
CodeWarrior Development Studio for
StarCore 3900FP DSP Architectures

Targeting Manual

Document Number: CWSCDBGUG
Rev. 10.9.0, 11/2015

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

2 Freescale Semiconductor, Inc.

Contents

Section number Title Page

Chapter 1
Introduction

1.1 Release notes...17

1.2 Contents of this manual.. 17

1.3 Accompanying documentation... 18

1.4 CodeWarrior Development Studio tools...19

1.4.1 Eclipse IDE.. 19

1.4.2 C Compiler...20

1.4.3 Assembler...20

1.4.4 Linker... 21

1.4.5 Debugger..21

1.4.6 CodeWarrior Profiling and Analysis tools...21

1.5 CodeWarrior IDE..22

1.5.1 Project files.. 23

1.5.2 Code editing... 23

1.5.3 Compiling...24

1.5.4 Linking... 24

1.5.5 Debugging..24

Chapter 2
Working with Projects

2.1 CodeWarrior Bareboard Project Wizard...27

2.1.1 Create a CodeWarrior Bareboard Project Page..28

2.1.2 Processor Page... 29

2.1.3 Debug Target Settings Page...30

2.1.4 Build Settings Page.. 32

2.1.5 SmartDSP OS Page..34

2.2 Creating projects... 35

2.2.1 Creating CodeWarrior Bareboard Project..35

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 3

Section number Title Page

2.3 Importing Projects...38

2.3.1 Importing SmartDSP OS Project... 38

2.4 Building projects...43

2.4.1 Manual-Build mode... 43

2.4.2 Auto-Build mode..45

2.5 Deleting Projects...46

Chapter 3
Build Properties

3.1 Changing Build Properties..47

3.2 Restoring Build Properties..48

3.3 Build Properties for StarCore..48

3.3.1 StarCore Environment..50

3.3.2 StarCore 3900 Disassembler..52

3.3.2.1 Disassembler Settings.. 53

3.3.3 StarCore 3900 C/C++ Linker Application .. 55

3.3.3.1 Linker Settings... 56

3.3.3.2 C/C++ Options .. 57

3.3.3.3 Libraries... 58

3.3.4 StarCore 3900 C/C++ Compiler ... 60

3.3.4.1 C/C++ Language.. 61

3.3.4.2 Control... 63

3.3.4.3 Hardware Configuration.. 64

3.3.4.4 Output Listing.. 65

3.3.4.5 Warnings.. 67

3.3.4.5.1 Compiler Front End Messages..68

3.3.4.5.2 Assembler... 71

3.3.4.5.3 Linker..72

3.3.4.6 Include Search Paths.. 73

3.3.4.7 Macros..75

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

4 Freescale Semiconductor, Inc.

Section number Title Page

3.3.4.8 Processor.. 77

3.3.4.9 Optimization...78

3.3.4.10 Configuration Files.. 81

3.3.4.11 Additional Arguments..82

3.3.5 StarCore 3900 Assembler ... 83

3.3.5.1 Code and Language Options.. 84

3.3.5.2 Include Search Paths.. 88

3.3.5.3 Preprocessor... 90

3.3.5.4 Listing File... 92

3.3.5.5 Listing Contents... 94

3.3.5.6 Listing Format..96

3.3.5.7 Additional Arguments..98

3.3.6 StarCore 3900 Preprocessor...99

3.3.6.1 Preprocessor Settings... 100

Chapter 4
Debug Configurations

4.1 Using Debug Configurations Dialog Box...103

4.1.1 Main... 104

4.1.1.1 Debug Session Type ..105

4.1.1.1.1 Attach ...107

4.1.1.1.2 Connect .. 108

4.1.1.1.3 Download ...108

4.1.1.1.4 Custom ... 109

4.1.1.2 C/C++ application.. 109

4.1.1.3 Build (if required) before launching ... 110

4.1.1.4 Target settings.. 111

4.1.2 Arguments..111

4.1.3 Debugger..112

4.1.3.1 Debug... 114

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 5

Section number Title Page

4.1.3.2 Download... 115

4.1.3.3 Other Executables.. 117

4.1.3.4 Symbolics...118

4.1.3.5 OS Awareness.. 120

4.1.4 Source...121

4.1.5 Environment...123

4.1.6 Common...124

4.1.7 Trace and Profile..125

4.2 Customizing Debug Configurations... 129

4.3 Reverting Debug Configuration Settings..131

Chapter 5
Working with Debugger

5.1 Debugging a CodeWarrior project..133

5.1.1 Debugging Project Using Simulator.. 134

5.1.2 Debugging Project using Target Hardware..137

5.2 Configuring Connections..140

5.2.1 CodeWarrior Connection Server..141

5.2.1.1 Running CCS... 142

5.2.1.2 Displaying CCS Console... 142

5.2.1.3 Configuring CCS..143

5.2.2 Connection types..144

5.2.2.1 CCSSIM2 ISS.. 144

5.2.2.2 CCSSIM2 PACC..146

5.2.2.3 Ethernet TAP..147

5.2.2.4 Gigabit TAP + Trace..149

5.2.2.5 Gigabit TAP... 151

5.2.2.6 USB TAP... 153

5.2.2.7 CodeWarrior TAP.. 154

5.2.2.7.1 CodeWarrior TAP - JTAG Connection through USB.. 156

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

6 Freescale Semiconductor, Inc.

Section number Title Page

5.2.2.7.2 CodeWarrior TAP - JTAG Connection through Ethernet.. 157

5.3 Editing remote system configuration..158

5.3.1 Initialization tab... 159

5.3.2 Memory tab.. 160

5.3.3 I/O Model Tab..161

5.3.4 Advanced tab..162

5.4 Working with Breakpoints..162

5.4.1 Setting Breakpoints.. 163

5.4.2 Setting Hardware Breakpoints... 165

5.4.2.1 Using IDE to Set Hardware Breakpoints... 166

5.4.2.2 Using Debugger Shell to Set Hardware Breakpoints...166

5.4.3 Removing Breakpoints...167

5.4.3.1 Remove Breakpoints using Marker Bar...167

5.4.3.2 Remove Breakpoints using Breakpoints View.. 167

5.4.4 Removing Hardware Breakpoints..168

5.4.4.1 Remove Hardware Breakpoints using the IDE.. 168

5.4.4.2 Remove Hardware Breakpoints using Debugger Shell..169

5.5 Working with Watchpoints...169

5.5.1 Setting Watchpoints... 170

5.5.2 Removing Watchpoints..172

5.6 Working with Registers.. 172

5.6.1 Viewing Register Details... 174

5.6.1.1 Bit Fields.. 175

5.6.1.2 Changing Bit Fields... 176

5.6.1.3 Actions... 177

5.6.1.4 Description... 178

5.6.2 Registers View Context Menu... 178

5.6.3 Working with Register Groups.. 179

5.6.3.1 Adding a Register Group... 180

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 7

Section number Title Page

5.6.3.2 Editing a Register Group..181

5.6.3.3 Removing a Register Group...181

5.7 Viewing memory.. 182

5.7.1 Adding Memory Monitor...182

5.7.2 Adding Memory Rendering... 185

5.7.3 Removing Memory Rendering...186

5.7.4 Resetting to Base Address..186

5.7.5 Go to Address...187

5.8 Viewing Cache..187

5.8.1 Cache View.. 188

5.8.2 Cache View Toolbar Menu.. 190

5.9 Changing Program Counter Value..191

5.10 Hard resetting..192

5.11 Per Core Reset ..192

5.12 Setting Stack Depth...193

5.13 Import a CodeWarrior Executable file Wizard...194

5.13.1 Import a CodeWarrior Executable file Page.. 195

5.13.2 Import C/C++/Assembler Executable Files Page.. 196

5.13.3 Processor Page... 197

5.13.4 Debug Target Settings Page...197

5.14 Debugging Externally Built Executable Files...199

5.14.1 Import an Executable File.. 199

5.14.2 Edit the Launch Configuration...201

5.14.3 Specify the Source Lookup Path..201

5.14.3.1 Automatic Path Mapping... 202

5.14.3.2 Manual Path Mapping ...204

5.14.4 Debug Executable File... 209

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

8 Freescale Semiconductor, Inc.

Section number Title Page

Chapter 6
Target Initialization File

Chapter 7
Memory Configuration File

Chapter 8
CodeWarrior Command-Line Debugging

8.1 Working with Debugger Shell ... 215

8.2 Tcl Support..218

8.2.1 Resolution of Conflicting Command Names... 218

8.2.2 Execution of Script Files..218

8.2.3 Tcl Startup Script... 219

8.3 Command-Line Debugging Tasks ... 220

8.4 Debugger Shell Command List ..220

8.4.1 about ..221

8.4.2 alias.. 222

8.4.3 bp..222

8.4.4 cd ...223

8.4.5 change ... 224

8.4.6 cls .. 226

8.4.7 config... 226

8.4.8 copy ...228

8.4.9 debug ...229

8.4.10 dir .. 229

8.4.11 disassemble ... 230

8.4.12 display ... 231

8.4.13 evaluate.. 233

8.4.14 finish...234

8.4.15 fl::blankcheck...234

8.4.16 fl::checksum... 234

8.4.17 fl::device...235

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 9

Section number Title Page

8.4.18 fl::diagnose...235

8.4.19 fl::disconnect..235

8.4.20 fl::dump..235

8.4.21 fl::erase...236

8.4.22 fl::image... 236

8.4.23 fl::protect..236

8.4.24 fl::secure...237

8.4.25 fl::target..237

8.4.26 fl::verify... 237

8.4.27 fl::write...238

8.4.28 funcs... 238

8.4.29 getIDEpref..238

8.4.30 getpid..239

8.4.31 go..239

8.4.32 help...240

8.4.33 history...240

8.4.34 jtagclock... 241

8.4.35 kill.. 241

8.4.36 launch... 242

8.4.37 loadsym.. 242

8.4.38 log...242

8.4.39 mc::config.. 243

8.4.40 mc::go...243

8.4.41 mc::group... 244

8.4.42 mc::kill... 244

8.4.43 mc::reset .. 244

8.4.44 mc::restart ..244

8.4.45 mc::stop..245

8.4.46 mc::type..245

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

10 Freescale Semiconductor, Inc.

Section number Title Page

8.4.47 mem..245

8.4.48 next...247

8.4.49 nexti..248

8.4.50 oneframe...248

8.4.51 protocol.. 248

8.4.52 pwd...248

8.4.53 quitIDE...249

8.4.54 radix... 249

8.4.55 redirect... 250

8.4.56 refresh...250

8.4.57 reg...250

8.4.58 reset.. 250

8.4.59 restart..251

8.4.60 restore...251

8.4.61 run.. 251

8.4.62 save...251

8.4.63 sc::setMaxAccessLength..252

8.4.64 sc::setReset...253

8.4.65 sc::getPhysicalAddress...253

8.4.66 setpc... 253

8.4.67 setpicloadaddr.. 253

8.4.68 stack... 254

8.4.69 status...254

8.4.70 step... 254

8.4.71 stepi.. 255

8.4.72 stop... 255

8.4.73 switchtarget.. 256

8.4.74 system...256

8.4.75 var...257

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 11

Section number Title Page

8.4.76 wait...258

8.4.77 watchpoint..259

Chapter 9
Multi-Core Debugging

9.1 Creating a JTAG Initialization File...261

9.2 Debugging Multi-Core Projects..262

9.2.1 Setting Launch Configurations.. 263

9.2.2 Debugging Multiple Cores...268

9.3 Multi-Core Debugging Commands...272

9.3.1 Multi-Core Commands in CodeWarrior IDE...272

9.3.2 Multi-Core Commands in Debugger Shell.. 274

Chapter 10
Working with Hardware Tools

10.1 Flash programmer... 277

10.1.1 Create a flash programmer target task... 278

10.1.2 Configure flash programmer target task.. 280

10.1.2.1 Add flash device...280

10.1.2.2 Specify target RAM settings.. 281

10.1.2.3 Add flash programmer actions...281

10.1.2.3.1 Erase/Blank check actions.. 282

10.1.2.3.2 Program/Verify actions...283

10.1.2.3.3 Checksum actions... 284

10.1.2.3.4 Diagnostics actions... 285

10.1.2.3.5 Dump Flash actions.. 286

10.1.2.3.6 Protect/Unprotect actions..286

10.1.2.3.7 Duplicate action.. 287

10.1.2.3.8 Remove action.. 287

10.1.3 Execute flash programmer target task..287

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

12 Freescale Semiconductor, Inc.

Section number Title Page

10.1.4 Flash Programmer Use Case.. 289

10.1.4.1 Using Flash Programmer to Write uboot Image to Target...289

10.2 Flash File to Target... 291

10.2.1 Erasing flash device... 292

10.2.2 Programming a file...293

10.3 Hardware diagnostics..294

10.3.1 Creating hardware diagnostics task..294

10.3.2 Working with Hardware Diagnostic Action editor.. 295

10.3.2.1 Action Type..296

10.3.2.2 Memory Access..297

10.3.2.3 Loop Speed.. 297

10.3.2.4 Memory Tests.. 298

10.3.2.4.1 Walking Ones..299

10.3.2.4.2 Address... 300

10.3.2.4.3 Bus noise...300

10.3.2.4.4 Address lines...300

10.3.2.4.5 Data lines.. 301

10.3.3 Memory test use cases..302

10.3.3.1 Use Case 1: Execute host-based Scope Loop on target... 302

10.3.3.2 Use Case 2: Execute target-based Memory Tests on target...302

10.4 Import/Export/Fill memory...303

10.4.1 Creating task for import/export/fill memory..303

10.4.2 Importing data into memory.. 305

10.4.3 Exporting memory to file...307

10.4.4 Fill memory..308

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 13

Section number Title Page

Chapter 11
Exception Configurator

Chapter 12
Memory Management Unit Configurator

12.1 Creating MMU Configuration.. 316

12.2 MMU Configuration File Editor Pages ..318

12.2.1 General .. 318

12.2.2 Translations ...320

12.2.3 new_file.mmu.. 323

12.3 MMU Editor Menu... 324

12.4 MMU Editor Toolbar..325

12.5 Saving MMU Configuration ..325

12.5.1 Saving MMU Configuration File Editor Settings.. 326

12.5.2 Saving Generated C Code.. 326

12.5.3 Saving Generated Assembly Code...327

12.5.4 Saving Generated TCL Script.. 327

12.6 MMU Configurator View .. 328

Chapter 13
Maple Memory Management Unit Configurator

13.1 Maple MMU Configurator View ... 331

13.2 Maple MMU Configurator View Pages ...332

13.2.1 General... 333

13.2.2 Translations..334

13.3 Maple MMU Configurator View Menu..336

Chapter 14
StarCore DSP Utilities

14.1 Archiver Utility ..337

14.2 Disassembler Utility..339

14.3 ELF File Dump Utility..344

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

14 Freescale Semiconductor, Inc.

Section number Title Page

14.4 ELF2XX Utility.. 348

14.4.1 L1 Defense Support .. 351

14.4.2 Extract core specific images from multicore image...352

14.5 Name Utility..353

14.6 Size Utility.. 355

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 15

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

16 Freescale Semiconductor, Inc.

Chapter 1
Introduction

This manual explains how to use CodeWarrior Development Studio tools to develop
software for Freescale StarCore 3900FP DSP processors.

This chapter provides an overview of this manual and introduces you to the CodeWarrior
development tools and development process.

The topics covered here are as follows:

• Release notes
• Contents of this manual
• Accompanying documentation
• CodeWarrior Development Studio tools
• CodeWarrior IDE

1.1 Release notes

Release notes include information about new features, last-minute changes, bug fixes,
incompatible elements, or other sections that may not be included in this manual.

You should read release notes before using the CodeWarrior IDE.

NOTE
The release notes for specific components of the CodeWarrior
IDE are located in the Release_Notes folder in the CodeWarrior
installation directory.

1.2 Contents of this manual

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 17

Each chapter of this manual describes a different area of software development.

The table below lists each chapter in the manual.

