establish a connection between the CodeWarrior debugger and the remote target
system.

a. Select Debug > Connect.

The connection window appears.

NOTE The Connect command is available only if a project is open. The CodeWarrior
IDE uses the current connection selected in the Remote Debugging panel, to
make a connection to the target system.

b. Select Window > System Windows.

The System Browser window (Figure 3.45) appears.

NOTE The System Browser window view is not continuously refreshed. Any
processes that are started immediately after the connection has been
established will not be visible in this window. The System Browser window
view is updated only when there is a change in the state of the process being
debugged.

Figure 3.45 Processes Window

hd System Browser - MetroTRK Linux Connectio

|Fiame | I State |
= Processes j
AttachToProcess <128> Sto OxB0
ppTr_cberec Je <124+ Rrning 0% 70
dppTrk_dbrrecd e 4535 Sheepin.. 0x53
AppTre_dbrrecd e <745 Sleepin.. d &
h <70 Skepiioan be Thamp... Ox46
it 455 Sleepiglomn be e, OdS
\tehetd <5 Seepigan be it 037
jopdated 6> Skepinglean be it Ox6
beflish S Sheepingloan be iher . 05
kswapd 5 Seepingioan be te. Oid
kesoftirgd CFAUD 3> Seepinglean... 0x3
kevertd <23 Sleepingloan be ke 02
it <13 Seepiglan be nbermpt.. O

¥
)
o)
P
P
P
o
P
P
P
P
P
[
P
P

FE T T T YT YT YTV YV

L .
The Processes list in the left pane of the System Browser window displays the
names of the processes running on the selected target system. Clicking a process
name in the Processes list displays the threads associated with the process.

TIP You can also view the list of processes on another target system by selecting the
corresponding connection name from the list box at the upper-left corner of the

88 ColdFire Architectures, Linux Edition Targeting Manual

h -

g |

Working With the Debugger
Attaching to Processes

System Browser window. However, the debugger should be connected to the
other target system on which you want to view the processes.

c. In the Processes list, select the name of the process you want the debugger to
attach to. For this tutorial, click the AttachToProcess process. The Attach to
Process button is activated in the System Browser window (Figure 3.46).

Figure 3.46 Processes Window - Attach to Process Button

/— Attach To Process Button

d. Click the Attach to Process button. The Choose Executable dialog box appears.
This dialog box displays the names of the executable files available for the

currently open project.

e. Select the AttachToProcess.flt.elf option button.

NOTE If you want to manually search for the executable file, select the Browse option
button and click OK.

f. Click OK. The debugger and symbolics windows appear.

If you click the Cancel button, a thread window appears with the pointer at the
location where the process stopped when the debugger attached to the process.
Also, symbolic information is not displayed because no binary is associated on the
host computer. In addition, you can not debug the code in the assembly mode.

ColdFire Architectures, Linux Edition Targeting Manual 89

\
Y

y
A

Working With the Debugger
Stripping Debug Information From Binary Files

NOTE If the debugger is attached to an already running process on the target platform,
the console messages appear in the same console window open for the running
process.

CAUTION In the Choose Executable dialog box, be sure to select the correct
executable file to which you want your process to attach; otherwise, the
debugger may associate incorrect symbolic information with the process.

6. Debug the running process.

Click the Break button in the debugger window. The execution of thread stops and the
source code is displayed. You can now perform all the routine debugging operations.

7. Select Debug > Kill to close the debugger session.

Stripping Debug Information From Binary

Files

One of the important features of CodeWarrior Development Studio for Embedded Linux
products is the Post Linker Stripper feature. The Post Linker Stripper feature enables you
to reduce the file size of an application executable binary (.elf) by removing the data not
required by the target platform to run the application, such as the sections related to
debugging and much of the symbolics data. This results in faster download of the binary
on the target platform.

NOTE The file size reduction varies depending on the debug format used.

You need to select the target platform-specific Post Linker - Stripper option in the
Target Settings panel to perform this task. rarget platform-specific denotes the target
platform for which you are writing the application. For example, ARM®, ColdFire™ , or
PowerPC®-based target platforms. Then, the post linker adaptor is passed the following
information:

* pathname of the binary (.elf or .so) that need to be stripped of the debug information
 options specified in the GNU Post Linker settings panel
e command line utility name

When the project is linked, the post linker adaptor calls the command line utility
(strip.exe) specified in the GNU Tools settings panel and passes the pathname of the
binary to be stripped of debug information. After a stripped version of the binary is
created, the binary can be downloaded on the target platform.

90

ColdFire Architectures, Linux Edition Targeting Manual

g |

Working With the Debugger
Stripping Debug Information From Binary Files

Creating Stripped Binary Files

The steps to create a stripped version of an executable binary (.elf) are as follows:

1. Create a project that can successfully generate a full-size executable binary (.elf).

2. Make the post linker stripper settings.

a. From the project window, open the Target Settings panel.

b. Select target platform-specific Post Linker - Stripper from the Post-linker list
box. Here, target platform-specific denotes the target platform for which you are
writing the application. For example, ColdFire™ , ARM®, or, PowerPC®-based
target platforms. Figure 3.47 shows the Post-linker option.

Figure 3.47 Selecting target platform-specific Post Linker - Stripper Option

hd Debug Settings

Target Settings Panels

Target Settings

= Target
Target Settings
Aocess Paths
Build Extras
Runtime Settings
File Mappings
Source Trees
GNU Target

= Language Settings
GNU Assembler
GNU Disassembler
GNU Compiler

= Linker

New ltem —»> cnu post Linker

GNU Linker

= Editar

Custorn Keywords

= Debugger

Analyzer Connections

Other Executables

Lehuoner Settino

Target Mame: ‘ Debug

Linker-[EPPC Linux GHU Linker

Pre-linker:[Hone

Pnst—linker-[EPPC Linux GHU Post-linker

lof el o)]

Qutput Directory:

‘{Prujecl}bin/

G
=

[Save project entries using relative paths

£

| Factory Settings | [Revert Panel |

[Export Fanel.. | [Import Panel.. | [Save |

When you select target platform-specific Post Linker - Stripper option, a new

item; GNU Post Linker is added to the Target Settings Panels tree structure
under the Linker tree (Figure 3.47).

3. Specify command-line arguments to be passed to the command line utility.
a. Open the GNU Post Linker panel.

b. Type -s in the Command Line Arguments text box (Figure 3.48).

ColdFire Architectures, Linux Edition Targeting Manual

91

4
A

Working With the Debugger
Stripping Debug Information From Binary Files

Figure 3.48 Specifying Command Line Arguments

[B 5t Post Linker

Cormmand Line Adrguments:

-3

4. Specify the name of the post linker command line utility.
a. Open the GNU Tools panel.
b. Type strip.exe in the Post Linker text box.

NOTE The post linker stripper executable filename may vary depending on the cross
compiler tools you are using.

5. Save the settings and compile the project.
a. Click Save to save the post linker settings.
b. Close the GNU Tools panel.

c. Select Project > Make. The project is compiled and a new file named <<original-
name> .elf.strip or <<original-name> .so.strip is created in the project
folder where <original-name> .elf or <original-name> . so is the name of the
original executable binary file.

NOTE The executable files are generated in the project folder irrespective of whether
you use the target platform-specific Post Linker - Stripper option or not.

NOTE The file extension of the stripped version of the executable binary generated is
.strip by default and cannot be changed.

If you compare the file size of the original and stripped files, the later is smaller in
size. This reduces the download time of the executable binary on the target
platform.

92 ColdFire Architectures, Linux Edition Targeting Manual

g |

Working With the Debugger
Stripping Debug Information From Binary Files

NOTE The file size of the stripped file may vary for different debug formats used for
different target platforms. For all the target platforms supported by the
CodeWarrior™ Development Studio for Embedded Linux, the debug format
used in STABS or DWARF 2.

Downloading Stripped Files

While downloading executable binary (.elf) on the target platform, the debugger first
searches for the stripped version of the files mentioned in the:

e Output Target text box in the GNU Target panel
e Other Executables panel
* Runtime Settings panel

If a stripped version of the .elf or .so files exists and is the latest file available, than
the debugger downloads the stripped file on the target platform. Otherwise, the
original .elf or .so file is downloaded on the target.

NOTE In case you want to download the stripped version of the files mentioned in the
Other Executables or Runtime Settings panel, make sure that you built these
files using the target platform-specific GNU Post Linker - Stripper option in
their respective projects. This will ensure that the debugger finds a stripped
version of these files and downloads it on the target platform.

ColdFire Architectures, Linux Edition Targeting Manual 93

r
4\

Working With the Debugger
Stripping Debug Information From Binary Files

94 ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

4

Debugging Boot Loaders,
Kernels, Modules, and
Threads

This chapter explains how to use the CodeWarrior tools to debug boot loaders, embedded
Linux® kernels and loadable modules on ColdFire® hardware.

This chapter contains these sections:
* Debugging Boot Loaders

¢ Debugging Kernels
¢ Debugging Kernel Modules

¢ Viewing Loaded Kernel Modules
¢ Debugging Kernel Threads

Debugging Boot Loaders

The CodeWarrior IDE allows you to debug or develop your own boot loader (like the
coolio boot loader). This section describes the steps to debug the coolio boot loader.

Before you can debug a boot loader on your target platform, you must install the board
support package (BSP) for the target platform. You must also recompile the boot loader
with —g and -o1 flags so that debugger symbolic information is included in the boot
loader.

To debug the boot loader using the CodeWarrior IDE:

1. From the CodeWarrior menu bar, select File > Open to open the boot loader binary
(for example, colilo mcf5485.elf).

The CodeWarrior IDE creates a dummy project with the name of the boot loader
binary file (for example, colilo_mcf5485.elf.mcp). A progress bar appears showing
the status of creation of the project. When the import process is complete, the boot
loader source files appear in the CodeWarrior project window.

ColdFire Architectures, Linux Edition Targeting Manual 95

r
4\

Debugging Boot Loaders, Kernels, Modules, and Threads
Debugging Kernels

2. Select Edit > TargetName Settings (where TargetName is the name of the current
build target).

The Target Settings window appears.
3. From the Target Settings Panels list, select Remote Debugging.
The Remote Debugging settings panel appears.
4. From the Connection list box, select the correct remote connection you want to use.
5. Click the Edit Connection button.
The Edit Connection dialog box appears.
6. Configure the remote connection, if needed.
7. Click OK.
The Edit Connection dialog box disappears.
8. From the Target Settings Panels list, select CF Debugger Settings.
The CF Debugger Settings settings panel appears.

9. From the Target Processor list box, select the ColdFire processor architecture that
you are targeting.

10. From the Target OS list box, select Bareboard.
11.From the Target Settings Panels list, select Debugger Settings.
The Debugger Settings panel appears.
12. Check the Stop on application launch checkbox.
13. Select the Program entry point option button.
14. Click Save.
The IDE saves your changes.
15. From the CodeWarrior menu bar, select Project > Debug.
The debugger connects to the target platform and displays a thread window.

You can now debug the boot loader application.

Debugging Kernels

The CodeWarrior IDE allows you to debug the Linux kernel on your host computer
running Linux OS.

The Linux® operating system (OS) operates in two modes —kernel mode (kernel space)
and user mode (user space). The kernel works at the top level where it performs the
function of a mediator for all the currently running programs and the hardware. The kernel
manages the memory for all the programs (processes) currently running, and ensures that

96 ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

Debugging Boot Loaders, Kernels, Modules, and Threads
Debugging Kernels

each program gets a fair share of the available memory. In addition, the kernel also
provides a portable interface for programs to talk to the hardware.

The User mode (user space) works at the lowest level or the application level where you
do not have the permission to directly access the memory or the hardware. You can access
the hardware resources through the system calls.

Prerequisites

Before you can debug the kernel using the CodeWarrior IDE, you must ensure that a
remote connection is already created for the hardware debug agent you want to use to
connect to the target platform. Also, the hardware debug agent must be properly
configured before you can use it with the CodeWarrior debugger.

TIP You can use a target initialization file (such as CWInstall/CodeWarriorIDE/
CodeWarrior/ThirdPartyTools/MCF5208/Abatron/BDI-2000/
Sample BDI_Files/MCF5208_stop.bdi) to initialize the Abatron BDI.

Figure 4.1 graphically illustrates the setup environment used by this product to debug the
kernel on a ColdFire-based target platform.