Table 1-1. Organization of this manual

Chapter Description

Introduction This chapter.

Working with Projects Describes the different types of projects you can create, provides an
overview of CodeWarrior project wizards.

Build Properties Explains build properties for StarCore projects.

Debug Configurations Describes the different types of launch configurations you can create,
provides an overview of the debugger.

Working with Debugger Explains various aspects of CodeWarrior debugging, such as debugging a
project, configuring connections, setting breakpoints and watchpoints,
working with registers, viewing memory, viewing cache, and debugging
externally built executable files.

Target Initialization File Explains what a target initialization file is, and lists an example of the
initialization file.

Memory Configuration File Discusses how to use a memory configuration file.

CodeWarrior Command-Line Debugging Explains the CodeWarrior command-line debugger interface, Debugger
Shell.

Multi-Core Debugging Explains multi-core debugging capabilities of CodeWarrior debugger.

Working with Hardware Tools Explains CodeWarrior hardware tools used for board bring-up, test, and
analysis.

Exception Configurator Explains the CodeWarrior Exception Configurator tool.

Memory Management Unit Configurator Explains the CodeWarrior Memory Management Unit (MMU) Configurator
tool.

Maple Memory Management Unit Configurator Explains the Maple Memory Management Unit (MMU) Configurator tool.

StarCore DSP Utilities Explains the utility programs included in CodeWarrior Development Studio
for StarCore 3900FP DSP Architectures.

1.3 Accompanying documentation

The Documentation page describes the documentation included in this version of
CodeWarrior Development Studio for StarCore 3900FP DSP Architectures.

You can access the Documentation page by:

• Using a shortcut link that the CodeWarrior installer creates by default on the
Desktop.

• Opening the START_HERE.html file available in the <CWInstallDir>\SC\Help folder.

Accompanying documentation

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

18 Freescale Semiconductor, Inc.

1.4 CodeWarrior Development Studio tools

This section talks about some important tools of CodeWarrior Development Studio.

Programming for StarCore 3900FP DSP processors is much like programming for any
other CodeWarrior platform target. If you have not used CodeWarrior tools before, start
by studying the Eclipse IDE, which is used to host the tools.

Note that CodeWarrior Development Studio for StarCore 3900FP DSP Architectures uses
the Eclipse IDE, whose user interface is substantially different from the "classic"
CodeWarrior IDE. For more details on these interface differences, see CodeWarrior
Development Studio Common Features Guide available in the <CWInstallDir>\SC\Help\PDF\
folder.

The following are some important tools of CodeWarrior Development Studio:

• Eclipse IDE
• C Compiler
• Assembler
• Linker
• Debugger
• CodeWarrior Profiling and Analysis tools

1.4.1 Eclipse IDE

The Eclipse Integrated Development Environment (IDE) is an open-source development
environment that lets you develop and debug your software. It controls the project
manager, the source code editor, the class browser, the compilers and linkers, and the
debugger. The Eclipse workspace organizes all files related to your project. This allows
you to see your project at a glance and navigate easily through the source code files.

The Eclipse IDE has an extensible architecture that uses plug-in compilers and linkers to
target various operating systems and microprocessors. The IDE can be hosted on
Microsoft Windows, Linux, and other platforms. There are many development tools
available for the IDE, including C, C++, and Java compilers for desktop and embedded
processors

For more information about the Eclipse IDE, read the Eclipse documentation at:

http://www.eclipse.org/documentation/

Chapter 1 Introduction

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 19

http://www.eclipse.org/documentation/

1.4.2 C Compiler

The StarCore C Compiler:

• Conforms to the American National Standards Institute (ANSI) C standards.
• Conforms to version 1 of the StarCore Application Binary Interface (ABI) standards.
• Supports a set of Digital Signal Processor (DSP) extensions.
• Supports International Telecommunications Union (ITU)/European

Telecommunications Standards Institute (ETSI) primitives for saturating arithmetic.
Additional parameters are available for non-saturating arithmetic and double-
precision arithmetic.

• Allows standard C constructs for representing special addressing modes.
• Supports a wide range of runtime libraries and runtime environments.
• Optimizes for size, speed, or a combination of both, depending on options that you

select.

The compiler can link all application modules before optimizing. By examining the entire
linked application before optimizing, the compiler produces highly optimized code. The
compiler performs many optimizations, such as:

• software pipelining
• instruction paralleling and scheduling
• data and address register allocation
• aggressive loop transformations, including automatic unrolling

For more information, see the StarCore C/C++ Compiler User Guide.

1.4.3 Assembler

The CodeWarrior StarCore assembler is a standalone assembler that translates assembly-
language source code to machine-language object files or executable programs. Either
you can provide the assembly-language source code to the assembler, or the assembler
can take the assembly-language source code generated by the compiler.

For each assembly-language module in a build target, the StarCore assembler can
generate a file that lists the generated code side-by-side with the assembly-language
source code.

For more information, see the StarCore Assembler User Guide.

CodeWarrior Development Studio tools

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

20 Freescale Semiconductor, Inc.

1.4.4 Linker

CodeWarrior Eclipse IDE for Power Architecture processors supports two types of
linkers:

• CodeWarrior linker
• GCC linker

The StarCore Linker combines object files into a single executable file. You specify the
link mappings of your program in a Linker Command File (LCF).

For more information, see the StarCore Linker (SC3000) User Guide.

1.4.5 Debugger

The CodeWarrior StarCore debugger controls the execution of your program and allows
you to see what is happening internally as the program runs. You can use the debugger to
find problems in your program.

The debugger can execute your program one statement at a time and suspend execution
when control reaches a specified point. When the debugger stops a program, you can
view the chain of function calls, examine and change the values of variables, and inspect
the contents of registers.

The debugger allows you to debug your CodeWarrior project using either a simulator or
target hardware.

The debugger communicates with the board through a monitor program (such as
CodeWarrior TRK) or through a hardware probe (such as CodeWarrior USB TAP).

1.4.6 CodeWarrior Profiling and Analysis tools

CodeWarrior Profiling and Analysis tools provide visibility into an application as it runs
on the simulator and hardware. This visibility can help you understand how your
application runs, as well as identify operational problems. The tools also provide user
friendly data viewing features:

Chapter 1 Introduction

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 21

• Simultaneously step through trace data and the corresponding source and assembly
code of that trace data

• Export source line information of the performance data generated by the simulator
into an Excel file

• Export the trace and function data generated by simulator and target hardware into an
Excel file

• Apply multi-level filters to isolate data
• Apply multi-level searches to find specific data
• Display results in an intuitive, user friendly manner in the trace, critical code, and

performance views
• Show or hide columns and also reorder the columns
• Copy and paste a cell or a line of the trace, alu-agu and performance data generated

by simulator and target hardware
• Control trace collection by using start and stop tracepoints to reduce the amount of

unwanted trace events in the trace buffer making the trace data easier to read
• View the value of the DPU counters in form of graphs (pie charts and bar charts)

while the application is in debug mode
• Display real time cycle count for simulated targets to allow quick monitoring of

evolution of application in time

For more information, see CodeWarrior Development Studio for StarCore 3900FP DSP
Architectures Tracing and Analysis Tools User Guide available in the <CWInstallDir>\SC
\Help\PDF\ folder.

1.5 CodeWarrior IDE

This section explains the CodeWarrior IDE and tells how to perform basic IDE
operations.

While working with the CodeWarrior IDE, you will proceed through the development
stages familiar to all programmers, such as writing code, compiling and linking, and
debugging. See CodeWarrior Development Studio Common Features Guide for:

• Complete information on tasks, such as editing, compiling, and linking
• Basic information on debugging

The difference between the CodeWarrior development environment and traditional
command-line environments is how the software, in this case the CodeWarrior IDE, helps
you manage your work more effectively.

CodeWarrior IDE

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

22 Freescale Semiconductor, Inc.

The following sections explain the CodeWarrior IDE and describe how to perform basic
CodeWarrior IDE operations:

• Project files
• Code editing
• Compiling
• Linking
• Debugging

1.5.1 Project files

A CodeWarrior project is analogous to a set of make files, because a project can have
multiple settings that are applied when building the program. For example, you can have
one project that has both a debug version and a release version of your program. You can
build one or the other, or both as you wish. The different settings used to launch your
program within a single project are called launch configurations.

The CodeWarrior IDE uses the CodeWarrior Projects view to list all the files in a
project. A project includes files, such as source code files and libraries. You can add or
remove files easily. You can assign files to one or more different build configurations
within the project, so files common to multiple build configurations can be managed
simply.

The CodeWarrior IDE itself manages all the interdependencies between files and tracks
which files have changed since the last build.

The CodeWarrior IDE also stores the settings for the compiler and linker options for each
build configuration. You can modify these settings using the IDE, or with the #pragma
statements in your code.

1.5.2 Code editing

CodeWarrior IDE has an integral text editor designed for programmers. It handles text
files in ASCII, Microsoft® Windows® and UNIX® formats.

To edit a file in a project, double-click the file name in the CodeWarrior Projects view.
CodeWarrior IDE opens the file in the editor associated with the file type.

Chapter 1 Introduction

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 23

The editor view has excellent navigational features that allow you to switch between
related files, locate any particular function, mark any location within a file, or go to a
specific line of code.

1.5.3 Compiling

To compile a source code file, it must be among the files that are part of the current
launch configuration. If the file is in the configuration, select it in the CodeWarrior
Projects view and select Project > Build Project from the CodeWarrior IDE menu bar.

To automatically compile all the files in the current launch configuration after you
modify them, select Project > Build Automatically from the CodeWarrior IDE menu
bar.

1.5.4 Linking

Select Project > Build Project from the CodeWarrior IDE menu bar to link object code
into a final binary file. The Build Project command makes the active project up-to-date
and links the resulting object code into a final output file.

You can control the linker through the IDE. There is no need to specify a list of object
files. The workspace tracks all the object files automatically.

You can also modify the build configuration settings to specify the name of the final
output file.

1.5.5 Debugging

Select Run > Debug from the CodeWarrior IDE menu bar to debug your project. This
command downloads the current project's executable to the target board and starts a
debug session.

NOTE
The CodeWarrior IDE uses the settings in the launch
configuration to generate debugging information and initiate
communications with the target board.

CodeWarrior IDE

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

24 Freescale Semiconductor, Inc.

You can now use the debugger to step through the program code, view and change the
value of variables, set breakpoints, and much more. For more information, see
CodeWarrior Development Studio Common Features Guide and the Working with
Debugger chapter of this manual.

Chapter 1 Introduction

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 25

CodeWarrior IDE

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

26 Freescale Semiconductor, Inc.

Chapter 2
Working with Projects

This chapter explains how to create and build projects for StarCore 3900FP DSP
processors using the CodeWarrior tools.

This chapter explains:

• CodeWarrior Bareboard Project Wizard
• Creating projects
• Building projects
• Importing Projects
• Deleting Projects

2.1 CodeWarrior Bareboard Project Wizard

The term bareboard refers to hardware systems that do not need an operating system to
operate.

The CodeWarrior Bareboard Project Wizard presents a series of pages that prompt you
for the features and settings to be used when making your program.

For example, the devices options lets you select the derivative or board you would like to
use. This wizard also helps you specify other settings, such as whether the program
executes on a simulator rather than actual hardware, and the characteristics of the
connection that communicates with a hardware target.

This section describes the various pages that the CodeWarrior Bareboard Project
Wizard displays as it assists you in creating a bareboard project.

NOTE
The pages that the wizard presents can differ, based upon the
choice of project type or execution target.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 27

The pages of the CodeWarrior Bareboard Project Wizard are:

• Create a CodeWarrior Bareboard Project Page
• Processor Page
• Debug Target Settings Page
• Build Settings Page
• SmartDSP OS Page

2.1.1 Create a CodeWarrior Bareboard Project Page

Use this page to specify the project name and the directory where the project files are
located.

Figure 2-1. Create a CodeWarrior Bareboard Project page

The table below describes the various options available on the Create a CodeWarrior
Bareboard Project page.

Table 2-1. Create a CodeWarrior Bareboard Project page settings

Option Description

Project name Enter the name for the project in this text box.

Use default location Select to choose the directory to store the files required to build the program. Use the
Location option to select the desired directory.

Location Specifies the directory that contains the project files. Use Browse to navigate to the
desired directory. This option is only available when Use default location is cleared.

CodeWarrior Bareboard Project Wizard

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

28 Freescale Semiconductor, Inc.

2.1.2 Processor Page

This page displays the target devices supported by the current installation.

Use this page to specify the type of processor and the output for the new project.

Figure 2-2. CodeWarrior Bareboard Project Wizard - Processor Page

NOTE
CodeWarrior for StarCore v10.6.4 and earlier versions support
rev1 targets. Support for rev1 targets is discontinued starting
SC10.6.5. Therefore, all rev1 projects need to be migrated to
rev2, using 10.6.4 or an earlier version of CodeWarrior

Chapter 2 Working with Projects

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 29

software for StarCore. For information on how to migrate
projects from rev1 to rev2, see product release notes.

The table below describes the various options available on the Processor page.

NOTE
The pages of the wizard change depending on the selected
derivative or board.

Table 2-2. Processor Page Settings

Option Description

Processor Expand the processor family tree and select a supported target. The toolchain uses this
choice to generate code that makes use of processor-specific features, such as
multiple cores. The available options are as follows:
Qonverge family

• B4060: Select to generate projects for multi-core targets: B4060 QDS.
• B4420: Select to generate projects for multi-core targets: B4420 QDS and B4420

ISS.
• B4460: Select to generate projects for multi-core targets: B4460 QDS.
• B4860: Select to generate projects for multi-core targets: B4860 QDS, B4860

ISS, and B4860 Palladium.
• G4860: Select to generate projects for multi-core targets: G4860 QDS.

SC3900 family
• SC3900fp: Select to generate projects for the single-core targets: SC3900 ISS

and SC3900 PACC

Project Output Select any one of the following supported project output:
• Application: Select to create a StarCore application, for the specified target

device, that runs on a board or simulator.
• Component Library: Select to create a component library project, where the

entry points and visible symbols are defined in an application file.
• Self-Contained Library: Select to create a self-contained library, where all

unresolved references for symbols will be solved by using first the library's own
symbol definitions and then symbol definitions from the other object files or
libraries.

• Simple Library: Select to create an archive of object files can be used to build
an application. The archive is created using the sc100-ar.exe archiver utility.

2.1.3 Debug Target Settings Page

Use this page to select debugger connection type, board type, launch configuration type,
and connection type for your project.

This page also lets you configure connection settings for your project.

NOTE
This wizard page will prompt you to either create a new remote
system configuration or select an existing one. A remote system

CodeWarrior Bareboard Project Wizard

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

30 Freescale Semiconductor, Inc.

is a system configuration that defines connection, initialization,
and target parameters. The remote system explorer provides
data models and frameworks to configure and manage remote
systems, their connections, and their services. For more
information, see CodeWarrior Development Studio Common
Features Guide.

Figure 2-3. CodeWarrior Bareboard Project Wizard - Debug Target Settings Page

The table below describes the various options available on the Debug Target Settings
page.

Table 2-3. Debug Target Settings page settings

Option Description

Debugger Connection Types Specifies the available target types:
• Hardware - Select to execute the program on the target hardware available.
• Simulator - Select to execute the program on a software simulator.
• Emulator - Select to execute the program on a hardware emulator.

Board Specifies the hardware supported by the selected processor.

Launch Specifies the launch configurations and corresponding connection, supported by the
selected processor.

Connection Type Specifies the interface to communicate with the hardware.
• CodeWarrior TAP (over USB) - Select to use the CodeWarrior USB TAP

interface to communicate with the hardware device.
• CodeWarrior TAP (over Ethernet) - Select to use the CodeWarrior Ethernet

TAP interface to communicate with the hardware device.

Table continues on the next page...

Chapter 2 Working with Projects

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 31

Table 2-3. Debug Target Settings page settings (continued)

Option Description

• USB TAP - Select to use the USB interface to communicate with the hardware
device.