Figure 4.1 Setup for Kernel Debugging Using the CodeWarrior IDE

Host Requirements:

- Supported Linux"* distribution

+ Board Support Package (BSP) for 5282 board
(based on uC-Linux with GCC 2.95.3)

— Procedure

Build the kernel and open the kernel image in the
CodeWarrior IDE to create a project and edit the
project settings

fﬁ—-——-

Use the CodeWarrior IDE to
download and debug the kernel
image on the target platform

. Hardware debug agents
and devices connected to
the target platform

ColdFire target
board

ColdFire Architectures, Linux Edition Targeting Manual 97

r
4\

Debugging Boot Loaders, Kernels, Modules, and Threads
Debugging Kernels

Kernel Debugging Methods

There are three methods for debugging the Linux kernel:

1. Using CodeWarrior IDE target initialization file - Download and start the kernel using
the CodeWarrior IDE based on the initialization done by CodeWarrior IDE. This
method depends only on the initialization file and does not require boot loader to be
present in the flash at the reset address. This manual describes this method.

2. Using boot loader initialization - Download and start the kernel using CodeWarrior
IDE based on the initialization done by boot loader on the target platform.

3. Attaching to the running kernel - Start the kernel using any of the above methods and
attach to the running kernel.

To debug the kernel, you need to perform the following steps:
¢ Build the Kernel
* Create a CodeWarrior Project for the Kernel

¢ Set Up the Kernel Project for Debugging
¢ Download and Boot the Kernel

Build the Kernel

The first step is to build the kernel using the CodeWarrior patch available in your
CodeWarrior installation directory. When you build the kernel, the kernel image (vmlinux)
is generated and placed in the base directory where the kernel source files are located on
your computer. Usually, when you build the kernel, two kernel images are generated —an
image without romfs (1inux) and an image with romfs (image.elf) You can find the
kernel image with romfs in the following folder of the base directory on your computer:

LinuxInstall/uClinux-dist/images/
You can find the compressed kernel image at the following location on your computer:

LinuxInstall/uClinux-dist/Linux-2.4.x/

Create a CodeWarrior Project for the
Kernel

The next step is to create a project for the kernel in your CodeWarrior IDE.
The steps to create a kernel project are:

1. Select File > Open to open the kernel image without romfs file (vinlinux) built with
full debug information in the CodeWarrior IDE window.

2. If the Choose Debugger dialog box appears, select the remote connection you want to
use for downloading the kernel image, then click OK.

98

ColdFire Architectures, Linux Edition Targeting Manual

Debugging Boot Loaders, Kernels, Modules, and Threads
Debugging Kernels

NOTE The Choose Debugger dialog box appears only when you have multiple
remote connections defined in the Remote Connections settings panel.

NOTE If you do not want to specify any remote connections at this point, click
Cancel.

The CodeWarrior IDE creates a dummy project with the name of the image file (such
as vmlinux.mcp). A progress bar appears showing the status of the source files
imported into the project. After the import process is complete, all the kernel source
files appear in the project window (Figure 4.2).

Figure 4.2 Linux Kernel Project Window
R4 vminuxmep T

8 oeue =l El]=]E]

W

w' File | Code | Data

[maine
«) do_mounts e
& [} inflatec
@ [processe
@ [trapse
@ [signale
@ [ptracec
* [sysmésko
& [} time.o
@ [seraphores
o [} setupe

M stringn
o [} bioszze

R R R R

P Y

R - R -N-E-N-E-N-N-N-N-N-N-R-N-N-N-E-N-N-N-N-1
@90 00000000C000C000000000000

NOTE You cannot re-build the kernel in the CodeWarrior IDE. The kernel can only be
re-built on your Linux computer where the kernel source files are located. The
new kernel project is created with Build - Never settings.

After you have created a kernel project in the CodeWarrior IDE, the next step is to set up
the project for debugging. There are some settings that you need to specify for debugging
the kernel.

ColdFire Architectures, Linux Edition Targeting Manual 99

r
4\

Debugging Boot Loaders, Kernels, Modules, and Threads

Debugging Kernels

Set Up the Kernel Project for Debugging

NOTE For steps on how to setup your kernel project for debugging on a specific

ColdFire target platform, refer to the quick start guide located in the
CodeWarrior installation directory.

1. Set a program entry point in the kernel code.

a.

Select Edit > TargetName Settings (where TargetName is the name of the current
build target displayed in the project window).

The Target Settings window appears.

. From the Target Settings Panels list, sclect Debugger Settings.

The Debugger Settings panel appears.
Check the Stop on application launch checkbox.

If you want the debugger to stop program execution upon entering the program,
select the Program entry point option button.

NOTE You can specify an alternate location for the debugger to halt execution. For

c.

example, to instruct the debugger to halt execution when the debugger enters
the start_kernel () function, click the User specified option button, then
enter start kernel in the text box.

Click Save to save the settings.

2. Specify the remote download options for the kernel image.

a.

NOTE

NOTE

C.

d.

Click Remote Debugging in the Target Settings Panels list.
The Remote Debugging settings panel appears.

Make sure that the correct remote connection name selected in the Connection list
box of the Remote Debugging settings panel.

If you wish to modify the remote connection preferences, select a connection
name from the Connection list box and click Edit Connection.

You do not have to specify the remote target path for downloading the kernel,
because the kernel is downloaded to target platform RAM.

Click Download OS checkbox to activate the kernel image with romfs
(image.elf) download options.

Select the correct remote connection for downloading the kernel image with romfs
(image.elf) to the target platform from the Connection list box.

100

ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

Debugging Boot Loaders, Kernels, Modules, and Threads
Debugging Kernels

NOTE Make sure that the Connection specified in the Download OS section and the
Communication Settings section are same.

e. Enter or click Choose to specify the host-side path of the compressed kernel image
to be downloaded to the target platform (Figure 4.3).

Figure 4.3 Specifying Kernel Download Options

[E Rermate Debugging

Connection Settings
Connection: | Mew#batronConnection [=| ; Edit Connection... I

— Remote download path
|/ trne Asample| |

— [Leunch remote host application

— [Downlead 05
Connection:| HewdbatronConnection - I Edit Connaction.
05 Image Path: | | Choaze..

f. Click Save to save the settings.
3. Specify a target processor, operating system, and an initialization file for the debugger.
a. Click CF Debugger Settings in the Target Settings Panels list.
The CF Debugger Settings panel appears.

NOTE An xml file with pre-configured settings for this panel is provided for the
target platforms board support packages supported by this product. Import the
XML file settings for the target platform/BSP you are using by clicking the
Import Panel button at the bottom of this panel and selecting the desired XML
file from this directory (where TargetName is the name of a supported target
board, such as MCF5329):
CwWInstall/CodeWarriorIDE/CodeWarrior/E68K_Support/
KernelDebug Settings/TargetBoard.

b. Select the ColdFire processor architecture that you are targeting from the Target
Processor list box.

c. Select Linux from the Target OS list box.

ColdFire Architectures, Linux Edition Targeting Manual 101

r
4\

Debugging Boot Loaders, Kernels, Modules, and Threads
Debugging Kernels

NOTE Ensure that Bareboard is selected in the Target OS list box when you are
performing application-level debugging on the target platform. Otherwise, the
debugger will not be able to debug your applications.

d. Check the Executable, Constant Data, Initialized Data, and Uninitialized Data
checkboxes under the Program Download Options section to specify what
portions of the project to download on the initial launch of debugger and
successive launches. For example, you can download the entire executable or only
certain sections of the program to the target platform.

For a complete description of the CF Debugger Settings panel, see “CF Debugger
Settings” on page 128.

e. Click Save to save the settings.
4. Specify the kernel boot parameters and the RAM disk parameters.

a. Click Linux Kernel Boot Parameters in the Target Settings Panels list. The
Linux Kernel Boot Parameters settings panel appears (Figure 4.4).

NOTE The Linux Kernel Boot Parameters settings panel is displayed in the Target
Settings Panels list only when you select remote connection from the Remote
Connections settings panel.

It is recommended that you use the XML file which contains pre-configured
settings for this panel for your target platform/BSP.

Figure 4.4 Linux Kernel Boot Parameters - Command Line and initrd Settings

E Linuz Kernel Boot Farameters

— [Enable Command Line Settings

Command Ling: |

Baze dddress: (000000000

[] Set Command Line after decompress

— [Enable Initial R&M Disk Settings
File Path: | |

Address: | Ox00000000
Si2e: | Ox00000000

] Download to target

102 ColdFire Architectures, Linux Edition Targeting Manual

g |

Debugging Boot Loaders, Kernels, Modules, and Threads
Debugging Kernels

h.

Check the Enable Command Line Setting checkbox.

Modify the command line parameters that you have specified during building the
kernel by entering a new set of parameters in the Command Line text box. These
parameters are passed to the kernel during the booting of kernel.

Check the Enable Initial RAM Disk Settings checkbox.

Click Browse to specify the location on the host computer of the initial RAM disk
(initrd) file.

Enter the size of the RAM Disk file in the Size text box.

Check the Download to target checkbox to download the RAM Disk file to the
target platform.

Click Save to save the settings.

5. Specify the settings for debugging the kernel on the target platform.

a.

NOTE

Click Linux Kernel Debug Settings in the Target Settings Panels list. The
Linux Kernel Debug Settings panel (Figure 4.5) appears.

The Linux Kernel Debug Settings panel is displayed in the Target Settings
Panels list only when you select a remote connection from the Remote
Connections settings panel.

It is recommended that you use the XML file which contains pre-configured
settings for this panel for your target platform/BSP.

Figure 4.5 Linux Kernel Debug Settings

E Linuz Kernel Debug Settings

] Enable Memory Translation

Physical Basze Address: 000000000
Wirtual Base Address: 00000000

Memary Size: O 00000000

[Enable Threaded Debugging Support

[Enable Delayed Software Ereakpoint Support

ColdFire Architectures, Linux Edition Targeting Manual 103

r
4\

Debugging Boot Loaders, Kernels, Modules, and Threads

Debugging Kernels

b.

g.

Check the Enable Memory Translation checkbox to enable the memory
translation. The debugger maps the physical base memory and virtual base
memory.

. In the Virtual Base Address text box, enter the virtual base address for memory

translation.

Enter the memory (RAM) size on your target board/platform in the Memory Size
text box. For board memory size, refer your board documentation.

Check the Enable Threaded Debugging Support checkbox to enable
multithreading support in the debugger so that you can view and debug multiple
kernel threads on the target platform. For more information, see “Debugging
Kernel Threads” on page 114.

Check the Enable Delayed Software Breakpoint Support checkbox if you want
to delay the setting of software breakpoints till the MMU is enabled.

Click Save to save the settings.

6. Verify the mapping of kernel sources on the Linux-hosted computer to your host
computer.

a.

Click Source Folder Mapping in the Target Settings Panels list. The Source
Folder Mapping settings panel (Figure 4.6) appears.

If you have already mapped the kernel sources on the Linux-hosted computer to a
folder on your host computer, the current mapping is displayed in the Source
Folder Mapping settings panel. You may also edit the current settings.

Figure 4.6 Source Folder Mapping

E Source Folder Mapping

e
N Mame Path A
Shomesuse2KERNELA Ausr 1 ALinux_Hosted _IDE/Kernel _Sources_DebugdMarp
¥
~| I~

— Source Tree Information

Name:lfnomefuer.n‘KERNEL1 |

[Absolute Path =
’7 Ausr 1 ALinux_Hosted I DE/Kernel _Sources_Debugd Mapped_Sou

[Add] [Change] [Remwe]

104

ColdFire Architectures, Linux Edition Targeting Manual

g |

Debugging Boot Loaders, Kernels, Modules, and Threads
Debugging Kernels

b. Click Save to save the settings.
c. Close the Target Settings window.
7. Configure the build settings for the kernel.
a. Select Edit > Preferences to open the IDE Preferences window.

b. Click Build Settings in the IDE Preference Panels list. The Build Settings panel
appears.

c. Select Never in the Build before running list box in the Settings section.
d. Click Save to save the settings

e. Close the IDE Preferences window.

Download and Boot the Kernel

After you have specified the settings for debugging the kernel on the target platform, you
can now download the kernel to the target platform and boot it. To do this:

1. Launch the debugger.

NOTE Before you download the kernel image to the target platform, make sure that
you switch off and then switch on the target platform. Otherwise, the kernel
image does not get downloaded to the target platform.

a. Select Project > Debug.