• Ethernet TAP - Select to use the Ethernet interface to communicate with the
target hardware.

For more details on CodeWarrior TAP, see CodeWarrior TAP User Guide available in
the <CWInstallDir>\SC\Help\PDF\ folder, where <CWInstallDir> is the installation
directory of your Codewarrior software.

• Gigabit TAP - Corresponds to a Gigabit TAP that includes an Aurora daughter
card, which allows you to collect Nexus trace in a real-time non-intrusive fashion
from the high speed serial trace port (the Aurora interface).

• Gigabit TAP + Trace (JTAG over JTAG cable) - Select to use the Gigabit TAP
and Trace probe to send JTAG commands over the JTAG cable.

• Gigabit TAP + Trace (JTAG over Aurora cable) - Select to use the Gigabit TAP
and Trace probe to send JTAG commands over the Aurora cable.

For more details on Gigabit TAP, see Gigabit TAP Users Guide available in the
<CWInstallDir>\SC\Help\PDF\ folder, where <CWInstallDir> is the installation
directory of your Codewarrior software.

TAP address Enter the IP address of the TAP device here. This option is available only if
CodeWarrior Ethernet TAP, Ethernet TAP, or Gigabit TAP is selected as the
connection type.

2.1.4 Build Settings Page

Use this page to select a programming language, toolchain, and the output project type
for your project.

CodeWarrior Bareboard Project Wizard

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

32 Freescale Semiconductor, Inc.

Figure 2-4. CodeWarrior Bareboard Project Wizard - Build Settings Page

The table below describes the various options available on the Build Settings page.

Table 2-4. Build Settings Page

Option Description

Language Specifies the programming language used by the new project. The current installation
supports the following languages:

• C - Select to generate ANSI C-compliant startup code, and initializes global
variables.

• C++ - Select to generate ANSI C++ startup code, and performs global class
object initialization.

• ASM - Select to generate Assembly startup code.

Toolchain Specifies the toolchains supported by the current installation. Selected toolchain sets
up the default compiler, linker, and libraries used to build the new project. Each
toolchain generates code targeted for a specific platform.

Floating Point Select floating point support type for your target:
• Hardware - Allows the compiler to perform single precision floating point

arithmetic, partially compliant with the IEEE 754.
• Software - Allows the compiler to implement both single and double precision

floating point arithmetic, partially compliant with IEEE 754.

Table continues on the next page...

Chapter 2 Working with Projects

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 33

Table 2-4. Build Settings Page (continued)

Option Description

Both hardware floating point and software floating point are supported on B4420,
B4860, SC3900fp, and their derivatives. For more information on hardware and
software floating point support, see StarCore C/C++ Compiler User Guide.

Fused multiply and accumulate Enables fused multiply and add generation. Fused multiply and add are generated only
if hardware floating point support is enabled on the SC3900fp compiler.

2.1.5 SmartDSP OS Page

Use this page to specify the SmartDSP OS support for your project.

Figure 2-5. CodeWarrior Bareboard Project Wizard - SmartDSP OS Page

Table 2-5. SmartDSP OS Page Settings

Option Description

SmartDSP OS Specifies the SmartDSP operating system support for your
project.

• Yes-Select to create a project that supports SmartDSP
OS.

• No-Select to create a project without SmartDSP OS
support.

CodeWarrior Bareboard Project Wizard

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

34 Freescale Semiconductor, Inc.

2.2 Creating projects

This section explains you how to use the CodeWarrior Bareboard Project Wizard to
quickly create new projects with default settings (build and launch configurations).

This section explains:

• Creating CodeWarrior Bareboard Project

2.2.1 Creating CodeWarrior Bareboard Project

You can create a CodeWarrior bareboard application project using the CodeWarrior
Bareboard Project Wizard.

To create a CodeWarrior bareboard application project, perform these steps:

NOTE
For details about the options in the CodeWarrior Bareboard
Project wizard pages, see the topic CodeWarrior Bareboard
Project Wizard.

1. Select Start > All Programs > Freescale CodeWarrior > CW for StarCore
3900FP vnumber > CodeWarrior IDE, where number is the version number of
your product.

The Workspace Launcher dialog box appears, prompting you to select a workspace
to use.

NOTE
Click Browse to change the default location for workspace
folder. You can also select the Use this as the default and
do not ask again checkbox to set default or selected path as
the default location for storing all your projects.

2. Click OK.

The default workspace is accepted. The CodeWarrior IDE launches and the
Welcome page appears.

Chapter 2 Working with Projects

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 35

NOTE
The Welcome page appears only if the CodeWarrior IDE
or the selected workspace is started for the first time.
Otherwise, the Workbench window appears.

3. Click Go to Workbench from the Welcome page.

The workbench window appears.

4. Select File > New > CodeWarrior Bareboard Project Wizard, from the
CodeWarrior IDE menu bar.

The CodeWarrior Bareboard Project Wizard launches and the Create a
CodeWarrior Bareboard Project page appears.

5. Specify a name for the new project in the Project name text box.

For example, enter the project name as Hello_World.

6. If you do not want to create your project in the default workspace:
a. Clear the Use default location checkbox.
b. Click Browse and select the desired location from the Browse For Folder

dialog box.
c. In the Location text box, append the location with the name of the directory in

which you want to create your project. In the Location text box, append the
location with the name of the directory in which you want to create your project.

NOTE
An existing directory cannot be specified for the
project location. If created, the CodeWarrior will
prompt an error message.

7. Click Next.

The Processor page appears.

8. Select the target processor for the new project, from the Processor list.
9. Select Application from the Project Output group, to create an application

with .elf extension, that includes information required to debug the project.
10. Click Next.

The Debug Target Settings page appears.

11. Select a supported connection type (hardware, simulator, or emulator), from the
Debugger Connection Types group. Your selection determines the launch
configurations that you can include in your project.

12. Select the board you are targeting, from the Board drop-down list.

Creating projects

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

36 Freescale Semiconductor, Inc.

13. Select the launch configurations that you want to include in your project and the
corresponding connection, from the Launch group.

NOTE
For more information on remote systems, see CodeWarrior
Development Studio Common Features Guide.

14. Select the interface to communicate with the hardware, from the Connection Type
drop-down list.

15. Enter the IP address of the TAP device in the TAP address text box. This option is
available only if Ethernet TAP,CodeWarrior Ethernet TAP, or Gigabit TAP is
selected as the connection type.

16. Click Next.

The Build Settings page appears.

17. Select the programming language, you want to use, from the Language group.

The language you select determines the libraries that are linked with your program
and the contents of the main source file that the wizard generates.

NOTE
If you select C++, you can still add C source files to the
project and vice versa.

18. Select a toolchain from the Toolchain group.

Selected toolchain sets up the default compiler, linker, and libraries used to build the
new project. Each toolchain generates code targeted for a specific platform.

NOTE
If the toolchain you want to use is disabled, you have to
install the corresponding Service Pack for adding the build
tools support.

19. Select an option from the Floating Point drop-down list, to prompt the compiler to
handle the floating-point operations by generating instructions for the selected
floating-point unit.

20. Check the Fused multiple and accumulate checkbox to enable fused multiply and add
generation.

NOTE
Fused multiply and add are generated only if hardware
floating point support is enabled on the SC3900fp
compiler.

Chapter 2 Working with Projects

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 37

NOTE
For more information on hardware and software floating
point support and fused multiply and accumulate, see the
StarCore C/C++ Compiler User Guide.

21. Click Next.

The SmartDSP OS page appears.

22. Select Yes to create a project that supports SmartDSP OS.

NOTE
SmartDSP OS support is currently available for the
Qonverge targets only.

23. Click Finish.

The wizard creates an application project according to your specifications. You can
access the project from the CodeWarrior Projects view on the Workbench.

The new project is ready for use. You can now customize the project by adding your own
source code files, changing debugger settings and adding libraries.

2.3 Importing Projects

This section explains how to import existing projects, such as SmartDSP in StarCore.

• Importing SmartDSP OS Project

2.3.1 Importing SmartDSP OS Project

CodeWarrior Development Studio for StarCore 3900FP DSPs includes SmartDSP OS, a
pre-emptable, real-time, priority-based operating system, specially designed for high-
performance DSPs operating with tight memory requirements.

NOTE
SmartDSP OS support must be installed as part of the
CodeWarrior installation to be able to import and modify a
SmartDSP OS project.

To import an existing sample SmartDSP OS project and customize it, follow these steps:

Importing Projects

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

38 Freescale Semiconductor, Inc.

1. Select Start > Programs > Freescale CodeWarrior > CW for StarCore 3900FP
vnumber > CodeWarrior IDE, where number is the version number of your
product.

The Workspace Launcher dialog box appears.

2. Click OK.

The default workspace is accepted. The CodeWarrior IDE launches and the
Welcome page appears.

NOTE
The Welcome page appears only if the CodeWarrior IDE
or the selected Workspace is opened first time. Otherwise,
the Workbench window appears.

3. Click Go to Workbench, on the Welcome page.

The Workbench window appears.

4. Select File > Import, from the CodeWarrior IDE menu bar.

The Import wizard appears.

5. Expand the General tree item.
6. Select Existing Projects into Workspace as shown in Figure 2-6.

Chapter 2 Working with Projects

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 39

Figure 2-6. Import Wizard - Select Existing Projects into Workspace
7. Click Next.

The Import Projects page appears.

8. Select the Select root directory option.

The wizard enables the corresponding Browse button.

NOTE
The Projects text box displays all the projects available
under the selected directory.

9. Click Browse.

The Browse For Folder dialog box appears.

10. Use the dialog box to navigate to the SmartDSP OS demo project you want to
modify. For example, b4860\basic_demo\project.

Importing Projects

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

40 Freescale Semiconductor, Inc.

NOTE
The SmartDSP OS demo projects are available in the
<CWInstallDir>\SC\StarCore_Support\SmartDSP\demos\starcore

\<platform> folder, where <CWInstallDir> is the path to your
CodeWarrior installation.

11. Click OK.

The Browse For Folder dialog box closes. The path to the demo project appears in
the Select root directory text box (Figure 2-7).

Figure 2-7. Import Wizard - Import Existing Projects
12. Ensure that the project you want to import is selected.
13. Click Finish.

The Import wizard closes and the C/C++ perspective appears.

The CodeWarrior Projects view shows the selected SmartDSP OS project.

NOTE
To make your own project, rename the demo project
directory and copy it to the <CWInstallDir>\SC

Chapter 2 Working with Projects

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 41

\StarCore_Support\SmartDSP\demos\starcore\<platform> folder.
The projects in the renamed directory work because all
project access paths are relative.

14. In the CodeWarrior Projects view, select the project to configure the build
properties.

15. Select Project >Properties.

The Properties for <project> dialog box appears. The left side of this dialog box
has a Properties list. This list shows the properties that apply to the selected project.

16. Expand the C/C++ Build property.
17. Select Settings.
18. Use the Configuration drop-down list to select the launch configuration for which

you want to modify the build properties.
19. Click the Tool Settings tab.

The corresponding page appears.

20. From the list of tools on the Tool Settings page, expand the StarCore 3900 C/C++
Linker Application tree item.

21. The library build configuration options panel appears.

If you want to change these options, see the chapter Libraries.

Importing Projects

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

42 Freescale Semiconductor, Inc.

Figure 2-8. CodeWarrior Projects-Demo SmartDSP OS Project
22. Click Apply.
23. Click OK.

The Properties for <project> dialog box closes.

You just finished importing a sample SmartDSP OS project.

2.4 Building projects

CodeWarrior IDE supports two modes of building projects, manual-build mode and auto-
build mode.

2.4.1 Manual-Build mode

Chapter 2 Working with Projects

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 43

In large workspaces, building the entire workspace can take a long time if users make
changes with a significant impact on dependent projects. Often there are only a few
projects that really matter to a user at a given time.

To build only the selected projects, and any prerequisite projects that need to be built to
correctly build the selected projects, select Project > Build Project from the
CodeWarrior IDE menu bar.

Figure 2-9. Project Menu- Build Project

Alternatively, right-click on the selected project in the CodeWarrior Projects view and
select Build Project from the context menu.

Figure 2-10. Context Menu-Build Project

Building projects

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

44 Freescale Semiconductor, Inc.

To build all projects available in the CodeWarrior Projects view, select Project >
Build All.

Figure 2-11. Project Menu-Build All

2.4.2 Auto-Build mode

CodeWarrior IDE takes care of compiling source files automatically. When auto-build is
enabled, project build occurs automatically in the background every time you change
files in the workspace (for example saving an editor).

To automatically build all the projects in a workspace, select Project > Build
Automatically from the CodeWarrior IDE menu bar.

Figure 2-12. Project Menu-Build Automatically

Chapter 2 Working with Projects

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 45

If auto-build is taking too long and is interfering with ongoing development, it can be
turned off. Select Project > Build Automatically from the CodeWarrior IDE menu bar
to disable auto-build mode.

NOTE
It is advised that you do not use the Build Automatically
option for C/C++ development. Using this option will result in
building the entire project whenever you save a change to the
makefile or source files. This can take a significant amount of
time for very large projects.

2.5 Deleting Projects

Using the options available in CodeWarrior IDE, you can delete a project and optionally
the resources linked to the project.

To delete a project, follow these steps:

1. Select the project you want to delete in the CodeWarrior Projects view.
2. Select Edit > Delete.

The Delete Resources dialog box appears.

NOTE
Alternatively, you can also select Delete from the context
menu that appears when you right-click the project.

3. Select the Delete project contents on disk (cannot be undone) option to delete the
project contents permanently.

NOTE
You will not be able to restore your project using Undo, if
you select the Delete project contents on disk (cannot be
undone) option.

4. Click OK.

The selected project is deleted and relevant details of the project are removed from the
CodeWarrior Projects view.

Deleting Projects

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

46 Freescale Semiconductor, Inc.

Chapter 3
Build Properties

This chapter explains build properties for StarCore projects. A project can contain
multiple build and launch configurations.

A build configuration is a named collection of build tools options. The set of options in a
given build configuration causes the build tools to generate a final binary with specific
characteristics. For example, the binary produced by a Debug build configuration might
contain symbolic debugging information and have no optimizations, while the binary
product by a Release build configuration might contain no symbolics and be highly
optimized.

NOTE
The settings of the CodeWarrior IDE's build and launch
configuration correspond to an object called a target made by
the classic CodeWarrior IDE.

This chapter explains:

• Changing Build Properties
• Restoring Build Properties
• Build Properties for StarCore

3.1 Changing Build Properties

You can modify the build properties of a project to better suit your needs.

Follow these steps to change build properties:

1. Start the CodeWarrior IDE.
2. In the CodeWarrior Projects view, select the project for which you want to modify

the build properties.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 47

3. Select Project > Properties.

The Properties for <project> dialog box appears. The left side of this window has a
Properties list. This list shows the build properties that apply to the current project.

4. Expand the C/C++ Build property node.
5. Select Settings.
6. Use the Configuration drop-down list to specify the launch configuration for which

you want to modify the build properties.
7. Click the Tool Settings tab. The corresponding page appears.
8. From the list of tools on the Tool Settings page, select the tool for which you want to

modify properties.
9. Change the settings as per the requirements.

10. Click Apply.

The CodeWarrior IDE saves your new settings.

You can select other tool pages and modify their settings. When you finish, click OK to
save your changes and close the Properties for <project> dialog box.

3.2 Restoring Build Properties

You can modify a build configuration of a project and restore it back in order to have a
factory-default configuration, or to revert to a last-known working build configuration.

To undo your modifications to build properties, click the Restore Defaults button at the
bottom of the Properties for<project> dialog box.

This changes the values of the options to the absolute default of the toolchain. By default,
the toolchain options are blank.

3.3 Build Properties for StarCore

The Properties for <project> dialog box shows the corresponding build properties for a
StarCore project.

Restoring Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

48 Freescale Semiconductor, Inc.

Figure 3-1. Properties for <Project> Dialog Box

Table 3-1 lists the build tool settings specific to developing software for StarCore.

Table 3-1. Build Tool Settings for StarCore

Build Tool Build Properties Panels

StarCore Environment

StarCore 3900 Disassembler Disassembler Settings

StarCore 3900 C/C++ Linker Application Linker Settings

C/C++ Options

Libraries

StarCore 3900 C/C++ Compiler C/C++ Language

Control

Hardware Configuration

Output Listing

Warnings

Compiler Front End Messages

Assembler

Table continues on the next page...

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 49

Table 3-1. Build Tool Settings for StarCore (continued)

Build Tool Build Properties Panels

Linker

Include Search Paths

Macros

Processor

Optimization

Configuration Files

Additional Arguments

StarCore 3900 Assembler Code and Language Options

Include Search Paths

Preprocessor

Listing File

Listing Contents

Listing Format

Additional Arguments

StarCore 3900 Preprocessor Preprocessor Settings

The CodeWarrior build tools listed in Table 3-1 share some properties panels, such as the
Include Search Paths. The properties that you specify in these panels apply to the
selected build tool on the Tool Settings page of the Properties for <project> dialog box.

3.3.1 StarCore Environment

Use this panel to specify the StarCore architecture for the build and the memory model
that the architecture uses.

The build tools (compiler, linker, and assembler) use the properties that you specify on
this page.

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

50 Freescale Semiconductor, Inc.

Figure 3-2. Tool Settings - StarCore Environment

Table 3-2 describes the various options available on the StarCore Environment panel.

Table 3-2. Tool Settings - StarCore Environment Options

Option Description

Architecture Specify the StarCore architecture for which you build your
project.

Memory Model Specify the memory model for the build tools:
• Small Memory Model-absolute addresses fit in 64KB
• Big Memory Model-absolute addresses do not fit in

64KB, but fit in 1MB
• Big Memory Model w/ Far RT Lib Calls-Absolute

addresses do not fit in 64KB, but fit in 1MB. The build
tools make runtime-library calls in the same manner
they do for the huge memory model.

• Huge Memory Model-absolute addresses do not fit in
1MB

Table continues on the next page...

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 51

Table 3-2. Tool Settings - StarCore Environment Options (continued)

Option Description

Force C++ Compilation Checked -Enforce C++ compilation for the files that do not
have the .cpp extension. This setting is equivalent to
specifying the -force c++ command-line option. Cleared -
C++ compilation is not enforced for the files that do not have
the .cpp extension.

Floating Point Specify floating point type for the project, Hardware or
Software. Both hardware floating point and software floating
point are supported on B4420, B4860, SC3900fp, and their
derivatives.

3.3.2 StarCore 3900 Disassembler

Use this panel to specify the command, options, and expert settings for the StarCore 3900
disassembler.

Figure 3-3. Tool Settings - StarCore 3900 Disassembler

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

52 Freescale Semiconductor, Inc.

Table 3-3 describes the various options available on the StarCore 3900 Disassembler
panel.

Table 3-3. Tool Settings - StarCore 3900 Disassembler Options

Option Description

Command Shows the location of the disassembler executable file.

All options Shows the actual command line the disassembler will be
called with.

Expert Settings:

Command line pattern

Shows the expert settings command line parameters; default
is "${SCToolsInstallDir}${COMMAND}" ${FLAGS} $
{INPUTS}.

3.3.2.1 Disassembler Settings

Use this panel to specify the Disassembler behavior.

Figure 3-4. Tool Settings - Disassembler Settings

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 53

Table 3-4 describes the various options available on the Disassembler Settings panel.

Table 3-4. Tool Settings - Disassembler Settings Options

Option Description

Compact Specifies compact output mode.

Checked - The disassembler prints instructions in an
execution -set on a single line.

Cleared - The disassembler does not print instructions in an
execution -set on a single line.

Start Label Specifies the label at which disassembly of the input file
starts.

End Label Specifies the label at which disassembly of the input file ends.

Start Address (Hex) Specifies the hexadecimal address at which the disassembly
starts.

End Address (Hex) Specifies the hexadecimal address at which the disassembly
ends.

Print loopstart - loopend Checked - The disassembler prints loopstart-loopend
directives.

Cleared - The disassembler prints lpmarka/lpmarkb
directives.

Suppress Banner Checked - The disassembler suppresses display of banner
information.

Cleared - The disassembler does not suppress banner
display.

Ignore Relocation Information Checked - The disassembler ignores the relocation
information relevant to .eln and .elb files.

Cleared - Disassembler does not ignore the relocation
information.

Display Unmangled C++ Names Checked - The disassembler displays unmangled form of C+
+ names.

Cleared - The disassembler does not display unmangled form
of C++ names.

Suppress PC Checked - The disassembler suppresses the PC display for
VLES.

Cleared - The disassembler does not supress the PC display
for VLES.

Suppress Label and Header Checked - The disassembler suppresses display of labels,
headers, and global information (equs, globals, and
section information).

Cleared - The disassembler does not supress display of
labels and header information.

Display Mixed Hexadecimal and Assembly Checked - The disassembler displays mixed hexadecimal
codification and assembly code. Cleared - The disassembler
does not display mixed hexadecimal codification and
assembly code.

Verbose Checked - Enables verbose mode.

Cleared - Does not enable verbose mode.

Table continues on the next page...

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

54 Freescale Semiconductor, Inc.

Table 3-4. Tool Settings - Disassembler Settings Options (continued)

Option Description

Display Statistics Checked - The disassembler displays statistics after each
section, which includes but not limited to: number of VLES
with 0 - 4 DALU instructions, number of VLES with 0 - 2
AGU instructions, not-generated instructions.

Cleared - The disassembler does not display statistics after
each section.

3.3.3 StarCore 3900 C/C++ Linker Application

Use this panel to specify the command, options, and expert settings for the build tool
linker.

Figure 3-5. Tool Settings - StarCore 3900 C/C++ Linker Application

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 55

Table 3-5 describes the various options available on the StarCore 3900 C/C++ Linker
Application panel.

Table 3-5. Tool Settings - StarCore 3900 C/C++ Linker Application Options

Option Description

Command Shows the location of the linker executable file.

All options Shows the actual command line the linker will be called with.

Expert Settings

Command line pattern

Shows the expert settings command line parameters; default
is "${SCToolsInstallDir}${COMMAND}" ${FLAGS} $
{OUTPUT_FLAG} ${OUTPUT_PREFIX}${OUTPUT} $
{INPUTS}.

3.3.3.1 Linker Settings

Use this panel to specify the linker behavior.

For C and C++ source files, build tools optimize the output object code. The build tools
do not optimize hand-coded assembly language.

Figure 3-6. Tool Settings - Linker Settings

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

56 Freescale Semiconductor, Inc.

Table 3-6 describes the various options available on the Linker Settings panel.

Table 3-6. Tool Settings - Linker Settings Options

Option Description

Map File Enter the path of the file to which the linker writes memory-
map information. This filename must have a .map extension.

Strip Dead Code Checked - The linker removes both unreferenced source
code and unreferenced data from your program. Enabling this
option reduces your program's memory footprint.

Cleared - The linker preserves both unreferenced source
code and unreferenced data in your program.

Linker Command File Enter the path of the linker-command file that the build tools
use for processing your project. Alternatively, click the
Browse button, then use the resulting dialog box to specify
the linker command file.

Additional Options Enter additional linker command-line options. The IDE passes
these options to the scc shell during the link phase. Note that
the IDE passes command-line options to the scc shell exactly
as you enter them in this text box.

3.3.3.2 C/C++ Options

Use this panel to specify linker behavior.

For C and C++ source files, the build tools optimize output object code. The build tools
do not optimize hand-coded assembly language.

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 57

Figure 3-7. Tool Settings - C/C++ Options

Table 3-7 describes the various options available on the C/C++ Options panel.

Table 3-7. Tool Settings - C/C++ Options

Option Description

Use Re-entrant Runtime Libraries Checked - The linker uses the correct thread-safe libraries
and start-up code for your target architecture. If checked, the
IDE passes -reentrant to the scc shell.

Cleared - The linker uses default libraries and startup code.

Custom Start-Up File Enter the path to a custom start-up file that the linker uses
instead of a default start-up file. Alternatively, click the Browse
button, then use the resulting dialog box to specify the custom
start-up file. Leave this text box blank to have the linker use a
default start-up file.

3.3.3.3 Libraries

Use this panel to specify additional libraries that the StarCore C/C++ Linker should use.

You can specify multiple additional libraries and library search paths. Also, you can
change the order in which the IDE uses or searches the libraries.

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

58 Freescale Semiconductor, Inc.

Figure 3-8. Tool Settings - Libraries

Table 3-8 describes the various options available on the Libraries panel.

Table 3-8. Tool Settings - Libraries

Option Description

Additional Libraries Lists paths to additional libraries that the StarCore C/C++
linker uses. The linker uses the libraries in the order shown in
this list.

Library Search Paths Lists paths that the StarCore C/C++ linker searches for
libraries. The linker searches the paths in the order shown in
this list.

Table 3-9 lists and describes the toolbar buttons that help work with the libraries.

Table 3-9. Tool Settings - Libraries Toolbar Buttons

Button Description

Add - Click to open the Add file path or the Add directory
path dialog box and create a file or directory path.

Delete - Click to delete the selected file or directory. To
confirm deletion, click Yes in the Confirm Delete dialog box.

Edit - Click to open the Edit file path or Edit directory path
dialog box and update the selected file or directory.

Table continues on the next page...

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 59

Table 3-9. Tool Settings - Libraries Toolbar Buttons (continued)

Button Description

Move up - Click to move the selected file search path one
position higher in the list.

Move down - Click to move the selected file search path one
position lower in the list.

3.3.4 StarCore 3900 C/C++ Compiler

Use this panel to specify the command, options, and expert settings for the build tool
compiler.

Figure 3-9. Tool Settings - StarCore 3900 C/C++ Compiler

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

60 Freescale Semiconductor, Inc.

Table 3-10 describes the various options available on the StarCore 3900 C/C++
Compiler panel.

Table 3-10. Tool Settings - StarCore 3900 C/C++ Compiler Options

Option Description

Command Shows the location of the linker executable file.

All options Shows the actual command line the compiler will be called
with.

Expert Settings

Command line pattern

Shows the expert settings command line parameters; default
is "${SCToolsInstallDir}${COMMAND}" ${FLAGS} -o
${OUTPUT_PREFIX}${OUTPUT} -c ${INPUTS}.

3.3.4.1 C/C++ Language

Use this panel to direct the CodeWarrior C/C++ compiler to apply specific processing
modes to your C/C++ language source code. The C/C++ compiler's default state is
ANSI/ISO mode with extensions.

The C/C++ compiler treats the settings of this panel as one collection. You can compile
source files with just one collection at a time. To compile source files with multiple
collections, you must compile the source code sequentially. After each compile iteration,
you change the collection of settings that the C/C++ compiler uses.

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 61

Figure 3-10. Tool Settings - C/C++ Language

Table 3-11 describes the various options available on the C/C++ Language panel.

Table 3-11. Tool Settings - C/C++ Language Options

Option Description

Strict ANSI mode Checked - The C/C++ compiler operates in strict ANSI mode.
In this mode, the compiler strictly applies the rules of the
ANSI/ISO specification to all input files. This setting is
equivalent to specifying the - ansi command-line option.
The compiler issues a warning for each ANSI/ISO extension it
finds.

Cleared - The C/C++ compiler does not operate in strict ANSI
mode.

Type 'char' is signed Checked - The C/C++ compiler treats all char data types as
signed. This setting is the default.

Cleared - The C/C++ compiler treats all char data types as
unsigned (as if you had declared them unsigned char).
This setting is equivalent to specifying the -usc command
line option.

64-Bit Data Type Support Checked - The C/C++ compiler supports 64-bit data types
long long and double. A long long is a 64-bit integer. A
double is a 64-bit double-precision floating-point value.

Cleared - The C/C++ compiler does not support data types
long long and double.

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

62 Freescale Semiconductor, Inc.

3.3.4.2 Control

Use this panel to control compiler and shell behavior. You can specify command-line
options to pass to the compiler and whether to generate debugging information.

Figure 3-11. Tool Settings - Control

Table 3-12 describes the various options available on the Control panel.

Table 3-12. Tool Settings - Control Options

Options Description

Read Options from File Enter the path to a file that contains compiler command-line
options. Alternatively, click Browse and use the resulting
dialog box to specify the file. This setting is equivalent to
specifying the -F file command-line option. The filename must
use the .opt extension. The shell treats the options in this
file as if you had passed them on the command line. Each

Table continues on the next page...

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 63

Table 3-12. Tool Settings - Control Options (continued)

Options Description

time you invoke the compiler, you can select a file with the set
of options that suits your needs. Note that the IDE does not
verify the validity of the options in the file.

Generate Debugging Information Checked - The compiler produces symbolic information for
debugging the build target.

Cleared - The compiler does not produce symbolic
information.

3.3.4.3 Hardware Configuration

Use this panel to control how the compiler structures generated object code. You can
specify whether to initialize variables from read-only memory (ROM).

Figure 3-12. Tool Settings - Hardware Configuration

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

64 Freescale Semiconductor, Inc.

Table 3-13 describes the various options available on the Hardware Configuration panel.

Table 3-13. Tool Settings - Hardware Configuration Options

Option Description

Initialize Variables from ROM Checked - The compiler places the initialization data for your
program's global variables in a separate section. This setting
is equivalent to specifying the -mrom command-line option.
The IDE can manipulate the section at link time and at load
time.

Cleared - The compiler bypasses placing the initialization
data for your program's global variables in a separate section.
You can clear this checkbox as you develop your source
code, because a separate loader program handles initializing
your program's global variables. After you finish development,
you can check this checkbox, then place into ROM the
segment with the initialization data for your global variables.

3.3.4.4 Output Listing

Use this panel to control how the compiler formats the listing file, as well as error and
warning messages.

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 65

Figure 3-13. Tool Settings - Output Listing

Table 3-14 describes the various options available on the Output Listing panel.

Table 3-14. Tool Settings - Output Listing Options

Option Description

Verbosity Specify the amount of information that the compiler
generates:

• Quiet - The IDE displays just error messages that the
compiler emits. The IDE suppresses warning and
informational messages. This setting is equivalent to
specifying the -q command-line option.

• Default - The IDE chooses whether to use Quiet or
Verbose.

• Verbose - The IDE shows each command line that it
passes to the shell, along with all progress, error,
warning, and informational messages that the tools
emit. This setting is equivalent to specifying the -v
command-line option.

Create File with Error Output Checked - The IDE generates a file that contains error
messages that the compiler outputs.

Cleared - The IDE does not generate a file that contains error
messages.

Table continues on the next page...

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

66 Freescale Semiconductor, Inc.

Table 3-14. Tool Settings - Output Listing Options (continued)

Option Description

Keep assembly (.sl) files Checked - The compiler keeps the intermediate assembly-
language source files (.sl files) it creates, instead of
deleting them. This setting is equivalent to specifying the -s
command-line option. The compiler generates one .sl file for
each C source file in the build target.

Cleared - The compiler discards the intermediate assembly-
language source files it creates.

Define Struct Fd Offsets as EQUs Checked - The compiler includes the offsets of C data-
structure field definitions in each generated intermediate
assembly-language source file. This setting is equivalent to
specifying the - do command-line option.

Cleared - The compiler does not include the offsets of C data-
structure field definitions in each generated intermediate
assembly-language source file.

3.3.4.5 Warnings

Use this panel to control how the compiler reports the error and warning messages.

Figure 3-14. Tool Settings - Warnings

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 67

Table 3-15 describes the various options available on the Warning panel.

Table 3-15. Tool Settings - Warning Options

Option Description

Report All Warnings Specifies global remark/warning control. This setting is
equivalent to specifying the -W command-line option.

Generate Wrapper Remarks Checked-The IDE generates a file that contains Wrapper
remarks that the compiler outputs. Cleared-The IDE does not
generate a file that contains Wrapper remarks.

Generate Wrapper Warnings Checked-The IDE generates a file that contains Wrapper
warnings that the compiler outputs. Cleared-The IDE does not
generate a file that contains Wrapper remarks.