The CodeWarrior IDE launches the debugger and the kernel image (vmlinux) is
downloaded to the target platform. The debugger then displays the debugger
window (Figure 4.7).

NOTE When you download the kernel image to the target platform, two progress bars
appear, one after the other, which display the progress of the kernel image
download to the target platform, romfs download to the target platform, and the
name of the initialization file that you specified in the CF Debugger Settings
panel.

ColdFire Architectures, Linux Edition Targeting Manual 105

4
A

Debugging Boot Loaders, Kernels, Modules, and Threads
Debugging Kernels

Figure 4.7 Kernel Debugger Window

Rt linux (Thread 876544) B %]
File Edit Search Project Debug Data Linuz Tools Window Help |

e Y e
lEStack

@ Variables: Al | alue | Logation E}I
0xFFE15432 (0xFFE18432) e focsl verishies X
DxFFE18362 (0xFFE15362)
DxFFE18132 (0xFFE15132)
0xFFE19CSE (OxFFET19C5E)
B _start (0x00020000)
-
E-_;:{._: Source =] I
S
—|w00020000: 4ET1 nop
—| 00020002 46FCE2T00 move #2084, sr
—| 00020006 ZETcO0000000 movea. L #0, a7 fel
—| 0002000c: 4ETEF201 moves a¥, vhr

-| 00020010: 23cFO00BDL34 mowe. L a7, Ox000BDL34 (Oxhdl34)

—| 00020016: 23CFO00BDL30 mowe. L aT, 0x000BDL30 (Oxbd130)

—| 0002001c: 20391000007c mowe. L 0x1000007c (0x1000007c), 40
-| 00020022 0280FFFFFO00 andi. 1 #0=fEEE£000, 40

-| 00020028. 4480 neqg. 1 =1}

—| 00020024: ZE40 movea. L d0, aT

—| 0002002c: 23c0000BDL3C mowe. L d0, Ox000BDL3C (Oxbdl3e)

—| 00020032 203c01000000 move. L #16TTT216, 40

—| 00020038 4ETEOOO2 moves di, cacr

—| 0002003c: 203c80000100 mowe. L #-2147483302, 40

I S ColZ | Assembler Bl I - J

b. Select Project > Run.

The debugger stops execution of the program at start_kernel() only if a
breakpoint is set in this function (Figure 4.8).

If you checked the Enable Delayed Software Breakpoint Support checkbox, the
debugger sets a hardware breakpoint (Resolver Eventpoint) at this line:

printk (linux banner);

When the debugger encounters this Resolver Eventpoint, all the subsequent
software breakpoints you have set are enabled. For more information about
Resolver Eventpoint, see CodeWarrior IDE User’s Guide.

106 ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

Debugging Boot Loaders, Kernels, Modules, and Threads
Debugging Kernels

Figure 4.8 Program Entry Point in Kernel Code

o d linux (Thread 876544) | x

File Edit Search Project Debug Data Linux Tools Window Help

{1 M | e S
=]

IE SEkk @ Yariables: All | Malue | Location
W start_kernel % cammand_1ine Ox00007FF4

1
B I = |

=

IE Source: /homefuser 1 /ACSET2 AUCTinux-distTinux-2 .4 x finit/main.c

= 1]

i+
* Interrupts are still disabled. Do necessary setups, then
* enable them
7
Lock_kernel();
= printk{linux_banner) ;
Ld setup_arch(&conmand_line);
- printk{"Eernel command line: %sn", saved_command line);
= parse_options (command line) ; —
= trap_init();
- init IR0();
- sched_init();
- softirg init();
- time_init();

£
l{} [Line 263 ColZ | Source [] I et I

c. Run through the rest of the code until the kernel starts booting. When the kernel
boots up you can see the boot messages in your Terminal window (Figure 4.9).

ColdFire Architectures, Linux Edition Targeting Manual 107

4
A

Debugging Boot Loaders, Kernels, Modules, and Threads
Debugging Kernel Modules

Figure 4.9 Terminal Window Showing the Kernel Boot Messages

hd ColdFire HyperTerminal
Eile Edit View Temminal Go Help

uClinux/COLDFIRE(M5272)

COLDFIRE port done by Greg Ungerer, gerg@snapgear.com

Flat model support (C) 1998,1999 Kenneth Albanowski, D. Jeff Dionne
On node O totalpages: 4096

zone(0): 0 pages.

zone(1l): 4096 pages.

zone(2): 0 pages.

Kernel command line:

Calibrating delay loop... 43.62 BogoMIPS

kmem_create: Forcing size word alignment - vm_area_struct
kmem_create: Forcing size word alignment - mm_struct
kmem_create: Forcing size word alignment - filp

Dentry cache hash table entries: 2048 (order: 2, 16384 bytes)
Inode cache hash table entries: 1024 (order: 1, 8192 bytes)
Mount cache hash table entries: 512 (order: 0, 4096 bytes)
kmem_create: Forcing size word alignment - bdev_cache
kmem_create: Forcing size word alignment - cdev_cache
kmem_create: Forcing size word alignment - kiobuf

Buffer cache hash table entries: 1024 (order: 0, 4096 bytes)
Page-cache hash table entries: 4096 (order: 2, 16384 bytes)
POSIX conformance testing by UNIFIX

Linux NET4.0 for Linux 2.4

Based upon Swansea University Computer Society NET3.039
kmem_create: Forcing size word alignment - sock
Initializing RT netlink socket

Starting kswapd

Linux version 2.4.22-uc0 (root@jo208) (gcc version 2.95.3 20010315 (release)(C4

Memory available: 14096k/16384k RAM, Ok/0Ok ROM (737k kernel code, 212k data)

After the kernel is booted on the target platform, you can now install, load, and

debug the kernel modules.

Debugging Kernel Modules

This section describes the steps for debugging the kernel modules on your Linux

computer.

Linux Kernel Modules - An Introduction

The Linux® kernel is a monolithic kernel, that is, a single large program where all the
functional components of the kernel have access to all of its internal data structures and
routines. Alternatively, you may have a micro kernel structure where the functional
components of the kernel are broken into pieces with a set communication mechanism
between them. This makes adding new components into the kernel using the configuration
process very difficult and time consuming. One of the most reliable and robust way is to
dynamically load and unload the components of the operating system using Linux kernel

modules.

108 ColdFire Architectures, Linux Edition Targeting Manual

g |

Debugging Boot Loaders, Kernels, Modules, and Threads
Debugging Kernel Modules

The Linux kernel modules are pieces of codes, which can be dynamically linked to the
kernel according to your requirements. You may unlink and remove the Linux kernel
modules from the kernel when you no longer need them. The Linux kernel modules are
used for device drivers or pseudo-device drivers such as network drivers or file system.

When a kernel module is loaded, it becomes a part of the kernel as the normal kernel code

and

functionality and it posses the same rights and responsibilities as the kernel code.

The tutorial that follows demonstrates the kernel module debugging feature. The steps to

deb

ug a kernel module are:
Create a kernel module project
Build the project
Physically upload the kernel module binary to the target platform
Install the binary into the booted kernel
Display the kernel modules that are loaded in the kernel

Load the symbolic information for the kernel module you want to debug

The first step is to create a kernel module project using the Linux Stationery Wizard.

1.

Create a project using the Linux Stationery Wizard with the following settings:

Table 4.1 Kernel Module Project Settings

Project Name: MyKernel_Module.mcp
Project Location: /home/usri/KernelModule
Languages: C

Build Target (Debug)

- Output Type: Loadable Module

- Output File: hello.o

- Output File /home/usri/KernelModule/Output
Location:

NOTE You must select the Loadable Module item in the Linux Stationery Wizard.

After you create a kernel module project, let us now generate the kernel module
application and debug it. The following sections describe how to debug a kernel module.

2.

Build the project.

ColdFire Architectures, Linux Edition Targeting Manual 109

r
4\

Debugging Boot Loaders, Kernels, Modules, and Threads
Debugging Kernel Modules

a. Select Project > Make. The kernel module binary (hello.o) is built in the
specified location in your project directory.

3. Upload the kernel module (hello.o) to the target platform.

After you build the project, you must physically upload the kernel module binary
(hello.o) to the target platform using any of the following methods (FTP, NFS
mount, or copy on the RAM disk image depending on how the file system was
mounted).

The next step is to install the kernel module into the kernel.

NOTE Before you install the kernel module into kernel, make sure that the kernel is
booted up on the target platform

4. Install the Kernel Module (hello.o) into the running kernel.

Type insmod -f <hello.o> in your Terminal window. The kernel module
(hello.o) is successfully installed into the booted kernel.

To verify whether the kernel module was successfully installed, you can type 1smod
command in your Terminal window. This displays a list of kernel modules currently
installed into the kernel.

Display the Kernel Modules List

You can view a list of kernel modules that are currently installed into the kernel by using
the CodeWarrior IDE. The CodeWarrior IDE provides the Linux menu that allows you
display the kernel modules that are currently installed.

WARNING! To view a list of kernel modules currently installed into the kernel, you
must first stop the booted kernel by selecting Debug > Stop.

To display a list of kernel modules currently installed into the kernel:

110 ColdFire Architectures, Linux Edition Targeting Manual

g |

Debugging Boot Loaders, Kernels, Modules, and Threads
Debugging Kernel Modules

1. Select Linux > Display Modules. The Linux Modules window appears (Figure
4.10), which displays all the kernel modules (in the left pane) that are currently
installed in the kernel.

Figure 4.10 Linux Modules Window - List of Kernel Modules Installed
Kernel Module List Details For Selected Module

b4 Linux Nodules

hello Info
Module Name: hello
Module Size: 264
Module Flags: 1

hello

L Close

The Linux Modules window displays the module name, file size, and flags set for the
selected kernel module. For example, if you select hello.o the details of this kernel
module is displayed in the right pane.

NOTE The kernel module list is displayed only when the kernel is built with debug
symbols. The debug symbols are required by the debugger to read the kernel
module list.

Load the Module’s Symbolic Information

After you select the kernel module that you want to debug, the next step is to load the
symbolic information for the selected kernel module.

To load the symbolic information for a kernel module (hello.o):

1. Select Linux > Load Symbolics. The Choose File dialog box appears.

NOTE Before you load the symbolics for a kernel module, make sure that the
symbolics are not already loaded for the kernel module.

2. Select the kernel module file (. o) for which you want to view the symbolics in the
Choose File dialog box (Figure 4.11).

ColdFire Architectures, Linux Edition Targeting Manual 111

4
A

Debugging Boot Loaders, Kernels, Modules, and Threads
Debugging Kernel Modules

Figure 4.11 Choose File Dialog Box

hd Choose Symbolic File

Filter

ule Projects/SystemCall/RnD/modules!*.*o]

Directories Files
nDimodules/. = |hello.co |-
nD/modules?..
nDimodulesf.Apple Double
£ £
~ JR = = Y
Selection

I Projects/SystemCall/RnD/modulesello.c

ok | rrer | cancet| mep |

3. Click OK in the Choose File dialog box. The symbolics for the selected kernel
module are displayed in the Symbolics Window (Figure 4.12).

112

ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

Debugging Boot Loaders, Kernels, Modules, and Threads
Viewing Loaded Kernel Modules

Figure 4.12 Symbolics Window - Symbolics for the Loaded Kernel Module

%4 Symbolics Window

i - D %
Fle Edit Search Project Debug Data Linux Tools Window Help
[BExecutables f| | [Frites f] | [FFunctions
B Moduleo Y module % [cleanup_module =
linux J b init_madule
7| 7 ¥
-
Seurce #home fuser 1 /China_Test/module /module ¢
/* hello-1.c - The simplest kernel module &
A
#include <linux/module h> /+ Needed by all modules #/
#include <linux/kernel.h> /+ Needed for KERN_ALERT +#/
int globe = 10;
int init_module(void)
-t
-| printk("<1:Hello world 1.%a");
7/ & non 0 return means init module failed; module can't be loaded
| return 0;
-
P || woid clemmp_naduls tvoid)
»
®| printk{(KERN_ALERT "Goodbye world 1.%n');
|l
H‘I Line 17 Co12_] Source [N T B

Instance Closer Eventpoint

NOTE For detailed information about Symbolics Window, see the CodeWarrior IDE
User’s Guide.