3.3.4.5.1 Compiler Front End Messages

Use this panel to control how the compiler generates compiler-front-end warnings.

Figure 3-15. Tool Settings - Compiler Front End Messages

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

68 Freescale Semiconductor, Inc.

Table 3-16 describes the various options available on the Compiler Front End
Messages panel.

Table 3-16. Tool Settings - Compiler Front End Messages Options

Option Description

Report All Compiler Front End Warnings Specifies global Compiler Front End warning control. This
setting is equivalent to specifying the -Wmwfe or -Wnomwfe
command-line options.

Treat Warnings As Errors Activates or deactivates treatment of compiler-front-end
warnings as errors.

Any Pointer-to-Integer Conversions Activates or deactivates generation of warnings about any
pointer-to-integer conversions. This setting is equivalent to
specifying the -Wmwfe-anyptrintconv or -Wnomwfe-
anyptrintconv command-line options.

Lossy Pointer-to- Integer Conversions Activates or deactivates generation of warnings about lossy
pointer-to-integer conversions.

Command-Line Driver/Parser Warnings Activates or deactivates generation of command-line driver/
parser warnings. This setting is equivalent to specifying the -
Wmwfe-cmdline or -Wnomwfe-cmdline command-line
options.

Extra Commas Activates or deactivates generation of warnings about extra
commas. This setting is equivalent to specifying the -Wmwfe-
comma or -Wnomwfe-comma command-line options.

Display List of Active Warnings Activates or deactivates display of archive warnings list. This
setting is equivalent to specifying the -Wmwfe-display or -
Wnomwfe-display command-line options.

Empty Declarations Activates or deactivates generation of warnings about empty
declarations. This setting is equivalent to specifying the -
Wmwfe-emptydecl or -Wnomwfe-emptydecl command-
line options.

Pedantic Error Checking Activates or deactivates pedantic error checking. This setting
is equivalent to specifying the -Wmwfe-pedantic or -
Wnomwfe-pedantic command-line options.

Incorrect Capitalization In #include "...." Activates or deactivates generation of warnings about
incorrect capitalization in #include "...". This setting is
equivalent to specifying the -Wmwfe-filecaps or -
Wnomwfe-filecaps command-line options.

Incorrect Capitalization In #include <....> Activates or deactivates generation of warnings about
incorrect capitalization in #include <...>. This setting is
equivalent to specifying the -Wmwfe-sysfilecaps or -
Wnomwfe-sysfilecaps command-line options.

Hidden Virtual Functions Activates or deactivates generation of warnings about hidden
virtual functions. This setting is equivalent to specifying the -
Wmwfe-hidenvirtual or -Wnomwfe-hidevirtual
command-line options.

Invalid Pragmas Activates or deactivates generation of warnings about invalid
pragmas. This setting is equivalent to specifying the -Wmwfe-
illpragmas or -Wnomwfe-illpragmas command-line
options.

Table continues on the next page...

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 69

Table 3-16. Tool Settings - Compiler Front End Messages Options (continued)

Option Description

Implicit Integer-to-Floating-Point or Floating-Point-to-Integer
Conversions

Activates or deactivates generation of warnings about implicit
integer-to-floating-point or floating-point-to-integer
conversions. This setting is equivalent to specifying the -
Wmwfe-implicitconv(or -Wmwfe-implicit) or -
Wnomwfe-implicitconv(or -Wnomwfe-implicit)
command-line options.

Implicit Floating-Point-to-Integer Conversions Activates or deactivates generation of warnings about implicit
floating-point-to-integer conversions. This setting is equivalent
to specifying the -Wmwfe-float2int or -Wnomwfe-
float2int command-line options.

Implicit Integer-to-Floating-Point Conversions Activates or deactivates generation of warnings about implicit
integer-to-floating-point conversions. This setting is equivalent
to specifying the -Wmwfe-int2float or -Wnomwfe-
int2float command-line options.

Implicit Signed/Unsigned Conversions Activates or deactivates generation of warnings about implicit
signed/unsigned conversions. This setting is equivalent to
specifying the -Wmwfe-impl_signedunsigned or -
Wnomwfe-impl_signedunsigned command-line options.

Passing Large Arguments to Unprototyped Functions Activates or deactivates generation of warnings about passing
large arguments to unprototyped functions. This setting is
equivalent to specifying the -Wmwfe-largeargs or -
Wnomwfe-largeargs command-line options.

Returning Without Values in Non-Void-Returning Function Activates or deactivates generation of warnings about returns
without values in non-void-returning functions. This setting is
equivalent to specifying the -Wmwfe-missingreturn or -
Wnomwfe-missingreturn command-line options.

`inline' Functions Not Inlined Activates or deactivates generation of warnings about `inline'
functions not inlined. This setting is equivalent to specifying
the -Wmwfe-notinlined or -Wnomwfe-notinlined
command-line options.

Result of Non-Void-Returning Function Not Being Used Activates or deactivates generation of warnings about result
of non-void-returning function not being used. This setting is
equivalent to specifying the -Wmwfe-notused or -
Wnomwfe-notused command-line options.

Padding Added Between Struct Members Activates or deactivates generation of warnings about
padding added between struct members. This setting is
equivalent to specifying the -Wmwfe-padding or -
Wnomwfe-padding command-line options.

Possible Unwanted Side Effects Activates or deactivates generation of warnings about
padding added between struct members. This setting is
equivalent to specifying the -Wmwfe-padding or -
Wnomwfe-padding command-line options.

Inconsistent Use of Class and Struct Activates or deactivates generation of warnings about
inconsistent use of class and struct. This setting is equivalent
to specifying the -Wmwfe-structclass or -Wnomwfe-
structclass command-line options.

Tokens Not Formed By The ## Operator Activates or deactivates generation of warnings about tokens
not formed by the ## operator. This setting is equivalent to
specifying the -Wmwfe-tokenpasting or -Wnomwfe-
tokenpasting command-line options.

Table continues on the next page...

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

70 Freescale Semiconductor, Inc.

Table 3-16. Tool Settings - Compiler Front End Messages Options (continued)

Option Description

Undefined Macros In #if/#else Conditionals Activates or deactivates generation of warnings about
undefined macros in #if/#else conditionals. This setting is
equivalent to specifying the -Wmwfe--undefmacro (or -
Wmwfe-undef) or -Wnomwfe-undefmacro (or -
Wnomwfe-undef) command-line options.

Unused Variables Activates or deactivates generation of warnings about unused
variables. This setting is equivalent to specifying the -Wmwfe-
unusedvar or -Wnomwfe-unusedvar command-line
options.

Unused Arguments Activates or deactivates generation of warnings about unused
arguments. This setting is equivalent to specifying the -
Wmwfe-unusedarg or -Wnomwfe-unusedarg command-
line options.

Using Expressions As Statements Without Side Effects Activates or deactivates generation of warnings about using
expressions as statements without side effects. This setting is
equivalent to specifying the -Wmwfe-unusedexpr or -
Wnomwfe-unusedexpr command-line options.

Overriding Function Has No `virtual' Keyword Activates or deactivates generation of warnings about
overriding function that has no `virtual' keyword.

Variables Uninitialized Before Used Activates or deactivates generation of warnings about
variables uninitialized before used. This setting is equivalent
to specifying the -Wmwfe-unused or -Wnomwfe-unused
command-line options.

Hidden Local Variables Activates or deactivates generation of warnings about hidden
local variables. This setting is equivalent to specifying the -
Wmwfe-hidden or -Wnomwfe-hidden command-line
options.

Missing Enum Case Labels Activates or deactivates generation of warnings about missing
Enum case labels.

3.3.4.5.2 Assembler

Use this panel to control how the compiler generates FALIGN, assembler remarks and
warnings.

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 71

Figure 3-16. Tool Settings - Assembler

Table 3-17 describes the various options available on the Assembler panel.

Table 3-17. Tool Settings - Assembler Options

Option Description

All Assembler warnings Specifies global Assembler warning control. This setting is
equivalent to specifying the -Wasm or -Wnoasm command-
line options.

FALIGN Remarks Activates or deactivates generation of FALIGN remarks. This
setting is equivalent to specifying the -Wasm-falign or -
Wnoasm-falign command-line options.

Assembler Remarks Activates or deactivates generation of assembler remarks.
This setting is equivalent to specifying the -Wasm-remarks
or -Wnoasm-remarks command-line options.

Assembler Warnings Activates or deactivates generation of assembler warnings.
This setting is equivalent to specifying the -Wasm-warnings
or -Wnoasm-warnings command-line options.

3.3.4.5.3 Linker

Use this panel to control how the compiler generates all linker warnings.

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

72 Freescale Semiconductor, Inc.

Figure 3-17. Tool Settings - Linker

Table 3-18 describes the various options available on the Linker panel.

Table 3-18. Tool Settings - Linker Options

Option Description

All Linker Warnings Specifies global Linker warning control. This setting is
equivalent to specifying the -Wlnk or -Wnolnk command-
line options.

SHT_NOBITS (.bss) Section Precedes SHT_PROGBITS
(data/text) Sections

Activates or deactivates generation of warnings if
SHT_NOBITS (.bss) section precedes SHT_PROGBITS
(data/text) sections in the segment. By default, this option is
turned on. This setting is equivalent to specifying the -Wlnk-
progbits-after-nobits or -Wnolnk-progbits-
after-nobits command-line options.

Recursive Function Calls Make Stack-Effect Computation An
Estimate

Activates or deactivates generation of warnings about if
recursive function calls make stack-effect computation an
estimate. By default, this option is turned on. This setting is
equivalent to specifying the -Wlnk-stack-effect or -
Wnolnk-stack-effect command-line options.

3.3.4.6 Include Search Paths

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 73

Use this panel to specify paths to search for #include files. Note that the IDE displays an
error message if a header file is in a different directory from the referencing source file.
Sometimes, the IDE also displays an error message if a header file is in the same
directory as the referencing source file.

For example, if you see the message Could not open source file myfile.h, you must add the
path for myfile.h to this panel.

Figure 3-18. Tool Settings - Include Search Paths

Table 3-19 lists and describes the toolbar buttons that help work with the file search
paths.

Table 3-19. Tool Settings - Include Search Paths Toolbar Buttons

Button Description

Add - Click to open the Add directory path dialog box
(Figure 3-19) and specify the file search path.

Delete - Click to delete the selected file search path. To
confirm deletion, click Yes in the Confirm Delete dialog box.

Edit - Click to open the Edit directory path dialog box (Figure
3-20) and update the selected object file search path.

Move up - Click to move the selected file search path one
position higher in the list.

Move down - Click to move the selected file search path one
position lower in the list.

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

74 Freescale Semiconductor, Inc.

Figure 3-19 shows the Add directory path dialog box.

Figure 3-19. Add directory path Dialog Box

Figure 3-20 shows the Edit directory path dialog box.

Figure 3-20. Edit directory path Dialog Box

The buttons in the Add directory path and Edit directory path dialog boxes help work
with the object file search paths.

• OK- Click to confirm the action and exit the dialog box.
• Cancel - Click to cancel the action and exit the dialog box.
• Workspace- Click to display the Folder Selection dialog box and specify the object

file search path. The resulting path, relative to the workspace, appears in the
appropriate list.

• File system- Click to display the Browse for Folder dialog box and specify the
object file search path. The resulting path appears in the appropriate list.

3.3.4.7 Macros

Use this panel to define and undefine preprocessor macros. You can specify multiple
macros and change the order in which the IDE uses the macros.

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 75

Figure 3-21. Tool Settings - Macros

Table 3-20 describes the various options available on the Macros panel.

Table 3-20. Tool Settings - Macros Options

Option Description

Define Preprocessor Macros Define preprocessor macros and optionally assign their
values. This setting is equivalent to specifying the -D
name[=value] command-line option. To assign a value, use
the equal sign (=) with no white space. For example, this
syntax defines a preprocessor value named
EXTENDED_FEATURE and assigns ON as its value:
EXTENDED_FEATURE=ON

Note that if you do not assign a value to the macro, the shell
assigns a default value of 1.

Undefine Preprocessor Macros Undefine preprocessor macros. This setting is equivalent to
specifying the -U name command-line option. For example,
this syntax undefines the EXTENDED_ FEATURE macro:
EXTENDED_FEATURE

Note that the shell processes these items after it processes all
Defined Preprocessor Macros items.

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

76 Freescale Semiconductor, Inc.

Table 3-21 lists and describes the toolbar buttons that help work with the macros.

Table 3-21. Tool Settings - Macros Toolbar Buttons

Button Description

Add - Click to add a defined preprocessor macro.

Delete - Click to delete the selected macro. To confirm
deletion, click Yes in the Confirm Delete dialog box.

Edit - Click to update the selected defined preprocessor
macro.

Move up - Click to move the selected macro one position
higher in the list.

Move down - Click to move the selected macro one position
lower in the list.

3.3.4.8 Processor

Use this panel to enable fused multiply and accumulate operation.

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 77

Figure 3-22. Tool Settings - Processor Panel

Table 3-22 explains the options available on the Processor panel.

Table 3-22. Tool Settings - Processor

Option Description

Fused multiply and accumulate Check to enable the fused multiply and accumulate operation.
Fused multiply and add are generated only if hardware
floating point support is enabled on the SC3900fp compiler.

3.3.4.9 Optimization

Use this panel to control compiler optimizations. Compiler optimization can be applied in
either global or non-global optimization mode. You can apply global optimization at the
end of the development cycle, after compiling and optimizing all source files individually
or in groups.

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

78 Freescale Semiconductor, Inc.

Figure 3-23. Tool Settings - Optimization

Table 3-23 describes the various options available on the Optimization panel.

Table 3-23. Tool Settings - Optimization Options

Option Description

Alignment Specify the alignment level that the compiler uses. This
setting is equivalent to specifying the -align level command-
line option.

• default - level 0 applies to size optimizations, and level
2 applies to speed optimizations

• 0 - disable alignment
• 1 - align hardware loops
• 2 - align hardware and software loops
• 3 - align all existing labels
• 4 - align all existing labels and subroutine-return points

Note that using a higher alignment constraint increases
execution speed but also increases object-code size.

Optimization Level Specify the optimizations that you want the compiler to apply
to the generated object code:

• 0 - Disable optimizations. This setting is equivalent to
specifying the -O0 command-line option. The compiler
generates unoptimized, linear assembly-language code.

• 1 - The compiler performs all target-independent (that
is, non-parallelized) optimizations, such as function
inlining. This setting is equivalent to specifying the -O1
command-line option.

Table continues on the next page...

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 79

Table 3-23. Tool Settings - Optimization Options (continued)

Option Description

The compiler omits all target-specific optimizations and
generates linear assembly-language code.

• 2 - The compiler performs all optimizations (both target-
independent and target-specific). This setting is
equivalent to specifying the -O2 command-line option.
The compiler outputs optimized, non-linear, parallelized
assembly-language code.

• 3 - The compiler performs all the level 2 optimizations,
then the low-level optimizer performs global-algorithm
register allocation. This setting is equivalent to
specifying the -O3 command-line option.

At this optimization level, the compiler generates code
that is usually faster than the code generated from level
2 optimizations.

• 4 - The compiler performs all the level 3 optimizations,
then the low-level optimizer performs global-algorithm
register allocation. This setting is equivalent to
specifying the -O4 command-line option.

At this optimization level, the compiler generates code
that is usually faster than the code generated from level
3 optimizations.

Optimize For To specify this setting, specify an Optimization Level greater
than 0. Specify the goal of the optimizations that the compiler
performs:

• Faster Execution Speed - The compiler optimizes
object code at the specified Optimization Level such
that the resulting binary file has a faster execution
speed, as opposed to a smaller executable code size.

• Smaller Code Size - The compiler optimizes object
code at the specified Optimization Level such that the
resulting binary file has a smaller executable code size,
as opposed to a faster execution speed. This setting is
equivalent to specifying the -Os command-line option.