4. Now, you can perform the regular debugging operations in the Symbolics window.

If you want to unload the symbolics information for the currently loaded kernel
module, select Linux > Unload Symbolics.

If you want to remove the kernel module, type rmmod in your Terminal window.

To verify whether the kernel module is uninstalled, select Linux > Refresh Module
List. The kernel module is not displayed in the Linux Modules window.

A sample kernel module project is available in your CodeWarrior installation directory.
For more information about sample projects, see “Sample Projects” on page 20.

Viewing Loaded Kernel Modules

The CodeWarrior IDE Linux menu contains commands that enables you to view and
refresh the currently loaded kernel modules. This menu also has commands to load and
unload symbolic information for a kernel module during a debugging session.

ColdFire Architectures, Linux Edition Targeting Manual 113

4
A

Debugging Boot Loaders, Kernels, Modules, and Threads
Debugging Kernel Threads

Clicking the Linux menu (Figure 4.13)heading displays a pull-down menu containing the
menu commands. The menu commands are also available as buttons on the toolbar.

Figure 4.13 Linux Menu

Linux

Display Madules
Load Symbolics
Unload Symbalics
Refresh Module List

Table 4.2 describes the menu commands provided by the Linux menu.

Table 4.2 Linux Menu - Description of Commands

Commands Description

Display Modules Displays the list of currently loaded kernel modules

Load Symbolics Loads the symbolics information for the currently loaded kernel
module

Unload Symbolics Unloads the symbolics information for the currently loaded kernel
module

Refresh Module Refreshes the kernel modules list and displays the updated list of

List currently loaded kernel modules

Debugging Kernel Threads

The CodeWarrior debugger enables you to view and debug kernel threads in separate
thread windows. Each kernel thread debug window displays its own stack crawl pane,
source pane, and variables pane.

The steps to open multiple kernel thread windows for debugging are:

1. From the CodeWarrior menu bar, select Window > System Windows > ColdFire
Abatron. The System Browser window (Figure 4.14) appears. This window displays

114 ColdFire Architectures, Linux Edition Targeting Manual

g |

Debugging Boot Loaders, Kernels, Modules, and Threads
Debugging Kernel Threads

the currently running process and the tasks for a particular remote connection. You
may select the required remote connection from the upper-left corner of the window.

Figure 4.14 System B

rowser Window

hd System Browser - ColdFire Abatron
File Edit Search Project Debug Data Linux Tools Window IDE
Help
| | Mame | 1D State |
'p = Procezses A
P = OF LINU KERNEL 000000000
swapper(0xC01ESEF4) - TID:0 Osx=C01ESEF4 Stopped
boal0+CIAITEFD) - TIDIE96 OxCIAITEFO Stopped
ook +CAFCO0B0) - TRES? 0xC3FCO030 Stopped
0 /D(0%CEFCO340) - TID 46 0xCIFCOZ40 Stopped
kewpd(CTFCOESD) - TDHS OxCIFCOESO Stopped
pelfhish{CIFCOGED) - T 4 03CEIFCO9E0 Stapped
pedfhush{ T CIFCOCTO) - T A3 0xCEFCOCTO Stapped
Mkded A(BCIFOOFET) - TD21 OxCIFCOFED Stapped
khelper(0xC3FC12900 - TID 4 O=CIFC12Z90 Stopped
events/MCEFCISH) - TR OxC3EFC1SAQ Stopped
ksoftirgd/D(CHCIZE0) - T2 OxCEFC1EED Stopped
init(0xCIFC1ECD) - TID: 0xCEFC1ECO Stopped
PO CIFDCETO) - TDESY 0%CEFDCETO Stapped
inetd(0xCEFDCOE0) - TID 683 0xCIFDCI20 Stapped
yshgdbCTCCS0) - TD A0 OxCIFDCCS0 Stapped
Qethy(OHCEFTOE0) - T 700 OxC3FDDER0 Stopped
rpokdOHCEFLOEED) - TDE6S 0xC3FDDEED Stopped -

2. Select any of the task that you want to debug for a particular process from the Task

list.

3. Double-click the selected task. A new thread window appears displaying the

symbol

ics for the selected task.

You can open multiple tasks in separate thread windows.

NOTE

You can Vi
Registers

Multiple tasks can be displayed in separate thread windows only when the
Show threads in separate window checkbox is checked in the Display
Settings panel. For more information, see “Viewing Multiple Processes and
Threads” on page 81.

You may open multiple thread windows for multiple tasks simultaneously, but
you can perform debug operations only in the main thread window.

ew the register values for the open thread windows. Select Window >
Window to open the Registers window. The Registers window shown in

Figure 4.15 displays the register values for thread windows.

ColdFire Architectures,

Linux Edition Targeting Manual 115

y
A

Debugging Boot Loaders, Kernels, Modules, and Threads
Debugging Kernel Threads

Figure 4.15 Registers Window Displaying the Currently Open Thread Windows

b4 Registers
File Edit Search Project Debuy Data Linux Tools Window Help
ERegister | Walue
~ ColdFire Abatron TCP/IP Y
= vmlinux
- Thread Ox40124374
- General Purpose Registers
] 0x55677360
o 0x0000001F
bz Ox050 40380
b3 0x00000038
b4 0x0003011¢C
bs 0x09C21CES
D& Ox40124374
D7 0x40B34aC0
Al Ox00000002 —
Al Ox00000000
he Ox00000004
&3 0x40124374
Ad Ox40124374
45 O0x401412985
1] 0x4012FFED
A7 Ox4012FFAS
PC Ox40108360
SR 0x0000
3 EMAC Reqisters
i3 Thread Ox40027E02
[+ Superwisor Registers
[+ System Control Module Registers
I SDR&M Registers £
h Chip Select Module Registers J

116 ColdFire Architectures, Linux Edition Targeting Manual

g |

Target Settings Reference

The CodeWarrior™ IDE uses target settings to determine how it compiles, links, edits,
and debugs your project's build targets. This chapter discusses those target settings panels
that are specific to embedded Linux® programming for ColdFire® hardware. See the
CodeWarrior IDE User’s Guide for information about other settings panels.

Target Settings Overview

All settings for a CodeWarrior build target are organized into panels you can display in the
Target Settings window (Figure 5.1).

Figure 5.1 Target Settings Window

3 " c&cpp_app_debug Settings [my_killer_app.mcp]

Target Settings Panels E Target Settings
= Target Yy
Target Settings Tarqget Name: |c&cpp_app_dehug
Access Paths
Build Extras Linker:[ColdFire Linker
Runtime Settings X
File Mappings Pre-linker: [None
Source Trees
GMU Target
= Lanquage Settings Output Directory:
GNU Assembler m
GHU Disazsembler |{Project} _
GNU Compiler
= Linker
GHU Linker
= Editor
Custom Keywords [
= Debugger
Other Executables
Debugger Settings
Rernote Debugging

o) o ol L

Post-Tinker: [None

[Save project entries using relative paths

£

[Factory Settings] [Revert Panel] [Export Panel. ..] [Import Panel. ..] [Save]

To open this window, select Edit > TargetName Settings (where TargetName is the
current build target in the project) or display the Targets page of the project window and
double-click a build target in the list.

This manual documents only those settings panels of specific interest to developers of
embedded Linux software for ColdFire hardware. Table 5.1 lists the settings panels that
are described in this chapter.

ColdFire Architectures, Linux Edition Targeting Manual 117

4
A

Target Settings Reference
Other Settings Panels Documentation

Table 5.1 EPPC Target Settings Panels Covered In This Manual

Target Settings

GNU Linker

GNU Target

CF Debugger Settings

GNU Assembler

Source Folder Mapping

GNU Disassembler

Console 1/0 Settings

GNU Compiler

GNU Environment

GNU Post Linker

GNU Tools

Other Settings Panels Documentation

A large number of settings panels in the Target Settings window control settings not
specific to embedded Linux development. These settings panels are described in the
CodeWarrior IDE User’s Guide. Table 5.2 lists the settings panels not documented in this

manual.

Table 5.2 Settings Panels Covered In Other Manuals

Settings Panel

Manual

Target Settings
Access Paths
Build Extras
Runtime Settings
File Mappings
Source Trees
External Build
Custom Keywords
Other Executables
Debugger Settings
Remote Debugging

CodeWarrior IDE User’s Guide

118

ColdFire Architectures, Linux Edition Targeting Manual

g |

Target Settings Reference
Target Settings

Target Settings

The Target Settings panel (Figure 5.2) is the most important settings panel in the Target
Settings window, because when you select a linker in this panel, you specify the target
operating system and processor for the build target.

The IDE shows and hides other settings panels in the Target Settings window based on the
selected linker. Because the linker choice affects the visibility of other settings panels, you
should always set the linker first.

Figure 5.2 Target Settings Panel

E Target Settings

Target Name: |c&cpp_app_debug

Linker:[ColdFire Linker

Pre-linker:[MNone

o) ol o L

Post-linker: [Mone

Output Directory:

[t Praject}

[Save project entries using relative paths

Table 5.3 describes the items in this settings panel.

ColdFire Architectures, Linux Edition Targeting Manual 119

y
A

Target Settings Reference
Target Settings

Table 5.3 Target Settings Panel Items

Item Description

Target Name This text box contains the name of the build target. This is
the name by which you identify the target. The IDE
displays this name in several places:

+ the Targets page of the project window

+ the Edit menu

- the build target list box un the project window

Linker Select an item from this list box to set the linker and
corresponding compiler the IDE uses to build the target.
The IDE changes the settings panels list in the Target
Settings window to match your selection.

Table 5.4 on page 121 describes the available linker
choices.

Pre-Linker Select an item in this list box to set the prelinker the IDE
uses to build the target. Some CodeWarrior products
have prelinkers that perform work on object code before it
is linked. There are currently no prelinkers available in this
product.

Post-Linker Select an item in this list box to set the postlinker the IDE
uses to build the target. Some CodeWarrior products
have prelinkers that perform work on the final output file
(such as object code format conversion).

Table 5.5 on page 122 describes the available post-linker
choices.

120 ColdFire Architectures, Linux Edition Targeting Manual

g |

Target Settings Reference

Target Settings
Table 5.3 Target Settings Panel ltems (continued)
Item Description
Output Directory This is the folder where the IDE places the final output file

when the IDE builds the target. Click Choose to specify
another location for the final output file. Click Clear to
clear the current directory. The default location is
{Project}, the folder that contains the CodeWarrior
project file.

Save Project Entries Using | Check this checkbox when you want to add two or more
Relative Paths files with the same name to a project.

When this box is checked, the IDE stores information
about project files using relative paths. When searching
for project files, the IDE combines Access Paths settings
with the stored path information to find the files.

When this box is cleared, each project file must have a
unique name and the IDE only records information about
project files using only the file names. When searching for
project files, the IDE only uses only the Access Paths
settings to locate the files.

Table 5.4 Linker ltems

Item Description

External Build Linker The External Build Wizard configures build targets to use
this linker to import Makefile-based projects into
CodeWarrior IDE projects. To learn more about the
External Build Wizard, read the CodeWarrior IDE User’s
Guide.

ColdFire Linker Select to have the IDE use the ColdFire compiler and
linkers to compile and link code for the ColdFire platform.

ColdFire Architectures, Linux Edition Targeting Manual 121

4
A

Target Settings Reference
GNU Target

Table 5.5 Post-Linker ltems

Post-Linker

Description

ColdFire Post-Linker

Select to enable the GNU Post Linker.

For more information about this post-linker read “GNU Post
Linker” on page 127.

Shell Tool Post-Linker

Select to have the IDE automatically run shell scripts
included in the project at the post-link stage of the build.

For details about this post-linker, read “Shell Tool Post-
Linker” on page 143.

GNU Target

Use the GNU Target settings panel (Figure 5.3) to specify the name and configuration of
the final output file. Select ColdFire Linker from the Linker list box in the Target
Settings panel to view this settings panel.

Figure 5.3 GNU Target Settings Panel

N GhU Target

PrujectTupe:[Application

Dutput File Mame: | cw—dbg.elf |

Custom SONAME: |

Table 5.6 describes the items in this settings panel.

122

ColdFire Architectures, Linux Edition Targeting Manual

g |

Target Settings Reference
GNU Assembler

Table 5.6 GNU Target settings panel items

Item Description

Project Type Select the type of final output file you want the IDE to generate
when you build the target. Available selections are:

+ Application

» Shared Library
+ Library

+ Loadable Module

The IDE shows and hides some items in this panel based on their
relevancy to this selection.

Output File Name Enter the name of the output file the IDE generates.

By convention, application names end with .elf£, shared library
names end with . so, library names end with . a, and loadable
module names end with .o.

SONAME (only available when Project Type is set to Shared Library)

Select an item from this list box to set the shared object name for
the shared library.

GNU Assembler

Use the GNU Assembler settings panel (Figure 5.4) to specify command-line arguments
the IDE passes to the GCC assembler. Select ColdFire Linker from the Linker list box in
the Target Settings panel to view this settings panel.

ColdFire Architectures, Linux Edition Targeting Manual 123

4
A

Target Settings Reference
GNU Disassembler

Figure 5.4 GNU Assembler Settings Panel

E GNU Aszembler

Cormrmand Line Arguments:

You can enter the command line arguments for the GCC assembler in the Command Line
Arguments text box. The contents of this text box are passed as command-line switches
in the gcc command line for each file in your project as they are assembled.

GNU Disassembler

Use the GNU Disassembler settings panel (Figure 5.5) to specify command-line
arguments the IDE passes to the GCC disassembler. The panel also allows you to control
whether the IDE displays disassembly output during disassembly. Select ColdFire
Linker from the Linker list box in the Target Settings panel to view this settings panel.

124 ColdFire Architectures, Linux Edition Targeting Manual

g |

Target Settings Reference

GNU Compiler
Figure 5.5 GNU Disassembler Settings Panel
E GHU Dizassemblear
Camrrand Line Arguments:
[Show assembly output of compiler, when disassembling source
[misplay content of archive at the time of disassembly
Table 5.7 describes the items in this settings panel.
Table 5.7 GNU Disassembler settings panel items
Item Description
Command Line Arguments Enter command-line switches you want the IDE
to include in the GCC disassembler command
line.
Show assembly output of compiler, Check to have the IDE display the assembly
when disassembling source output of the compiler before displaying output
from the disassembler.
Display content of archive at the time | Check to have the IDE display the list of objects
of disassembly archived in the library while the disassembler is
processing it.

GNU Compiler

Use the GNU Compiler settings panel (Figure 5.6) to specify command-line arguments
for the GCC compiler, prefix file settings, and the format for generating debugging
information. Select ColdFire Linker from the Linker list box in the Target Settings
panel to view this settings panel.

ColdFire Architectures, Linux Edition Targeting Manual 125

4
A

Target Settings Reference
GNU Compiler

Figure 5.6 GNU Compiler Settings Panel

H GHU Compiter
Command Line Arguments:
='wall -mefy de
Prefix File: |
B4 Use Custorn Debug Format
’7 Debug Option: |—g

Table 5.8 describes the items in this settings panel.

Table 5.8 GNU Compiler settings panel items

Item Description

Command Line Arguments Enter command-line switches you want the IDE
to include in the GCC compiler command line.

Prefix File Enter the name of a prefix file you want the IDE
to include before each source file in the project
during a build.

This option corresponds with the —include
argument of the GCC command-line compiler.

Use Custom Debug Format Check to have the compiler generate
debugging information with a specified custom
format. Enter the switch corresponding to the
debug format you want the IDE to pass to the
GCC cross compiler tools. The CodeWarrior
debugger uses the —gstabs or —-DWARF2
custom debug format switches.

Clear to have the compiler generate debugging
information in the default -g format switch.

126 ColdFire Architectures, Linux Edition Targeting Manual

g |

Target Settings Reference
GNU Post Linker

GNU Post Linker

Use the GNU Post Linker settings panel (Figure 5.7) to specify command-line arguments
the IDE should pass to the post linker adaptor, for example, to strip debugging information
from the generated binary executable file. Select ColdFire Linker from the Linker list
box in the Target Settings panel to view this settings panel.

Figure 5.7 GNU Post Linker Settings Panel

H GHU Post Linker

Command Line Arguments:

-3

In the Command Line Arguments text box, enter the command-line switches the IDE
should include in the post linker command line.

WARNING! Do not specify command-line arguments that remove the ELF Symbol
Table, or you may not be able to debug the stripped file on the target
platform. The ELF Symbol Table data is required by CodeWarrior TRK
for debugging purposes.

GNU Linker

Use the GNU Linker settings panel (Figure 5.8) to specify command-line arguments you
would like the IDE to pass to the GCC linker during a build. Select ColdFire Linker from
the Linker list box in the Target Settings panel to view this settings panel.

ColdFire Architectures, Linux Edition Targeting Manual 127

4
A

Target Settings Reference
CF Debugger Settings

Figure 5.8 GNU Linker Settings Panel

H GHU Linker

Linker AArchiver Flags:

- mefvde

Libraries:

-l

Table 5.9 describes the items in this settings panel.

Table 5.9 GNU Linker settings panel items

Item Description

Linker/Archiver Flags Enter linker command-line switches the IDE
should include in the GCC command line for
each file in the project.

Libraries Enter linker command-line switches for any
libraries the IDE should include in the GCC
command line for each file in the project.

CF Debugger Settings

Use the CF Debugger Settings panel (Figure 5.9) to specify the processor, operating
system, initialization file, and memory configuration file for the target platform, and other
debugger-related options. Select any connection other than a CodeWarrior TRK
connection from the Connection list box in the Remote Debugging panel to view this
settings panel.

NOTE We have provided XML files for the platforms and board support packages
(BSPs) supported by this product with pre-configured settings for this pane.

128 ColdFire Architectures, Linux Edition Targeting Manual

g |

Target Settings Reference
CF Debugger Settings

The XML files are located in this directory: CWInstall/CodeWarriorIDE/
CodeWarrior/E68K_Support/KernelDebug Settings/.

Figure 5.9 CF Debugger Settings Panel

E CF Debugger Settings

Target Processor: [5282 = Target 05:[Linux =]

= B Uze Target Initialization File

[{Compiler }/E68K_Support/Initialization_Files/M520Gefg | [Browse.. |

= D Uze Memary Configuration File

| | | Browss |

__ Program Download Options

Verify M Wit
Imitial Launch Successive Runs B F i AL
Executable [Executable [+
Constant Data [Constant Data [
Initialized Data [+ Initialized Data
Unitialized Data [] Unitialized Data [T

Table 5.9 describes the items in this settings panel.

Table 5.10 GNU Linker settings panel items

ltem Description

Target Processor Select the processor architecture of the target
system from this list box. This setting controls
the register views the debugger displays.

Target OS Select the operating system running on the
target system from this list box.

To do kernel-level debugging, select Linux. To
do application-level debugging, select
Bareboard.

ColdFire Architectures, Linux Edition Targeting Manual 129

y
A

Target Settings Reference
CF Debugger Settings

Table 5.10 GNU Linker settings panel items (continued)

Item Description

Use Target Initialization File Check to have the debugger use a target
initialization file to initialize the target board for
debugging. Click Browse to locate and select a
target initialization file.

Default target initialization files are
automatically selected for supported boards.
Sample target initialization files are in this
directory:

CWinstall/CodeWarriorIDE/
CodeWarrior/E68K_Support/
Initialization Files/

For more detailed information, see “Debug
Initialization Files” on page 153.

Use Memory Configuration File Check to have the debugger use a memory
configuration file to define the valid accessible
areas of memory of the target board for
debugging.Click Browse to locate and select a
memory configuration file.

If you are using a memory configuration file,
and you try to read from an invalid address, the
debugger fills the memory buffer with a
reserved character (defined in the memory
configuration file). If you try to write to an invalid
address, the write command is ignored and
fails.

For more details, see “Memory Configuration
Files” on page 161.

130 ColdFire Architectures, Linux Edition Targeting Manual

g |

Target Settings Reference
Source Folder Mapping

Table 5.10 GNU Linker settings panel items (continued)

Item

Description

Program Download Options

Check or clear these checkboxes to specify
which sections of a program the debugger
should download to the target board on initial or
successive launches of the program.

There are four types of sections listed:

+ Executable — the executable code
and text sections of the program

+ Constant Data — the constant data
sections of the program

+ Initialized Data — the initialized data
sections of the program

+ Uninitialized Data — the uninitialized
data sections of the program that are
usually initialized by runtime code

Check one of these boxes to have the
debugger download that section when you
debug the program

Note: You do not need to download
uninitialized data if you are using CodeWarrior
runtime code.

Verify Memory Writes

Check this checkbox to verify that sections of
the program are successfully downloaded to
the target board, and that code has not
unintentionally modified the sections.

For example, after the debugger downloads a
text section you might not need to download it
again; but you may want to verify that it still
exists.

Source Folder Mapping

Use the Source Folder Mapping settings panel (Figure 5.10) to configure source and
destination folders for executable files you want to debug. These mappings allow the
CodeWarrior debugger to find and display source code files even though they are not in
the locations specified in the executable file’s debug information.

NOTE When you create a CodeWarrior project by opening an ELF file with the IDE,
the IDE automatically creates entries in this settings panel. These entries

ColdFire Architectures, Linux Edition Targeting Manual 131

4
A

Target Settings Reference
Source Folder Mapping

consist of the ELF file parent folder the existing folder information in the
ELF’s debug information.

Figure 5.10 Source Folder Mapping Settings Panel

E Source Folder Mapping
H Hame Path A
f
~ [P=
— Source Tree |nformation
Mame: | |
[&bsolute Path 2]
(
[Add] [Change] [Remove]
Table 5.11 describes the items in this settings panel.
Table 5.11 Source Folder Mapping Settings Panel ltems
ltem Description
Source Folder Mapping The IDE displays all of the source folder mappings in the
(list) current build target in this list. You can use the Add,

Change, and Remove buttons to add, change, and
remove items in this list.

Build Folder Enter the path to the folder that used to contain the
executable’s source files when this executable was
originally built, or click Browse to select the folder.

Current Folder Enter the path to the folder that currently contains the
executable’s source files, or click Browse to select the
folder.

See “Current Folder” on page 133 for details about this

setting.

132

ColdFire Architectures, Linux Edition Targeting Manual

g |

Target Settings Reference

Console I/O Settings
Table 5.11 Source Folder Mapping Settings Panel ltems (continued)
Item Description
Add Enter paths in the Build Folder and Current Folder text

boxes, then click this button to add a source folder
mapping to the list.

Change Select an existing source folder mapping, edit the paths in
the Build Folder and Current Folder text boxes, then
click this button to change the existing source folder
mapping in the list.

Remove Select an existing source folder mapping, then click this
button to delete the source folder mapping from the list.

Current Folder

Enter the path to the folder that currently contains the executable’s source files, or click
Browse to select the folder.

The supplied path can be the root of a source code tree. For example, if you have the
source code files for an executable in these directories:

/home/me/my_source/headers

/home/me/my source/source

You might create a source folder mapping with these settings:
¢ Build Folder: vob 1
e Current Folder: /home/me/my_source

With this source folder mapping, if the debugger cannot find a file referenced in the
executable’s debug information, the debugger replaces the vob_1 portion of the missing
file’s path name with /home/me/my source and tries again. The debugger repeats this
process for each source folder mapping until it finds the missing file or no more folder
pairs remain.

Console I/O Settings

The Console I/0 Settings panel (Figure 5.11) lets you specify where the CodeWarrior
IDE should redirect standard input, standard output, and error messages while debugging
an application.

You can redirect standard input, standard output, and error messages to:

* afile on the target system

ColdFire Architectures, Linux Edition Targeting Manual 133

4
A

Target Settings Reference
Console I/O Settings

e the debugger console window

e the console window from where you launched CodeWarrior TRK.

NOTE Standard input, standard output, and error messages cannot be redirected to the

debugger console window when you run an application without the debugger.

Figure 5.11 Console I/O Settings Panel

E Console 140 Settings
— Stdin:| File =
File Name: | Stdinog
__ Stdout:| File =
File Mame: |stdout.lug
— Stderr:| File =
File Name: |stderr.lug

Table 5.12 describes the items in this settings panel.

Table 5.12 Console I/O Settings Panel ltems

ltem Description

Stdin Select an item from this list box to specify where the

CodeWarrior debugger reads standard input during a
debug session.