Type-Based Alias Analysis Instructs the compiler to use alias by type rules for alias
analysis. As per alias by type rules, a value which is stored in
memory should always be accessed using the same access
size or through a signed/unsigned char*. For more
information, see Chapter 6.5, Paragraph 7 in C99 Standard
document.

Global Optimization To specify this setting, specify an Optimization Level greater
than 0.

Checked - The compiler applies the selected optimizations
across all files in the build target. This global optimization is
the most effective. This setting is equivalent to specifying the
-cfe compiler command-line option followed by the -Og
linkphase command-line option.

Cleared - The compiler creates intermediate files that have
the .obj file extension.

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

80 Freescale Semiconductor, Inc.

3.3.4.10 Configuration Files

Use this panel to specify the application-configuration file view, and the custom
application-configuration file.

Figure 3-24. Tool Settings - Configuration Files

Table 3-24 describes the various options available on the Configuration Files panel.

Table 3-24. Tool Settings - Configuration Files Options

Option Description

Configuration View Enter the application-configuration file view that the build
target uses. This setting is equivalent to specifying the -view
identifier command-line option. If you use this text box,
you must specify a path in the Application Configuration File
text box.

Application Configuration File Enter the path to a custom application-configuration file. This
setting is equivalent to specifying the -ma filename
command line option. Alternatively, click the Browse button,
then use the resulting dialog box to specify the file. Clear this
text box to use a default application-configuration file. Use a
custom application-configuration file to apply different settings

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 81

Table 3-24. Tool Settings - Configuration Files Options

Option Description

and optimization levels to various files and functions of the
build target. An application-configuration file must have
the .appli filename extension.

3.3.4.11 Additional Arguments

Use this panel to specify command-line options that the shell program (scc) passes
directly to individual build tools (such as the front-end compiler, the various optimizers,
and the assembler). Because the IDE shares this panel among multiple tools, just the
options that apply to the selected tool appear in each instance of the panel.

NOTE
The IDE applies the command-line options that you specify in
this panel to the compilation of the C-language source files in a
build target (even the options that you enter in the To
Assembler text box). To pass command-line options to the
assembler for application to the assembly-language files in a
build target, use the Read Options from File text box of the
StarCore 3900 Assembler > Preprocessor panel.

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

82 Freescale Semiconductor, Inc.

Figure 3-25. Tool Settings - Additional Arguments

Table 3-25 describes the various options available on the Additional Arguments panel.

Table 3-25. Tool Settings - Additional Arguments Options

Option Description

To Front-End Enter command-line options for the shell program to pass to
the front-end compiler. This setting is equivalent to specifying
the -Xcfe command-line option.

To Assembler Enter command-line options for the shell program to pass to
the assembler. This setting is equivalent to specifying the -
Xasm command-line option.

To Shell Enter command-line options for the IDE to pass to the shell
program. The IDE passes the options exactly as you type
them and does not check for errors.

3.3.5 StarCore 3900 Assembler

Use this panel to specify the command, options, and expert settings for the build tool
assembler.

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 83

Figure 3-26. Tool Settings - StarCore 3900 Assembler

Table 3-26 describes the various options available on the StarCore 3900 Assembler
options.

Table 3-26. Tool Settings - StarCore 3900 Assembler Options

Option Description

Command Shows the location of the assembler executable file.

All options Shows the actual command line the assembler will be called
with.

Expert Settings

Command line pattern

Shows the expert settings command line parameters; default
is "${SCToolsInstallDir}${COMMAND}" ${FLAGS} $
{OUTPUT_FLAG}${OUTPUT_PREFIX}${OUTPUT} $
{INPUTS}.

3.3.5.1 Code and Language Options

Use this panel to specify code- and symbol-generation options for the StarCore
assembler.

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

84 Freescale Semiconductor, Inc.

Figure 3-27. Tool Settings - Code and Language Options

Table 3-27 describes the various options available on the Code and Language Options
panel.

Table 3-27. Tool Settings - Code and Language Options

Option Description

Generate Debugging Information Checked - The assembler produces symbolic information for
debugging the build target.

Cleared - The assembler does not produce symbolic
information.

Ignore Case in Symbol Names Checked - The assembler ignores the case of symbol,
section, and macro names. This setting corresponds to the IC
option of the OPT directive and to the -oic command-line
option.

Cleared - The assembler considers the case of symbol,
section, and macro names.

Write Symbols to Object File Checked - The assembler writes symbol information to the
object files that it generates. This setting corresponds to the
SO option of the OPT directive and to the -oso command-
line option.

Cleared - The assembler does not write symbol information to
assembler-generated object files.

Table continues on the next page...

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 85

Table 3-27. Tool Settings - Code and Language Options (continued)

Option Description

Enable Check Summing Checked - The assembler allows check-summing of
instruction and data values and clearing the cumulative
checksum.

Cleared - The assembler does not allow check summing of
instruction and data values. You can use the @CHK() function
to obtain the checksum value.

Note that the assembler never preserves a comment line in a
macro definition that starts with two consecutive semicolons
(;;). This setting corresponds to the CK option of the OPT
directive and to the -ock command-line option.

Continue Check Summing Checked-The assembler re-enables check summing of
instructions and data. This setting corresponds to the CONTCK
option of the OPT directive and to the -ocontck command-
line option. Checking this checkbox does not cause the
assembler to clear the cumulative checksum value. Cleared-
The assembler does not re-enable check summing of
instructions and data.

Do Not Restrict Directives in Loops Checked - The assembler suppresses error messages
related to directives that might be invalid in DO loops. This
setting corresponds to the DLD option of the OPT directive and
to the -odld command-line option.

Cleared - The assembler generates error messages related
to directives that might be invalid in DO loops.

Pack Strings Checked - The assembler packs strings that appear in the
Define Constant (DC) directive. This setting corresponds to
the PS option of the OPT directive and to the -ops command-
line option. The assembler packs individual bytes of strings
into consecutive target words for the length of the string.

Cleared - The assembler does not pack strings that appear in
the DC directive.

Scan MACLIB for Include Files Checked - The assembler searches for #include files in the
paths shown in the Macro Library (MACLIB) Search Paths list,
as well as the paths shown in the Include Search Paths panel
of the StarCore Assembler. This setting corresponds to the MI
option of the OPT directive and to the -omi command-line
option.

Cleared - The assembler searches for include files just in the
paths shown in the Include Search Paths panel of the
StarCore Assembler.

Enable Cycle Counts Checked - The assembler enables the cycle counter and
clear-total-cycle-count features. This setting corresponds to
the CC option of the OPT directive and to the -occ command-
line option. Checking this checkbox causes the listing file to
show a cycle count for each instruction entry.

Cleared - The assembler disables the cycle counter.

Note that cycle counts assume a full instruction-fetch pipeline
and no wait states.

Table continues on the next page...

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

86 Freescale Semiconductor, Inc.

Table 3-27. Tool Settings - Code and Language Options (continued)

Option Description

Preserve Comment Lines in Macros Checked - The assembler preserves comment lines in
macros. This setting corresponds to the CM option of the OPT
directive and to the -ocm command-line option.

Cleared - The assembler does not preserve comment lines in
macros.

Make All Section Symbols Global Checked - The assembler treats all sections as if you had
declared them explicitly as GLOBAL sections. This setting
corresponds to the GL option of the OPT directive and to the -
ogl command-line option. You must check this checkbox
before explicitly defining any section in a source file.

Cleared - The assembler does not treat all sections as if you
had declared them explicitly as GLOBAL sections.

Perform Interrupt Location Checks Checked-The assembler checks for DSP instructions that
cannot appear in the interrupt-vector locations of program
memory. This setting corresponds to the INTR option of the
OPT directive and to the - ointr command-line option.
Cleared-The assembler does not check for DSP instructions
that cannot appear in the interrupt- vector locations of
program memory.

Expand Define Symbols in Strings Checked - The assembler expands DEFINE symbols in
strings. This setting corresponds to the DEX option of the OPT
directive and to the -odex command-line option.

Cleared - The assembler does not expand DEFINE symbols
in strings.

Preserve Object File on Errors Checked - The assembler preserves object files if assembly
errors occur. This setting corresponds to the SVO option of
the OPT directive and to the - osvo command-line option.

Cleared - The assembler discards object files if assembly
errors occur.

Dynamic Programming Rule Checks Specify how the assembler reports violations of programming
rules:

· Disable All - The assembler does not report violations of
dynamic StarCore 3900FP DSP programming rules. This
setting is the default behavior when you invoke the assembler
from the command line.

· Default - The assembler chooses whether to report
violations of dynamic StarCore 3900FP DSP programming
rules.

Enable All - The assembler reports violations of dynamic
StarCore 3900FP DSP programming rules. The IDE passes
the -s all option to the assembler.

Macro Library (MACLIB) Search Paths Lists paths to search for #include files. The assembler
searches the paths in the order shown in this list. Use these
toolbar buttons to work with the search paths:

• Add - Click, then use the resulting dialog box to specify
the path.

• Delete - Click to remove the selected path.
• Edit - Click, then use the resulting dialog box to change

the selected path.

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 87

Table 3-27. Tool Settings - Code and Language Options

Option Description

• Move up - Click to move the selected path one position
higher in the list.

• Move down - Click to move the selected path one
position lower in the list.

Use these buttons in the dialog boxes to help you work
with paths:

• Workspace - Click, then use the resulting dialog box to
specify the path. The resulting path, relative to the
workspace, appears in the list.

• File system - Click, then use the resulting dialog box to
specify the path. The resulting absolute path appears in
the list.

3.3.5.2 Include Search Paths

Use this panel to specify multiple search paths and the order in which to search those
paths. The IDE first looks for the specified file in the current directory, or the directory
that you specify in the INCLUDE directive. If the IDE does not find the file, it continues
searching the paths shown in this panel. The IDE keeps searching paths until it finds the
file or finishes searching the last path at the bottom of the Include File Search Paths list.
The IDE appends to each path the string that you specify in the INCLUDE directive.

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

88 Freescale Semiconductor, Inc.

Figure 3-28. Tool Settings - Include Search Paths

Table 3-28 lists and describes the toolbar buttons that help work with the file search
paths.

Table 3-28. Tool Settings - Include Search Paths Toolbar Buttons

Button Description

Add - Click to open the Add directory path dialog box
(Include Search Paths) and specify the file search path.

Delete - Click to delete the selected file search path. To
confirm deletion, click Yes in the Confirm Delete dialog box.

Edit - Click to open the Edit directory path dialog box
(Include Search Paths) and update the selected object file
search path.

Move up - Click to move the selected file search path one
position higher in the list.

Move down - Click to move the selected file search path one
position lower in the list.

Figure 3-29 shows the Add directory path dialog box.

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 89

Figure 3-29. Add directory path Dialog Box

Figure 3-30 shows the Edit directory path dialog box.

Figure 3-30. Edit directory path Dialog Box

The buttons in the Add directory path and Edit directory path dialog boxes help work
with the object file search paths.

• OK- Click to confirm the action and exit the dialog box.
• Cancel- Click to cancel the action and exit the dialog box.
• Workspace- Click to display the Folder Selection dialog box and specify the object

file search path. The resulting path, relative to the workspace, appears in the
appropriate list.

• File system- Click to display the Browse for Folder dialog box and specify the
object file search path. The resulting path appears in the appropriate list.

3.3.5.3 Preprocessor

Use this panel to specify preprocessor behavior. You can specify whether to display
banner information or verbose progress messages, and you can control error output. Also,
you can specify substitution strings for the preprocessor.

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

90 Freescale Semiconductor, Inc.

Figure 3-31. Tool Settings - Preprocessor

Table 3-29 describes the various options available on the Preprocessor panel.

Table 3-29. Tool Settings - Preprocessor Options

Option Description

Display Banner Checked - The assembler shows banner information.

Cleared - The assembler hides banner information.

Note that this option has no effect on hosts where the default
setting is to hide the banner.

Show Verbose Assembly Progress Messages Checked - The assembler reports the progress of the
assembly process to the standard error output stream. For
example, the assembler reports the beginning of each pass
and the opening and closing of input files. You can use this
information to monitor the assembly process and ensure that
it proceeds normally.

Cleared - The assembler does not report assembly progress
to the standard error-output stream.

Read Options from File Enter the path to a file that specifies command-line options for
assembler use. Alternatively, click the Browse button, then
use the resulting dialog box to specify the file.

Redirect Errors to File Enter the path to a file that the assembler uses in place of the
default error file (errfil). The Overwrite Existing Error
File checkbox controls how the assembler writes to the file
that you specify in this text box.

Table continues on the next page...

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 91

Table 3-29. Tool Settings - Preprocessor Options (continued)

Option Description

Overwrite Existing Error File Checked - The assembler overwrites the file that you specify
in the Redirect Errors to File text box.

Cleared - The assembler appends information to the file that
you specify in the Redirect Errors to File text box.

Defined Symbols Specify substitution strings that the assembler applies to all
the assembly-language modules in the build target. Enter just
the string portion of a substitution string. The IDE prepends
the -d token to each string that you enter. For example,
entering opt1 x produces this result on the command line: -
dopt1 x Note that this option is similar to the DEFINE
directive, but applies to all assembly-language modules in a
build target. Use these toolbar buttons to work with the
substitution strings:

• Add - Click, then use the resulting dialog box to specify
the string.

• Delete - Click to remove the selected string.
• Edit - Click, then use the resulting dialog box to change

the selected string.
• Move up - Click to move the selected string one

position higher in the list.
• Move down - Click to move the selected string one

position lower in the list.

3.3.5.4 Listing File

Use this panel to specify whether the assembler generates a listing file. When generating
a listing file, you can specify whether the assembler also prints a memory-utilization
report. Also, you can specify the types of warnings that the assembler includes in the
listing file. (Figure 3-32)

NOTE
Use the Additional Arguments panel of the StarCore Assembler
to specify options that you want to apply to all assembly-
language files in the current build target. Use the OPT directive
for options that you want to apply to just the assembly-language
source file in which the OPT directive appears.

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

92 Freescale Semiconductor, Inc.

Figure 3-32. Tool Settings - Listing File

Table 3-30 describes the various options available on the Listing File panel.

Table 3-30. Tool Settings - Listing File Options

Option Description

Generate Listing File Checked - The assembler creates a listing file named
lstfil.lst.

Cleared - The assembler does not create a list file.

Listing File Debug To specify this setting, check the Generate Listing File
checkbox.

Checked - The assembler uses the source listing, instead of
the assembly-language source file, as the debug source file.
This setting corresponds to the LDB option of the OPT
directive and to the -oldb command-line option.

Cleared - The assembler uses the assembly language source
file, instead of the source listing, as the debug source file.

Print Memory Utilization Report To specify this setting, check the Generate Listing File
checkbox.

Checked - The assembler writes a report of load and runtime
memory-use information to the listing file. This setting
corresponds to the MU option of the OPT directive and to the -
omu command-line option.

Cleared - The assembler does not write the memory-
utilization report to the listing file.

Table continues on the next page...

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 93

Table 3-30. Tool Settings - Listing File Options (continued)

Option Description

Print Warning for Unresolved References To specify this setting, check the Generate Listing File
checkbox.

Checked - The assembler generates a warning at assembly
time for each unresolved external reference. This setting,
valid just in relocatable mode, corresponds to the UR option of
the OPT directive and to the -our command-line option.

Cleared - The assembler does not generate a warning at
assembly time for each unresolved external reference.

Print All Warnings To specify this setting, check the Generate Listing File
checkbox.

Checked - The assembler writes all warning messages to the
listing file. This setting corresponds to the W option of the OPT
directive and to the -ow command-line option.

Cleared - The assembler does not write all warning
messages to the listing file.

3.3.5.5 Listing Contents

Use this panel to specify the information that the assembler generates in a listing file.

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

94 Freescale Semiconductor, Inc.

Figure 3-33. Tool Settings - Listing Contents

Table 3-31 describes the various options available on the Listing Contents panel.

Table 3-31. Tool Settings - Listing Contents Options

Option Description

Generate Listing Headers Checked - The assembler writes listing headers, titles, and
subtitles to the listing file. This setting corresponds to the HDR
option of the OPT directive and to the -ohdr command-line
option.