For more information, see “Console I/0 Redirection
Options” on page 135

134 ColdFire Architectures, Linux Edition Targeting Manual

g |

Target Settings Reference
GNU Environment

Table 5.12 Console I/O Settings Panel Items (continued)

Item

Description

Stdout

Select an item from this list box to specify where the
CodeWarrior debugger writes standard output during a
debug session.

For more information, see “Console I/0 Redirection
Options” on page 135

Stderr

Select an item from this list box to specify where the
CodeWarrior debugger writes standard error messages
during a debug session.

For more information, see “Console I/O Redirection
Options” on page 135

Console I/0 Redirection Options

Each of the list boxes in this settings panel have the menu options listed in Table 5.13.

Table 5.13 Console I/O Redirection Options

Menu ltem

Description

File

The debugger reads/writes messages to/from the specified file.

Note: If the file resides on the target system and is not in the same
directory as the CodeWarrior TRK binary file on the target system, you
must specify the full path on the target system.

Debugger

The debugger reads/writes messages to/from a CodeWarrior
debugger console window during the debug session.

Console I/0

The debugger reads/writes messages from the same console window
you used to launch CodeWarrior TRK.

GNU Environment

Use the GNU Environment settings panel (Figure 5.12) to specify environment variables
that you want the ISE to pass to the external compiler, linker, assembler, and other build
tool processes when the IDE invokes them. Select ColdFire Linker from the Linker list
box in the Target Settings panel to view this settings panel.

ColdFire Architectures, Linux Edition Targeting Manual 135

4
A

Target Settings Reference
GNU Environment

Figure 5.12 GNU Environment Settings Panel

E GHMU Environrnent

E Environment Yariahle

| Value |

AYOID_5¥STEM_PATHS

¥ES

L-

o

— Environment Yariable Setting:

Environment Variable : [AVUID_SVSIEM_PATHS |

Walue : [VES |

[Add | [Change | [Remove |

Table 5.14 describes the items in this settings panel.

Table 5.14 GNU Environment settings panel items

Item

Description

Environment Variable (list)

This list displays all of the currently-defined
GNU environment variables.

Environment Variable (text box) Enter the name of the environment variable.

Value Enter the value the environment variable
should have.

Add Click to add the environment variable specified
in the Environment Variable and Value text
boxes to the list.

Change Select an environment variable in the list, edit
the Environment Variable and Value text
boxes, and click this button to change the
values of the environment variable in the list.

Remove Select an environment variable in the list and

click this button to delete the environment
variable from the list.

136

ColdFire Architectures, Linux Edition Targeting Manual

g |

Target Settings Reference
GNU Tools

GNU Tools

Use the GNU Tools settings panel (Figure 5.13) to set the path and names of the various
command-line tools the IDE should invoke to compile, assemble, link, post-link,
disassemble, archive projects, and report the code and data size of project files. Select
ColdFire Linker from the Linker list box in the Target Settings panel to view this
settings panel.

Figure 5.13 GNU Tools Settings Panel

H GhU Toots

— [+ Use Custom Tool Commands

Taol Path: [jopt/miwk/usr /Tocal /gec-3.4.3-uClibe-0.9.26] [Choose... |
_ Commands: —
Compiler: = |
Linker: la++ |
Archiver: lar |
Size Reporter: |52 |
Disassembler: |otidump |
Assembler: [z |
Post Linker: [strip |

b Display generated command lines

Table 5.15 describes the items in this settings panel.

Table 5.15 GNU Tools settings panel items

ltem Description

Use Custom Tool Commands Check to have the IDE use the GNU tools
specified in this settings panel, rather than the
default tools.

Tool Path Enter the full path to the folder containing the
command-line tools you want to use, or click
the Choose button to use a standard open
folder dialog box to locate and select the folder.

Compiler Specify only the file name of the compiler tool.

Linker Specify only the file name of the linker tool.

ColdFire Architectures, Linux Edition Targeting Manual 137

y
A

Target Settings Reference
GNU Tools

Table 5.15 GNU Tools settings panel items (continued)

Item Description

Archiver Specify only the file name of the archiver tool.

Size Reporter Specify only the file name of the tool that
reports code and data size of files after they are
compiled.

The IDE displays this code and data size
information in the project window while building

the project.

Disassembler Specify only the file name of the disassembler
tool.

Assembler Specify only the file name of the assembler
tool.

Post Linker Specify the name of the tool you use to process

files after the link stage of a build (for example,
to strip debugging information from files).

Display generated command lines Check to have the IDE display generated
command-line input and output during the build
process.

138 ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

Working With Hardware
Tools

This chapter explains how to use the CodeWarrior IDE hardware tools. Use these tools for
board bring-up, test, and analysis.

This chapter contains these sections:

¢ Flash Programmer

e Hardware Diagnostics

Flash Programmer

The CodeWarrior flash programmer can program the flash memory of the target board
with code from any CodeWarrior IDE project or from any individual executable files. The
CodeWarrior flash programmer provides features such as:

e Program
¢ FErase
BlankCheck

e Verify

e Checksum

NOTE Certain flash programming features (such as view/modify flash, memory/
register, and save memory contents to a file) are provided by the CodeWarrior
debugger. Therefore, these features are not a part of the CodeWarrior flash
programmer.

This product includes a default flash configuration file for supported target boards. These
files have the .xm1l filename extension, and are located in this directory:

CwWInstall/CodeWarriorIDE/CodeWarrior/CodeWarrior Plugins/
Support/Flash Programmer/ColdFire

To load a flash configuration file:

ColdFire Architectures, Linux Edition Targeting Manual 139

r
4\

Working With Hardware Tools
Flash Programmer

1. Select Tools > Flash Programmer

The Flash Programmer window appears.

NOTE The Flash Programmer window lets you define global setting for the flash
programmer. These settings apply to each open project.

2. Select Target Configuration from the pane on the left side of the Flash Programmer
window.

The Target Configuration preference panel appears on the right side of the Flash
Programmer window. (See Figure 6.1).

Figure 6.1 Flash Programmer window

Flash Programmer
—Fash Programmer — Target Configuration

Target Configuration|

Aash Configuration Default Project: Mew Connection.mcp
Program § Verify

Erase / Blank Check | Defaull Target: cpp_app_debug
Checksum

— 7 Use Custom Settings

Target Processor: 52862 | Cunneclion:l HewaAbatronConnection — |

— 7 Use Target Initialization

Mmomeuser1 /Cold Fire/CodeWarriorl DEfCodeWarrior_PluginsfSupport/initiaize &I

— Target Memory Buffer————— — Oplions

Target Memory Buffer Address: Ij]uuuwg] = Enable Logging
- Ve T: 1 Memory Writes
Target Memory Buffer Size: | 50006000 fph)

Show Log| Load Settings...| Save Settings...|

OK| cancell

I
3. Click Load Settings

A standard open file dialog box appears.

4. Use the “open file” dialog box to select the flash programmer initialization file
appropriate for your target board.
5. Click Open

The “open file” dialog box closes. The items in the Use Custom Settings group box are
set using values from the selected initialization file.

140 ColdFire Architectures, Linux Edition Targeting Manual

g |

Working With Hardware Tools
Hardware Diagnostics

6. Click OK

The Flash Programmer window saves your selections and closes.

NOTE See the CodeWarrior IDE User’s Guide for documentation of the other
preference panels available in the Flash Programmer window.

Hardware Diagnostics

The Hardware Diagnostics window (Figure 6.2) lists global options for the hardware
diagnostic tools. These preferences apply to every open project file. Select Tools >
Hardware Diagnostics to display the Hardware Diagnostics window.

Figure 6.2 Hardware Diagnostics window

b4 Hardware Diagnostics
— Hardware Diagnostics —

Configuration
Scope Loop Default Project: testz.mcp
Memory Read [Write
Memory Tests Default Target: cpp_app_debug
[~ Use Custom Settings
Target Processor: 5272 | Connection: HNew Abatron Connection |

7 Use Target Initialization
’I;home!userﬂMetmweﬁ(s ICodeWarriorlDE/CodeWarrior/EGBK_Supportfl Set...

Show Log| Load Settings...l Save Settings...l
! OK| cancel|

The left pane of the Hardware Diagnostics window shows a tree structure of panels.
Click a panel name to display that panel in the right pane of the Hardware Diagnostics
window.

Refer to the CodeWarrior IDE User’s Guide for information about each panel in the
Hardware Diagnostics window.

ColdFire Architectures, Linux Edition Targeting Manual 141

r
4\

Working With Hardware Tools
Hardware Diagnostics

142 ColdFire Architectures, Linux Edition Targeting Manual

(O
P

A
Shell Tool Post-Linker

This appendix describes the CodeWarrior Shell Tool post linker and explains how to use it
with your CodeWarrior projects.

You can use the Shell Tool post-linker to automatically run shell scripts as part of the
IDE’s build process, either during the precompile stage or during the post-link stage of a
build. One of its most common and useful purposes occurs during post-compilation to
copy additional files or resources into the application package created by the IDE.

This appendix contains these sections:
« Shell Tool Setup
* Environment Variables
¢ Shell Tool Example

Shell Tool Setup

To use the Shell Tool post-linker in a build target:

1. Select Edit > TargetName Settings from the CodeWarrior menu bar (where
TargetName is the name of the build target you want to use the Shell Tool).

The IDE displays the Target Settings window.

2. Select Target Settings from the Target Settings Panels list on the left side of the
window.

The IDE displays the Target Settings panel.
3. Select Shell Tool Post Linker from the Post-linker menu.

4. Select File Mappings from the Target Settings Panels list on the left side of the
window.

The IDE displays the File Mappings settings panel (Figure A.1).

ColdFire Architectures, Linux Edition Targeting Manual 143

4
A

Shell Tool Post-Linker
Shell Tool Setup

Figure A.1 File Mappings settings panel showing Shell Tool mappings

E File Mappings

=
E File Type | Extenzion |@ |@ | |® | Compiler
TEXT lcf None Y
TEXT .m CaldFire Campiler
TERT kS ColdFire Assembler
TERT 3 MNone
a ColdFire Obj Importer
a ColdFire Obj Importer
Pl Perl Toal
psh - Shell Taol
gh Shell Taal |
50 ColdFire Obj Importer '

Mapping | nfo

File Tuype: | | [Choosge...] Extension: M

Flags: Compiler: | Shell Tool 2]

[#dd] [Change] [Remwe]

Edit Lanquage: | Mone

4k

5. If they do not exist, add new entries with the following information:
For scripts that are to run after the target is linked (post-link stage):
* File Type: TEXT
 Extension: . Sh (or whatever you use for shell scripts)

e Compiler: Shell Tool

e Flags: None (no checkmarks in the Flags menu)

For scripts that are to run before compiling begins (pre-compile stage):
e File Type: TEXT

 Extension: . psh (or whatever you use for shell scripts)

e Compiler: Shell Tool

e Flags: Precompiled

NOTE If you wish to run shell scripts during both post-link and pre-compile stages,
the filename extensions must be different for each file mapping, as shown
above.

6. Add your shell scripts to the build target.

NOTE The Shell Tool only parses source files with UNIX style line endings. Make
sure the line endings in your files are correct.

144 ColdFire Architectures, Linux Edition Targeting Manual

g |

Shell Tool Post-Linker
Environment Variables

7. Build the target.

TIP If there are multiple shell scripts in a stage, the IDE executes the scripts in the
order they appear in the Link Order page of the project window.

Environment Variables

The IDE passes the environment variables in Table A.1 to the shell script. The working
directory for shell scripts the IDE invokes is the Output Directory specified in the
Target Settings settings panel. All output the script directs to stdout appears in a new
CodeWarrior text window after the script completes.

Table A.1 Shell Tool environmental variables

Variable Description

$MW_CURRENT TARGET the name of the current build target from the Target
Settings settings panel in the IDE

$MW_PROJECT DIRECTORY the directory containing the IDE project that is
running the script

$MW_PROJECT_FILE the full path to the CodeWarrior project file
$MW_PROJECT_NAME the file name of the project file
$MW_OUTPUT DIRECTORY the Output Directory from the Target Settings

settings panel in the IDE

$MW_OUTPUT FILE the full path to the output file

$MW_OUTPUT NAME the name of the build target output file

NOTE Be careful with items placed into environment variables. Any item containing
non-alphanumeric values may cause the Shell Tool not to operate as you
expect, or not work at all.

Shell Tool Example

Listing A.1 shows one way of writing a shell script that the IDE can use to verify the Shell
Tool’s environment variables.

ColdFire Architectures, Linux Edition Targeting Manual 145

h -

y
A

Shell Tool Post-Linker
Shell Tool Example

Listing A.1 Shell Tool example script

#!1/bin/sh

cd ${HOME}
FILEWANTED=.tcshrc
OBJECTS=""1s -al ./ | grep ${FILEWANTED} ”

echo “This is a simple test of the shell tool plugin...”
echo

echo

echo “ "
echo “Check if passed the IDE ENV variables correctly...”
echo “ "
echo “The name of the current target from the “Target Settings”
echo “pref panel in the IDE is:”

echo $MW CURRENT TARGET

echo

echo “The directory containing the IDE project that is running the”
echo “script is:”

echo $MW_PROJECT DIRECTORY

echo

echo “The full path to the project file is:”

echo $MW PROJECT FILE

echo

echo “The basename of the project file is:”

echo $MW PROJECT NAME

echo

echo “The output directory from the “Target Settings” pref panel”
echo “in the IDE is:”

echo $MW OUTPUT DIRECTORY

echo

echo “The full path to the output file, if any, is:”

echo $MW OUTPUT FILE

echo

echo “The basename of the output file, if any, is:”

echo $MW OUTPUT NAME

echo

echo

echo “ ”

echo “Now list the \”.tcshrc\” file found in your HOME directory...”
echo " ”

echo

if [! -x ${OBJECTS}]
then

146 ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

Shell Tool Post-Linker
Shell Tool Example

echo “found: ${OBJECTS}”

cat ${FILEWANTED}
else

echo “shell tool could not find ${FILEWANTED} in ${PWD}”
fi

ColdFire Architectures, Linux Edition Targeting Manual 147

r
4\

Shell Tool Post-Linker
Shell Tool Example

148 ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

B

Third Party Cross Compiler
Tools

You may want to use/build cross compiler tools from other sources that are not installed
during CodeWarrior™ IDE installation. This appendix describes how to use these third
party cross compiler tools to build your project.

The CodeWarrior IDE packages the cross compiler tools for all the supported target
platforms. Table B.1 lists the location where you can find the target platform-specific
cross compiler tools.

Table B.1 Cross Compiler Tools Locations

Platform Cross Compiler Tools Location

MCF5208 /opt/mtwk/usr/local/gcc-3.4.0-uClibc-
20050919/m68k-uclinux/mé68k-uclinux/bin/

MCF5282 and MCF5272 /usr/local/bin/

MCF5475 and MCF5485 /opt/Embedix/usr/local/m68k-linux/gcc-

3.4.0-glibc-2.3.2-v4e/bin/

NOTE This procedure assumes that you already have a CodeWarrior project open.
Ensure that the source files for the cross compiler tools are available in your
host computer.

You need to rebuild the CodeWarrior project with the new third party cross compiler
tools. Before you rebuild the project, you need to make changes in the GNU Tools and
Access Paths setting panels. The steps are:

1. Select Edit > Target Settings. The Target Settings panel appears. Target is the build
target name.

2. Select the Target Settings option from the panel tree. The Target Settings panel
appears.

3. Select the appropriate linker from Linker list box (Figure B.1).

ColdFire Architectures, Linux Edition Targeting Manual 149

wr
4\

Third Party Cross Compiler Tools

Figure B.1 Linker Settings

E Target Settings

Target Name: [New_FPro]

|
Linker:[ColdFire Linker =]
Pre-linker:[None =]
Post-linker:[None =]
Output Directory:
’]{Pruject}

[save project entries using relative paths

4. Click Save to save the settings.
5. Specify the path where the third party cross compiler tools are installed/copied.
a. Select the GNU Tools option from the panel tree.

b. Check the Use Custom Tool Commands checkbox to specify new third party
cross compiler tools.

c. Specify the path where cross compiler tools exist on your computer in the Tool
Path text box. For example, if the third party cross compiler tools are located at /
usr/local/coldfire, then the Tool Path will be at /usr/local/
coldfire/bin

d. Update the Commands section with the commands. These commands are located
at third party cross compiler tools installation directory. For example, Compiler
gce, Linker gee, Archiver ar, Size Reporter size, Disassembler objdump,
Assembler as.

6. Change the access path settings for kernel and gce-lib include files in the Access Paths
settings panel.

a. Select the Access Paths options from the panel tree. The Access Paths settings
panel appears.

b. Click Change to modify the access path settings for kernel and gcc-lib specific
include files. A File mapping dialog box appears.

c. Select the Kernel include files from the list and click Select “directory_name”,
where “directory_name” is the directory where the kernel source files are located.

d. Select gce-lib include files from the list.

e. Click Save to save the settings.

150 ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

Third Party Cross Compiler Tools

f. Close the Target Settings panel.

Now, you are ready to rebuild your project using the third party cross compiler
tools.

ColdFire Architectures, Linux Edition Targeting Manual 151

r
4\

Third Party Cross Compiler Tools

152 ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

C

Debug Initialization Files

You use debug initialization files to initialize the target board before the debugger
downloads the code, ensuring that the target board’s memory is initialized properly.

This appendix contains these sections:

¢ Using Debug Initialization Files
¢ Debug Initialization File Commands

Using Debug Initialization Files

A debug initialization file is a command file processed and executed each time the
debugger is invoked. It is usually necessary to include an initialization file if debugging
via BDM or JTAG to ensure that the target memory is initialized correctly and that any
register values that need to be set for debugging purposes are set correctly. You specify
whether or not to use an initialization file and which file to use in the CF Debugger
Settings panel.

NOTE You do not need to use an initialization file if you debug with CodeWarrior
TRK.

We provide samples of initialization files for supported evaluation boards. The sample
files are located here:

CWInstall/CodeWarriorIDE/CodeWarrior/E68K_Support/
Initialization Files/

Debug Initialization File Commands

In general, the syntax of debug initialization file commands follows these rules:
* white spaces and tabs are ignored
e character case is ignored
¢ unless otherwise notes, values may be specified in hexadecimal, octal, or decimal:
— hexadecimal values are preceded by Ox (for example, 0OxDEADBEEF)
— octal values are preceded by O (for example, 01234567)

ColdFire Architectures, Linux Edition Targeting Manual 153

h -

4
A

Debug Initialization Files
Debug Initialization File Commands

— decimal values start with a non-zero numeric character (for example, 1234)

e comments start with a semicolon (;) or pound sign (#), and continue to the end of the
line

ANDmem.l

Reads four bytes starting a the specified address, performs a bit AND operation of this
value with the supplied 32-bit mask, and writes the result back to the same address. No

read/write verify is performed.
Syntax

ANDmem.l address mask

Arguments
address

the address at which the command should start reading four bytes of data
mask

the 32-bit mask

Example

To perform a bit AND operation with the four-byte value at memory location
0xC30A0004 and the 32-bit mask OXFFFFFFFF, and store the resulting value
back into memory location 0xC30A0004:

ANDmem.1l O0xC30A0004 OXFFFFFEFF

ORmem.l

Reads four bytes starting a the specified address, performs a bit OR operation of this value
with the supplied 32-bit mask, and writes the result back to the same address. No read/
write verify is performed.

Syntax

ORmem.l address mask

154

ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

Debug Initialization Files
Debug Initialization File Commands

Arguments
address

the address at which the command should start reading four bytes of data
mask

the 32-bit mask

Example

To perform a bit OR operation between the four-byte value at memory location
0xC30A0008 with the 32-bit mask 0x01000800, and store the resulting value
back into memory location 0xC30A0004:

ORmem.1l 0xC30A0008 0x01000800

hreset
Performs a hard reset of the target system.
Syntax
hreset

sreset
Performs a soft reset of the target system.
Syntax
sreset

run

Starts program execution at the current program counter (PC) address.

Syntax

run

ColdFire Architectures, Linux Edition Targeting Manual 155

h -

4
A

Debug Initialization Files
Debug Initialization File Commands

sleep

Causes the processor to wait the specified number of milliseconds before continuing to the
next command.

Syntax

sleep milliseconds

Arguments
milliseconds

the number of milliseconds (in decimal) to pause the processor

Example
To pause execution for 10 milliseconds:

sleep 10

stop

Stops program execution and halts the target processor.

Syntax

stop

physicalbase

Sets the physical base address on the target system for the kernel.

Syntax

physicalbase address

Arguments

address

the physical base memory address (in hexadecimal, octal, or decimal)

156

ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

Debug Initialization Files
Debug Initialization File Commands

Example
To set the physical base address of the kernel to memory location 0x00010000:
physicalbase 0x00010000

virtualbase

Sets the virtual base address on the target system for the kernel.

Syntax

virtualbase address

Arguments
address

the virtual base memory address (in hexadecimal, octal, or decimal)

Example
To set the virtual base address of the kernel to memory location 0x00000C00:
virtualbase 0x00000C00

semihosting
Enables or disables semihosting while using the ColdFire RDI protocol.

Syntax

semihosting value

Arguments

value
a boolean value indicating whether semihosting should be enabled. Specify 1 to
enable semihosting. Specify 0 to disable semihosting.

Example
To enable semihosting while using the ColdFire RDI protocol:

semihosting 1

ColdFire Architectures, Linux Edition Targeting Manual 157

h -

y
A

Debug Initialization Files
Debug Initialization File Commands

writemem.b

Writes a byte (8 bits) of data to the specified memory location.

Syntax

writemem.b address value

Arguments

address

the memory address to modify (in hexadecimal, octal, or decimal)

value

the 8-bit value (in hexadecimal, octal, or decimal) to write to the memory address

Example

To write the byte value 0XFF to memory location 0x0001FF00:
writemem.b 0x0001FF00 OxFF

writemem.w

This command writes a word (16 bytes) of data to the specified memory location.

Syntax

writemem.w address value

Arguments

address

the memory address to modify (in hexadecimal, octal, or decimal)

value
the 16-bit value (in hexadecimal, octal, or decimal) to write to the memory address

Example

To write the word value 0x1234 to memory location 0x0001FF00:
writemem.w 0x0001FF00 0x1234

158

ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

Debug Initialization Files
Debug Initialization File Commands

writemem.|
Writes a long integer (32 bytes) of data to the specified memory location.

Syntax

writemem.l address value

Arguments
address

the memory address to modify (in hexadecimal, octal, or decimal)

value

the 32-bit value (in hexadecimal, octal, or decimal) to write to the memory address

Example

To write the long integer value 0x12345678 to memory location 0x0001FF00:
writemem.w 0x0001FF00 0x12345678

writereg
Writes the specified data to a register.

Syntax

writereg regName value

Parameters
regName

the name of the register
value

the value (in hexadecimal, octal, or decimal) to write to the register

Example
To write the value 0x00001002 to the MSR register:
writereg MSR 0x00001002

ColdFire Architectures, Linux Edition Targeting Manual 159

r
4\

Debug Initialization Files
Debug Initialization File Commands

160 ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

D

Memory Configuration Files

A memory configuration file contains commands that define the accessible areas of
memory for your specific board.

This appendix consists of these topics:
e Command Syntax
* Memory Configuration File Commands

Command Syntax

In general, the syntax of memory configuration file commands follows these rules:
» white spaces and tabs are ignored
e character case is ignored
* unless otherwise notes, values may be specified in hexadecimal, octal, or decimal:
— hexadecimal values are preceded by Ox (for example, 0xDEADBEEF)
— octal values are preceded by O (for example, 01234567)
— decimal values start with a non-zero numeric character (for example, 1234)

e comments start with standard C and C++ comment characters, and continue to the
end of the line

Memory Configuration File Commands

This section lists the command name, its usage, a brief explanation of the command,
examples of how the command may appear in configuration files, and any important notes
about the command.

range

This command sets debugger access to a block of memory.