Cleared - The assembler does not write listing headers, titles,
and subtitles to the listing file.

Print DC Expansion Checked - The assembler writes Define Constant (DC)
expansions to the listing file. This setting corresponds to the
CEX option of the OPT directive and to the -ocex command-
line option.

Cleared - The assembler does not write Define Constant
expansions to the listing file.

Expand DEFINE Directive Strings Checked - The assembler writes expanded DEFINE
directives to the listing file. This setting corresponds to the MD
option of the OPT directive and to the - omd command-line
option.

Cleared - The assembler does not write expanded DEFINE
directives to the listing file.

Table continues on the next page...

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 95

Table 3-31. Tool Settings - Listing Contents Options (continued)

Option Description

Print Conditional Assembly Directive Checked - The assembler writes conditional-assembly
directives to the listing file. This setting corresponds to the CL
option of the OPT directive and to the -ocl command-line
option. Cleared - The assembler does not write conditional-
assembly directives to the listing file.

Print Conditional Assembly Checked - The assembler writes conditional-assembly and
section nesting-level information to the listing file. This setting
corresponds to the NL option of the OPT directive and to the -
onl command-line option.

Cleared - The assembler does not write conditional-assembly
and section nesting-level information to the listing file.

Print Skipped Conditional Assembly Lines Checked - The assembler writes to the listing file assembly-
language statements skipped due to conditional assembly.
This setting corresponds to the U option of the OPT directive
and to the -ou command-line option.

Cleared - The assembler does not write to the listing file
assembly-language statements skipped due to conditional
assembly.

Print Macro Definitions Checked - The assembler writes macro definitions to the
listing file. This setting corresponds to the MD option of the
OPT directive and to the -omd command-line option.

Cleared - The assembler does not write macro definitions to
the listing file.

Print Macro Calls Checked - The assembler writes macro calls to the listing file.
This setting corresponds to the MC option of the OPT directive
and to the -omc command-line option.

Cleared - The assembler does not write macro calls to the
listing file.

Print Macro Expansions Checked - The assembler writes macro expansions to the
listing file. This setting corresponds to the MEX option of the
OPT directive and to the -omex command-line option.

Cleared - The assembler does not write macro expansions to
the listing file.

3.3.5.6 Listing Format

Use this panel to specify format of the information that the assembler generates in a
listing file.

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

96 Freescale Semiconductor, Inc.

Figure 3-34. Tool Settings - Listing Format

Table 3-32 describes the various options available on the Listing Format panel.

Table 3-32. Tool Settings - Listing Format Options

Option Description

Fold Trailing Comments Checked - For each source-code statement that has a trailing
comment, the assembler moves the comment underneath
that statement. The assembler aligns the moved comment
with the opcode field. This setting corresponds to the FC
option of the OPT directive and to the -ofc command-line
option. Cleared - The assembler does not move trailing
comments underneath their corresponding source code
statements.

Form Feed for Page Ejects Checked - The assembler inserts form feeds into the listing
file. Each form feed causes a printer to eject the currently
printing page. This setting corresponds to the FF option of the
OPT directive and to the -off command-line option.

Cleared - The assembler does not insert form feeds into the
listing file.

Format Messages Checked - The assembler inserts format messages into the
listing file such that the message text aligns and breaks at
word boundaries. This setting corresponds to the FM option of
the OPT directive and to the -ofm command-line option.

Cleared - The assembler does not insert format messages
into the listing file.

Table continues on the next page...

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 97

Table 3-32. Tool Settings - Listing Format Options (continued)

Option Description

Pretty Print Listing Checked - The assembler aligns listing-file fields at fixed
column positions (without regard to the related source file's
format). This setting corresponds to the PP option of the OPT
directive and to the -opp command-line option.

Cleared - The assembler does not align listing-file fields at
fixed column positions.

Relative Comment Spacing Checked - The assembler uses relative comment spacing in
the listing file. Checking this checkbox causes the position of
comments in the listing file to float. This setting corresponds
to the RC option of the OPT directive and to the -orc
command-line option. Cleared - The assembler uses fixed
comment spacing in the listing file.

3.3.5.7 Additional Arguments

Use this panel to specify StarCore assembler additional arguments.

Figure 3-35. Tool Settings - Additional Arguments

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

98 Freescale Semiconductor, Inc.

Table 3-33 describes the various options available on the Additional Arguments panel.

Table 3-33. Tool Settings - Additional Arguments Options

Option Description

StarCore 3900 Assembler Specify additional command-line options to the assembler.
The arguments specified in this panel apply will to all
assembly language files in the current build target.

3.3.6 StarCore 3900 Preprocessor

Use this panel to specify the command, options, and expert settings for the StarCore 3900
preprocessor.

Figure 3-36. Tool Settings - StarCore 3900 Preprocessor

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 99

Table 3-34 describes the various options available on the StarCore 3900 Preprocessor
panel.

Table 3-34. Tool Settings - StarCore 3900 Preprocessor Options

Option Description

Command Shows the location of the disassembler executable file.

All options Shows the actual command line the disassembler will be
called with.

Expert Settings:

Command line pattern

Shows the expert settings command line parameters; default
is "${SCToolsInstallDir}${COMMAND}" ${FLAGS} $
{INPUTS}.

3.3.6.1 Preprocessor Settings

Use this panel to specify the Preprocessor behavior.

Figure 3-37. Tool Settings - Preprocessor Settings

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

100 Freescale Semiconductor, Inc.

Table 3-35 describes the various options available on the Preprocessor Settings panel.

Table 3-35. Tool Settings - Preprocessor Settings Options

Option Description

Keep All Comments Checked -The preprocessor preserves all the comments.

Cleared -The preprocessor does not preserve comments.

Chapter 3 Build Properties

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 101

Build Properties for StarCore

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

102 Freescale Semiconductor, Inc.

Chapter 4
Debug Configurations

A CodeWarrior project can have multiple associated debug configurations.

A debug configuration is a named collection of settings that the CodeWarrior tools use.

The CodeWarrior project wizard generates launch configurations with names that follow
the pattern projectname - configtype - targettype, where:

• projectname represents the name of the project
• configtype represents the type of launch configuration
• targettype represents the type of target software or hardware on which the launch

configuration acts

If you use the CodeWarrior wizard to create a new project, the IDE creates two debugger
related launch configurations:

• a Debug configuration that produces unoptimized code for development purposes
• a Release configuration that produces code intended for production purposes

This chapter explains:

• Using Debug Configurations Dialog Box
• Customizing Debug Configurations
• Reverting Debug Configuration Settings

4.1 Using Debug Configurations Dialog Box

The Debug Configurations dialog box allows you to specify debugger-related settings
for your CodeWarrior project.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 103

NOTE
As you modify a launch configuration's debugger settings, you
create pending, or unsaved, changes to that launch
configuration. To save the pending changes, you must click the
Apply button of the Debug Configurations dialog box, or
click the Close button and then the Yes button.

Table 4-1. Debug Configurations Dialog Box Tabs

Main

Arguments

Debugger Debug

Download

Other Executables

Symbolics

OS Awareness

Source

Environment

Common

Trace and Profile

4.1.1 Main

Use this tab to specify the project and the application you want to run or debug.

You can also specify a connection configuration on this tab.

The following figure shows the Main tab.

Using Debug Configurations Dialog Box

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

104 Freescale Semiconductor, Inc.

Figure 4-1. Debug Configurations - Main Tab

The table below lists the various sections available on the Main tab page.

Table 4-2. Main tab sections

Section

Debug Session Type

C/C++ application

Build (if required) before launching

Target settings

4.1.1.1 Debug Session Type

You can use this section to select one of the pre-defined debug session type or create a
custom debug session.

Chapter 4 Debug Configurations

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 105

The table listed below describes the options in the Debug session type section in the
Main tab page.

Table 4-3. Main Tab - Debug session type options and use cases

Option Typical Use Example

Attach Debug a target system without modifying its state at all
initially, but allow use of symbolics during actual debug.
Useful for debugging a system that is already up and running.
For more details, see Attach .

Connect Raw debug of a board without any software or symbolics.
Useful during hardware bring up, and often combined with
scripts for checking various aspects of the hardware. For
more details, see Connect .

Download Develop code that gets downloaded to the system on
debugger launch. Useful for bareboard code development
without a working bootloader. For more details, see
Download .

Custom Debug a target system using additional debugging features.
Useful when a Custom debug configuration may needs to be
transformed into an Attach or Connect configuration. For
more details, see Custom .

NOTE
The default debugger configuration causes the debugger to
cache symbolics between sessions. However, the Connect
command invalidates this cache. If you must preserve the
contents of the symbolics cache, and you plan to use the
Connect command, clear the Cache Symbolics Between
Sessions checkbox in the Symbolics page of the Debug
Configurations dialog box just before you issue the Connect
command.

The table listed below shows the debugging phases supported by the launch
configurations at the run-time.

NOTE
The CodeWarrior Attach launch configuration does not
support restarting a debugging session.

Table 4-4. CodeWarrior Launch Configurations-Run-time behavior

Startup Phase Download Attach Connect Custom

Load symbolic info for
main application

Yes Yes Not applicable Optional

Reset target Yes No Yes Optional

Initialization Yes Optional Yes Optional

Table continues on the next page...

Using Debug Configurations Dialog Box

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

106 Freescale Semiconductor, Inc.

Table 4-4. CodeWarrior Launch Configurations-Run-time behavior (continued)

Startup Phase Download Attach Connect Custom

Download Optional No Not applicable Optional

OS Awareness Optional Optional Not applicable Optional

Initialize PC Optional No Not applicable Optional

Stop at startup Optional No Not applicable Optional

4.1.1.1.1 Attach

The Attach command assumes that code is already running on the board and therefore
does not run a target initialization file.

The state of the running program is undisturbed. The debugger loads symbolic debugging
information for the current build target's executable. The result is that you have the same
source-level debugging facilities you have in a normal debug session (the ability to view
source code and variables, and so on). The function does not reset the target, even if the
launch configuration specifies this action. Further, the command loads symbolics, does
not stop the target, run an initialization script, download an ELF file, or modify the
program counter (PC).

NOTE
The debugger assumes that the current build target's generated
executable matches the code currently running on the target.

In a debugging session, the CodeWarrior Attach launch configuration skips setting up
the target hardware, and downloading the program image to that target hardware. The
code image might reside on the target hardware already, or you might want to skip setting
up the target hardware. Like the CodeWarrior Connect launch configuration, the
settings in the Arguments and Environment panels do not apply.

Although similar to a debugging session, the goal of attaching the debugger to a process
is to get insight into the current state of that process, and to do so with minimal
disturbance to its state of execution. Having the debugger attach to a process skips most
of the state-altering steps involved in starting a debugging session, such as resetting the
target, initializing the target, and downloading code. When the debugger finishes
attaching to the process, you have many of the debugging capabilities that you would
have in a debugging session (such as source-level debugging, line breakpoints,
watchpoints, console input/output, and so on).

Chapter 4 Debug Configurations

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 107

NOTE
The debugger does not support restarting debugging sessions
that you start by attaching the debugger to a process.

A process is an active program and related resources:

• Executing program code
• An address space
• One or more threads of execution. A thread is a unit of activity that has a program

counter and a set of processor registers
• A data section
• A set of resources, such as open files and pending signals

On a bareboard (without an operating system), a given core has one process: one thread
of execution executing one program in one address space. With an operating system,
there can be several processes on a given core (with one active at any given
moment).These processes either run different programs in different address spaces or
even execute the same program, sharing an address space, open files, and so on.

4.1.1.1.2 Connect

The Connect command runs the target initialization file specified in the Properties for
<Target> dialog box.

This file is responsible for setting up the board before connecting to it. The Connect
function does not load any symbolic debugging information for the current build target's
executable. You therefore do not have access to source-level debugging and variable
display. The Connect command resets the target if the launch configuration specifies this
action. Further, the command stops the target, (optionally) runs an initialization script,
does not load symbolics, download an ELF file, or modify the program counter (PC).

In a debugging session, the CodeWarrior Connect launch configuration skips
downloading the code image to the target hardware, and loading symbolics into the
debugger. Skipping these steps is useful for board initialization and bring-up. The code
might reside on the target hardware already, or you might want to skip loading symbolics
into the debugger.

Like the CodeWarrior Attach launch configuration, the settings in the Arguments and
Environment panels do not apply. The Source tab is available, however, so that you can
specify source paths in order to load an image after connecting the debugger to the target.

4.1.1.1.3 Download

Using Debug Configurations Dialog Box

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

108 Freescale Semiconductor, Inc.

The Debug command resets the target if the launch configuration specifies the action.

Further, the command stops the target, (optionally) runs an initialization script,
downloads the specified ELF file, and modifies the PC.

In a debugging session, the CodeWarrior Download launch configuration downloads
the code image to the target hardware, and loads symbolics into the debugger. The
Source tab can be used to specify source paths in order to load an image after connecting
the debugger to the target.

4.1.1.1.4 Custom

Custom debug session type provides maximum flexibility to choose between debugging
features.

4.1.1.2 C/C++ application

Use this section to control how C/C++ application is configured for the launch
configuration.

The following table lists the options in the C/C++ application section in the Main tab
page.

Table 4-5. Main Tab - C/C++ application options

Option Description

Project Specifies the project to associate with the selected debug
launch configuration. Click Browse to select a different
project.

Application

NOTE: This option is disabled when the Connect debug
session type is selected.

Check, if you want to use an target application. And, specify
the name and location of the C or C++ application in the
corresponding text box.

Clear, if you do not want to use a target application.

Search Project - Click to open the Program Selection dialog
box and select from the binary files generated for the selected
project.

Browse - Click to open the Open dialog box and select any
binary file.

Variables - Click to open the Select build variable dialog
box and select the build variables to be associated with the
program.

Chapter 4 Debug Configurations

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 109

Table 4-5. Main Tab - C/C++ application options

Option Description

NOTE: The dialog box displays an aggregation of multiple
variable databases and not all these variables are
suitable to be used from a build environment. Given
below are the variables that should be used:

• ProjDirPath - returns the absolute path of
the current project location in the file system

${ProjDirPath}/Source/main.c"

• workspace_loc - returns the absolute path of
a workspace resource in the file system, or the
location of the workspace if no argument is
specified

${workspace_loc:/ProjectName/
Source main.c"

4.1.1.3 Build (if required) before launching

Use this section to control how auto build is configured for the launch configuration.

Changing this setting overrides the global workspace setting and can provide some speed
improvements.

The following table lists the options in the Build (if required) before launching section
in the Main tab page.

Table 4-6. Main Tab - Build (if required) before launching options

Option Description

Build Configuration Specifies the configuration to build before launching the
resulting executable.

Select configuration using `C/C++ Application' Select to build the build configuration that generated the file
specified in the Application text box, before launching the
application.

When the Select configuration using `C/C++ Application'
checkbox is selected, the Build Configuration drop-down list
is disabled, and the build configuration that generated the file
specified in the Application text box is selected to be built
before launching the application.

Disable auto build Disables auto build for the launch configuration which may
improve launch performance.

Enable auto build Enables auto build for the launch configuration which can
slow down launch performance.

Use workspace settings (default) Uses the global auto build settings.

Configure Workspace Settings Opens the Launching preference panel where you can
change the workspace settings.

Using Debug Configurations Dialog Box

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

110 Freescale Semiconductor, Inc.

4.1.1.4 Target settings

Use this section to control how the target is configured for the launch configuration.

The following table lists the options in the Target settings section in the Main tab page.

Table 4-7. Main Tab - Target settings Options

Option Description

Connection Specifies the applicable connection configuration.

Edit Click to edit the selected connection configuration.

New Click to create a new connection configuration for the
selected project and application.

Execute reset sequence Check to apply reset settings, specified in the target
configuration. Alternatively, clear the option to ignore reset
settings.

NOTE: This option is disabled when the Connect or Attach
debug session type is selected.