ColdFire Architectures, Linux Edition Targeting Manual 161

\
Y

y
A

Memory Configuration Files
Memory Configuration File Commands

Syntax

range loAddress hiAddress size access

Arguments
loAddress
the starting address of the memory range
hiAddress
the ending address of the memory range
size
the size, in bytes, the debug monitor or emulator uses for memory accesses
access
controls what type of access the debugger has to the memory block — supply one
of: Read, Write, or ReadWrite
Examples

To set memory locations 0XFF000000 through 0XFF0000FF to read-only with a
size of 4 bytes:

range 0xXFF000000 OxXFFOOOOFF 4 Read

To set memory locations 0XxFF0001000 through 0XFFO001FF to write-only with
a size of 2 bytes:

range 0xFF000100 OxXFFOOOlFF 2 Write

To set memory locations 0XFF0002000 through OXFFFFFFFF to read and write
with a size of 1 byte:

range 0xFF000200 OxFFFFFFFF 1 ReadWrite

reserved

This command allows you to specify a reserved range of memory. If the debugger
attempts to read reserved memory, the resulting buffer is filled with the reserved
character. If the debugger attempts to write to reserved memory, no write takes place.

NOTE Refer to “reservedchar” on page 163 for information showing how to set the
reserved character.

162

ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

Memory Configuration Files
Memory Configuration File Commands

Syntax

reserved loAddress hiAddress

Arguments
loAddress

the starting address of the memory range
hiAddress

the ending address of the memory range

Examples
To reserve memory starting at 0XFF000024 and ending at 0OXFF00002F:
reserved 0xFF000024 OxFF00002F

reservedchar

This command sets the reserved character for the memory configuration file. When the
debugger attempts to read a reserved or invalid memory location, it fills the buffer with
this character.

Syntax

reservedchar rChar

Arguments

rChar
the one-byte character the debugger uses when it accesses reserved or invalid
memory

Example
To set the reserved character to “oo*:

reservedchar 0xB0

ColdFire Architectures, Linux Edition Targeting Manual 163

r
4\

Memory Configuration Files
Memory Configuration File Commands

164 ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

Frequently Asked
Questions

This appendix discusses the frequently asked questions about CodeWarrior Development
Studio for ColdFire targets.

This appendix has these topics:

o Settings
* Debugging
e CodeWarrior IDE

Settings

Question: What is the purpose of the Cache symbolics
between runs setting in the Debugger Settings Panel?

Answer: If you check this option, the debugger keeps the symbolics data loaded across
debug sessions. Hence, the debugger will not need to load the symbolic data every time in
repeat debug sessions provided the symbolic data has not changed. Also, the Console
Window will not close between runs.

Debugging

Question: The CodeWarrior debugger does not stop at a Log
Point set up in a function but stops at a Pause Point. Is this
correct?

Answer: The CodeWarrior™ debugger does not stop at a Log Point unless you check the

Stop in Debugger setting when setting the Log Point. A Pause Point suspends program
execution just long enough to refresh debugger data.

Question: | am unable to launch an executable using exec()
system call from a thread program. The debugger displays the
'CodeWarrior TRKProtocolPlugin: Failed to continue thread'
message oh running my application.

ColdFire Architectures, Linux Edition Targeting Manual 165

4
A

Frequently Asked Questions
CodeWarrior IDE

Answer: This issue has been fixed with one limitation that the exec() system call must be
in the main thread only.

CodeWarrior IDE

Question: Why cannot | step out after stepping into a function
without symbolic info?

Answer: This is not a bug but is the expected behavior.
Question: Do | need to do anything with AppTRK while
restarting the CodeWarrior IDE after a crash?

Answer: When the CodeWarrior IDE crashes due to any reason, we recommend that you
restart the AppTRK session on the target platform before restarting the CodeWarrior IDE.

166 ColdFire Architectures, Linux Edition Targeting Manual

h

Index

Symbols

$MW_CURRENT_TARGET variable 145
$SMW_OUTPUT_DIRECTORY variable 145
$SMW_OUTPUT_FILE variable 145
$MW_OUTPUT_NAME variable 145
$MW_PROJECT_DIRECTORY variable 145
$SMW_PROJECT_FILE variable 145
$MW_PROJECT_NAME variable 145

xml file 101

A

attach to process 85-90

B

binary files with no source code 65-66

boards
M5208EVB 14,33,97, 149
M5272C3 14,32, 149
M5282EVB 14,32,97, 149
MS5474LITEKIT 14
MS5475EVB 14,33, 149
MS5484LITEKIT 14
MS5485EVB 14,33, 149
MCF5329EVB 14
MCP5329 33

build target 10

C

CF Debugger Settings panel 128-131
CF Linux CodeWarrior TRK debugger
protocol 26
checking syntax 13
CodeWarrior
checking syntax 13
compared to command line 11
compiler architecture 9
compiler description 10
components 9-11
debugging 13
development process 11-13
disassembling 13

editing source code 12

IDE defined 9

linking 13

preprocessing 13

project manager defined 10

project window 12

projects compared to Makefiles 11

release notes 8

tools listed 9

tutorials 9
CodeWarrior TRK

debug monitor 31,33

definition 31

installing on remote target 33

launching on remote target 37

overview 31

project and binary file location 32

remote debugging 31

using 31
ColdFire Abatron debugger protocol 26
ColdFire PEMicro debugger protocol 26
command syntax

memory configuration files 161
command-line

and CodeWarrior compared 11
commands

memory configuration files syntax 161
compiler

architecture 9

description 10
compiling 12
configuration files, memory, command syntax

of 161

configuring the kernel project 100-105
connection type 26

Serial 27

TCP/IP 28

USB 30
Console I/O Settings panel 133-135
converting, makefiles to CodeWarrior projects 20

ColdFire Architectures, Linux Edition Targeting Manual 167

h o
g |

D
debug initialization files
commands
run 155
sleep 156

writemem.b 158
writemem.w 158
writereg 159
using 153
debugger protocol 25
CF Linux CodeWarrior TRK 26
ColdFire Abatron 26
ColdFire PEMicro 26
debugging 13
attach to process 85-90
CodeWarrior TRK 31
elf files 65-66
fork() and exec() system calls 67-79
kernel modules 108-113
kernel threads 114
Linux kernels 96-108
multithreaded 55-65
remote executables 33-39
shared libraries 39-55
supported remote connections 23-29
with Serial connection 27
with TCP/IP connection 28
with USB connection 30
development tools 9-11
disassembling 13
displaying multiple processes and threads in a
single thread window 81
download and boot kernel 108
download and boot kernel 105

E

editing source code 12
environment variables, Shell Tool 145
External Build Wizard, using 20

F
FAQs 165
on CodeWarrior IDE 166

on debugging 165
on settings 165
stepping 166
frequently asked questions 165

G

GCC defined 10

GNU Assembler settings panel 123-124
GNU Compiler settings panel 125-126
GNU Disassembler settings panel 124-125
GNU Environment settings panel 135-136
GNU Linker settings panel 127-128

GNU Post Linker settings panel 127

GNU Target settings panel 122-123

GNU Tools settings panel 137-138

H

Hardware tools
flash programmer 139-141
hardware diagnostics 141

I

IDE Preferences panel
Show processes in separate window
checkbox 81
Show threads in separate window
checkbox 81
importing makefiles 20
importing panels settings from XML files 101
installing kernel modules 110
Integrated Development Environment (IDE) 11
intermediate representation 9
IR 9

K

kernel debugging 96-108
kernel module debugging 108-113
kernel modules 109

L

linking 13

Linux kernel modules
introduction 108

168 ColdFire Architectures, Linux Edition Targeting Manual

h o
g |

Linux menu 113
loadable kernel modules 109
loading symbolics for kernel modules 111

M

M5208EVB 14,33,97, 149
M5272C3 14,32, 149
M5282EVB 14,32,97, 149
MS5474LITEKIT 14
M5475EVB 14,33, 149
MS5484LITEKIT 14
M5485EVB 14,33, 149
MCF5329EVB 14
MCP5329 33
multithreaded debugging 55-65

P

Post Linker Stripper
definition 90
post linker stripper feature 90
post-linker
GNU Post Linker - Stripper 91
Shell Tool 143
preprocessing 13
product FAQs 165
project window
Link Order page 145
Targets page 117
project window, CodeWarrior IDE 12

R

release notes 8

remote debugging 33-39
with CodeWarrior TRK 31
with Serial connection 27
with TCP/IP connection 28
with USB connection 30

run 155

S

Serial connection 27
settings panels 117-138
CF Debugger Settings 128-131

Console I/0O Settings 133-135
GNU Assembler 123-124
GNU Compiler 125-126
GNU Disassembler 124-125
GNU Environment 135-136
GNU Linker 127-128
GNU Post Linker 127
GNU Target 122-123
GNU Tools 137-138
Source Folder Mapping 131-133
Target Settings 119-121
Shell Tool 143
sleep 156
Source Folder Mapping settings panel 131-133
stabs format, viewing 13

T
target boards
M5208EVB 14,33,97, 149
M5272C3 14,32, 149
M5282EVB 14,32,97, 149
MS5474LITEKIT 14
MS5475EVB 14,33, 149
MS5484LITEKIT 14
MS5485EVB 14,33, 149
MCF5329EVB 14
MCP5329 33
target boards supported 14
Target Settings panel 119-121
target settings panels
See settings panels 117
Target Settings window 117
TCP/IP connection 28

U

uploading kernel modules 110

USB connection 30

using pre-configured settings for Linux kernel
debugging 101

\Y%

variables, Shell Tool environment 145
viewing kernel modules 110

ColdFire Architectures, Linux Edition Targeting Manual

169

h o
g |

viewing multiple processes and threads in a single
thread window feature 81

W

writemem.b 158
writemem.w 158
writereg 159

X
XML file location 101

170 ColdFire Architectures, Linux Edition Targeting Manual

	Introduction
	Overview of This Manual
	Related Documentation
	CodeWarrior Information

	CodeWarrior Compiler Architecture
	CodeWarrior Development Tools
	Overview of the CodeWarrior IDE
	Cross Compilers, Linkers, and Related Tools
	CodeWarrior Debugger
	CodeWarrior Target Resident Kernel

	CodeWarrior Development Process
	Projects
	Editing Source Code
	Compiling
	Linking
	Debugging
	Viewing Preprocessor Output
	Checking Syntax
	Disassembling

	Supported Target Boards

	Working With Projects
	Creating Projects
	Importing Makefile Projects
	Sample Projects

	Working With the Debugger
	Using Remote Connections
	Accessing Remote Connections
	Understanding Remote Connections
	Editing Remote Connections

	Using CodeWarrior Target-Resident Kernel
	Customizing CodeWarrior TRK
	Project and Binary Files
	Installing CodeWarrior TRK On Remote Systems

	Debugging Remote Executable Files
	Debugging Shared Libraries
	Build the Project
	Configure the Executable Build Target
	Configure the Library Build Target
	Debug the Shared Library

	Debugging Multiple Threads
	Debugging Binary Files With No Source Code
	Debugging Applications that use fork() and exec() System Calls
	Viewing Process Information
	Viewing Multiple Processes and Threads
	Attaching to Processes
	Stripping Debug Information From Binary Files
	Creating Stripped Binary Files
	Downloading Stripped Files

	Debugging Boot Loaders, Kernels, Modules, and Threads
	Debugging Boot Loaders
	Debugging Kernels
	Prerequisites
	Kernel Debugging Methods
	Build the Kernel
	Create a CodeWarrior Project for the Kernel
	Set Up the Kernel Project for Debugging
	Download and Boot the Kernel

	Debugging Kernel Modules
	Linux Kernel Modules - An Introduction
	Display the Kernel Modules List
	Load the Module’s Symbolic Information

	Viewing Loaded Kernel Modules
	Debugging Kernel Threads

	Target Settings Reference
	Target Settings Overview
	Other Settings Panels Documentation
	Target Settings
	GNU Target
	GNU Assembler
	GNU Disassembler
	GNU Compiler
	GNU Post Linker
	GNU Linker
	CF Debugger Settings
	Source Folder Mapping
	Current Folder

	Console I/O Settings
	Console I/O Redirection Options

	GNU Environment
	GNU Tools

	Working With Hardware Tools
	Flash Programmer
	Hardware Diagnostics

	Shell Tool Post-Linker
	Shell Tool Setup
	Environment Variables
	Shell Tool Example

	Third Party Cross Compiler Tools
	Debug Initialization Files
	Using Debug Initialization Files
	Debug Initialization File Commands

	Memory Configuration Files
	Command Syntax
	Memory Configuration File Commands

	Frequently Asked Questions
	Settings
	Debugging
	CodeWarrior IDE

	Index