Execute initialization script(s) Check to execute the initialization script(s), specified in the
target configuration. Alternatively, clear the option to ignore
the initialization script(s).

NOTE: This option is disabled when the Connect debug
session type is selected.

Target Select the core to be debugged. The list of cores is displayed
in the Target list, if the selected connection configuration is for
a multicore target.

4.1.2 Arguments

Use this tab to specify the program arguments that an application uses and the working
directory for a run or debug configuration.

Chapter 4 Debug Configurations

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 111

Figure 4-2. Debug Configurations-Arguments tab

The table below lists the various options available on the Arguments tab page.

Table 4-8. Arguments Tab options

Option Description

Program arguments Specifies the arguments passed on the command line.

Variables Click to select variables by name to include in the program arguments list.

Working Directory Specifies the run/debug configuration working directory.

Use default Check to specify the local directory or clear to specify a different workspace, a file
system location, or variable.

Workspace Click to specify the path of, or browse to, a workspace relative working directory.

File System Click to specify the path of, or browse to, a file system directory.

Variables Click to specify variables by name to include in the working directory.

4.1.3 Debugger

Using Debug Configurations Dialog Box

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

112 Freescale Semiconductor, Inc.

Use this tab to configure debugger settings.

The Debugger tab presents different pages for specifying different settings.

NOTE
The content in the Debugger Options panel changes,
depending on the Debug session type selected on the Main tab
page.

Figure 4-3. Debug Configurations-Debugger tab

The table below lists the various options available on the Arguments tab page.

Table 4-9. Debugger tab options

Option Description

Debugger Options Displays configuration options specific to the selected debugger type. See the following
sections for more details:

• Debug
• Download
• Other Executables
• Symbolics
• OS Awareness

NOTE
OCE feature is not supported in current release.

Chapter 4 Debug Configurations

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 113

4.1.3.1 Debug

Use this page to specify the program execution options, Breakpoint and watchpoint
options, and target access behavior.

Figure 4-4. Debugger Options-Debug Page

NOTE
The options displayed on the Debug tab varies depending on
the selected launch configuration.

The table below lists the various options available on the Debug page.

Table 4-10. Debugger Options - Debug

Option Description

Initialize program counter at Controls the initialization of program counter.
• Program entry point - Select to initialize the program counter at a

specified program entry pont.
• User specified - Select to initialize the program counter at a user-

specified function. The default location is main.

NOTE: Disabling this option will also disable the Resume program and
Stop on startup at options.

Resume program Select to resume the execution after the program counter is initialized.

Table continues on the next page...

Using Debug Configurations Dialog Box

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

114 Freescale Semiconductor, Inc.

Table 4-10. Debugger Options - Debug (continued)

Option Description

NOTE: Disabling this option will also disable the Stop on startup at
option.

Stop on startup at Stops program at specified location. When cleared, the program runs until
you interrupt it manually, or until it hits a breakpoint.

• Program entry point - Select to stop the debugger at a specified
program entry point.

• User specified - Select to stop the debugger at a user-specified
function. The default location is main.

Stop on exit Check this option to have the debugger set a breakpoint at the code's exit
point. For multicore projects, when you set this option for one project on
one core, it is set for projects on the other cores. Clear this option to
prevent the debugger from setting a breakpoint at the code's exit point.

Install regular breakpoints as Check this option to install breakpoints as either:
• Regular
• Hardware
• Software

Clear this option to install breakpoints as Regular breakpoints.

Restore watchpoints Check this option to restore previous watchpoints.

Disable display of variable values by default Check this option to disable the display of variable values. Clear this
option to enable the display of variable values

Disable display of register values by default Check this option to disable the display of register values. Clear this option
to enable the display of register values

Refresh while running period (seconds) Specifies the refresh period used when a view is configured to refresh,
while the application is running. By default, the refresh period is set to two
seconds.

4.1.3.2 Download

Use this page to specify which executable code sections the debugger downloads to the
target, and whether the debugger should read back those sections and verify them.

NOTE
Selecting all options in the Program Download Options group
significantly increases download time.

Initial Launch options apply to the first debugging session. Successive Runs options
apply to subsequent debugging sessions.

The Download options control whether the debugger downloads the specified Program
Section Data type to the target hardware. The Verify options control whether the
debugger reads the specified Program Section Data type from the target hardware and
compares the read data against the data written to the device.

Chapter 4 Debug Configurations

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 115

The Section Data type corresponds to the section defined in the linker command file
(.lcf).

Figure 4-5. Debugger Options-Download Page

The table below lists the various options available on the Download page.

Table 4-11. Debugger Options - Download

Section Data Type Explanation

Executable Controls downloading and verification for executable sections. Check appropriate
checkboxes to specify downloading and verifications, for initial launch and for
successive runs.

Constant Data Controls downloading and verification for constant-data sections. Check appropriate
checkboxes to specify downloading and verifications, for initial launch and for
successive runs.

Initialized Data Controls downloading and verification for initialized-data sections. Check appropriate
checkboxes to specify downloading and verifications, for initial launch and for
successive runs.

Uninitialized Data Controls downloading and verification for uninitialized-data sections. Check appropriate
checkboxes to specify downloading and verifications, for initial launch and for
successive runs.

Table 4-12. Section Data Type Corresponding to Linker Command file

Section Data Type Linker Command File Section Type Comments

Executable Text Program-code sections that have xflags
in the linker-command file.

Table continues on the next page...

Using Debug Configurations Dialog Box

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

116 Freescale Semiconductor, Inc.

Table 4-12. Section Data Type Corresponding to Linker Command file (continued)

Section Data Type Linker Command File Section Type Comments

Constant Data Data Program-data sections that have neither
xnor wflags in the linker command file.

Initialized Data Data Program-data sections with initial values.
These sections have wflags, but not
xflags, in the linker command file.

Uninitialized Data bss Program-data sections without initial
values. These sections have wflags, but
not xflags, in the linker-command file.

4.1.3.3 Other Executables

Use this page to specify additional ELF files to download or debug in addition to the
main executable file associated with the launch configuration.

Figure 4-6. Debugger Options-Other Executables Page

Chapter 4 Debug Configurations

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 117

The table below lists the various options available on the Other Executables page.

Table 4-13. Debugger Options - Other Executables

Option Description

File list Shows files and projects that the debugger uses during each debug session.

Debug column:
• Checked-The debugger loads

symbolics for the file.
• Cleared-The debugger does not

load symbolics for the file.

Download column:
• Checked-The debugger

downloads the file to the Target
Device.

• Cleared-The debugger does not
download the file to the Target
Device.

Add Click to open the Debug Other Executable dialog box, and add other executable
file to debug while debugging this target.

Use this dialog box to specify the following settings:

• Specify the location of the additional executable - Enter the path to the
executable file that the debugger controls in addition to the current project's
executable file. Alternatively, click the Browse button to open a dialog box
that you can use to specify the path.

• Load symbols - Check to have the debugger load symbols for the specified
file. Clear to prevent the debugger from loading the symbols. The Debug
column of the File list corresponds this setting.

• Download to device - Check to have the debugger download the specified
file to the target device. If you are debugging a Linux application, you can
enter in the Specify the remote download path text box the path on the
device to which you want to download the file.

NOTE: The Specify the remote download path option applies
just to Linux application debugging; you should leave
the text box blank for all other types of debugging
sessions.

Clear the Download to device checkbox to prevent the debugger from
downloading the file to the device. The Download column of the File list
corresponds to the Download to device setting.

• OK - Click to add the information that you specify in the Debug Other
Executable dialog box to the File list.

Change Click to change the settings for the entry currently selected in the File list column.
Change this information as needed, then click the OK button to update the entry in
the File list.

Remove Click to remove the entry currently selected in the File list.

4.1.3.4 Symbolics

Use this page to specify whether the IDE keeps symbolics in memory.

Using Debug Configurations Dialog Box

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

118 Freescale Semiconductor, Inc.

Symbolics represent an application's debugging and symbolic information. Keeping
symbolics in memory, known as caching symbolics, is beneficial when you debug a
large-size application.

Consider a situation in which the debugger loads symbolics for a large application, but
does not download content to a hardware device and the project uses custom makefiles
with several build steps to generate this application. In such a situation, caching
symbolics helps speed up the debugging process. The debugger uses the readily available
cached symbolics during subsequent debugging sessions. Otherwise, the debugger spends
significant time creating an in-memory representation of symbolics during subsequent
debugging sessions.

NOTE
Caching symbolics provides the most benefit for large
applications, where doing so speeds up application-launch time.
If you debug a small application, caching symbolics does not
significantly improve the launch times.

Figure 4-7. Debugger Options-Symbolics Page

Chapter 4 Debug Configurations

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 119

The table below lists the various options available on the Symbolics page.

Table 4-14. Debugger Options - Symbolics

Option Description

Cache Symbolics Between Sessions Check this option to have the debugger cache symbolics between
debugging sessions. If you check this checkbox and clear the Create and
Use Copy of Executable checkbox, the executable file remains locked
after the debugging session ends. In the Debug view, right-click the locked
file and select Un-target Executables to have the debugger delete its
symbolics cache and release the file lock. The IDE enables this menu
command when there are currently unused cached symbolics that it can
purge.

Clear this option so that the debugger does not cache symbolics between
debugging sessions.

Create and Use Copy of Executable Check this option to have the debugger create and use a copy of the
executable file. Using the copy helps avoid file-locking issues with the
build system. If you check this checkbox, the IDE can build the executable
file in the background during a debugging session.

Clear this option so that the debugger does not create and use a copy of
the executable file.

4.1.3.5 OS Awareness

Use this page to specify the operating system (OS) that resides on the target device.

Use the Target OS list box to specify the OS that runs on the target device, or specify
None to have the debugger use the bareboard.

For more information, see the SmartDSP OS Concepts Guide.

Using Debug Configurations Dialog Box

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

120 Freescale Semiconductor, Inc.

Figure 4-8. Debugger Options-OS Awareness Page

The table below lists the options available on the OS Awareness page.

Table 4-15. Debugger Options - OS Awareness

Option Description

Log Task Awareness Enables the logging of Task Awareness in the Kernel Awareness Log Viewer

Log Display Enables graphic Display of the log

Start log Specify the Kernel Awareness log start address

End log Specify the Kernel Awareness log end address

IP Address Specify the CommExpert IP Address

Port Number Specify the CommExpert IP Address

Log Tasks Enables the logging of Tasks in the Kernel Awareness Log Viewer

Log Software Interrupts Enables the logging of Software Interrupts in the Kernel Awareness Log Viewer

Log Hardware Interrupts Enables the logging of Hardware Interrupts in the Kernel Awareness Log Viewer

Log Spin Locks Enables the logging of Spin Locks in the Kernel Awareness Log Viewer

Log Performance Enables the logging of Performance in the Kernel Awareness Log Viewer

Factory Settings Set the log addresses and events to default values

4.1.4 Source

Chapter 4 Debug Configurations

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 121

Use this tab to specify the location of source files used when debugging a C or C++
application.

By default, this information is taken from the build path of your project.

Figure 4-9. Debug Configurations-Source Tab

The table below lists the various options available on the Source tab page.

Table 4-16. Source Tab Options

Option Description

Source Lookup Path Lists the source paths used to load an image after connecting
the debugger to the target.

Add Click to add new source containers to the Source Lookup
Path search list.

Edit Click to modify the content of the selected source container.

Remove Click to remove selected items from the Source Lookup
Path list.

Up Click to move selected items up the Source Lookup Path
list.

Down Click to move selected items down the Source Lookup Path
list.

Restore Default Click to restore the default source search list.

Table continues on the next page...

Using Debug Configurations Dialog Box

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

122 Freescale Semiconductor, Inc.

Table 4-16. Source Tab Options (continued)

Option Description

Search for duplicate source files on the path Select to search for files with the same name on a selected
path.

4.1.5 Environment

Use this tab to specify the environment variables and values to use when an application
runs.

Figure 4-10. Debug Configurations-Environment Tab

The table below lists the various options available on the Environment tab page.

Table 4-17. Environment Tab Options

Option Description

Environment Variables to set Lists the environment variable name and its value.

New Click to create a new environment variable.

Table continues on the next page...

Chapter 4 Debug Configurations

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 123

Table 4-17. Environment Tab Options (continued)

Option Description

Select Click to select an existing environment variable.

Edit Click to modify the name and value of a selected environment
variable.

Remove Click to remove selected environment variables from the list.

Append environment to native environment Select to append the listed environment variables to the
current native environment.

Replace native environment with specified environment Select to replace the current native environment with the
specified environment set.

4.1.6 Common

Use this tab to specify the location to store your run configuration, standard input and
output, and background launch options.

Figure 4-11. Debug Configurations-Common Tab

Using Debug Configurations Dialog Box

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

124 Freescale Semiconductor, Inc.

The table below lists the various options available on the Common tab page.

Table 4-18. Common Tab Options

Option Description

Local file Select to save the launch configuration locally.

Shared file Select to specify the path of, or browse to, a workspace to store the launch
configuration file, and be able to commit it to a repository.

Display in favorites menu Select to add the configuration name to Run or Debug menus for easy selection.

Console Encoding Select an encoding scheme to use for console output.

Allocate Console (necessary for
input)

Select to assign a console view to receive the output.

File Specify the file name to save output. .

Browse Workspace Specifies the path of, or browse to, a workspace to store the output file.

Browse File System Specifies the path of, or browse to, a file system directory to store the output file.

Variables Select variables by name to include in the output file.

Append Select to append output. Clear to recreate file each time.

Port Select to redirect standard output (stdout, stderr) of a process being debugged to
a user specified socket.

NOTE: You can also use the redirect command in debugger shell to redirect
standard output streams to a socket.

Act as Server Select to redirect the output from the current process to a local server socket bound to
the specified port.

Hostname/IP Address Select to redirect the output from the current process to a server socket located on the
specified host and bound to the specified port. The debugger will connect and write to
this server socket via a client socket created on an ephemeral port

Launch in background Select to launch configuration in background mode.

4.1.7 Trace and Profile

Use this page to configure the selected launch configuration for simulator and hardware
profiling.

NOTE
Trace and Profile is available only for PACC and QDS targets.

Chapter 4 Debug Configurations

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 125

Figure 4-12. Debug Configurations-Trace and Profile Tab (PACC Simulator Target)

The table listed below explains the Trace and Profile tab options for PACC simulator
targets.

Table 4-19. Trace and Profile Tab Options (PACC Simulator Target)

Option Description

Basic Tab

Enable logging Check Enable Logging checkbox if you want that a log file is
created. The log file has details of the actions that takes place
while collecting the trace data. For example, when the debug
session is terminated or when the target execution resumed
or stopped.

Output Folder Specify the location of folder that will store the trace and
profile results.

Communication port number Used in TCP/IP communication between software analysis
and CCSSIM2. You should choose the free port no. from
interval 0-65535.

Intermediate Tab

Automatically (when debug session starts) The trace collection process is started automatically when the
debug session is launched.

Manually (using debug toolbar trace buttons) This is the default behavior. This option is used when you
want to manually control the trace collection. The trace
collection process will not be started automatically on debug
session launch, but the trace configuration options are
applied, when you click on Start Trace Collection button.

Using Debug Configurations Dialog Box

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

126 Freescale Semiconductor, Inc.

Figure 4-13. Debug Configurations - Trace and Profile Tab (QDS Hardware Target)

The table listed below explains the Trace and Profile tab options for the QDS hardware
targets.

Table 4-20. Trace and Profile Tab Options (QDS Hardware Target)

Option Description

Basic Tab

Trace module configured by User Code Allows to do the trace settings in the
code without using the Trace and Profile
page of Debug launch.

CodeWarrior Allows to do the trace settings using
Trace and Profile page of Debug launch

Trace Scenario Profiling - L2 cache events Trace values of counters of both triad A
and B on subroutine/interrupt call/return
instructions

Profiling - data loads Trace values of counters of both triad A
and B on subroutine/interrupt call/return
instructions

Profiling - clock cycles Trace values of counters of triad A on
subroutine/interrupt call/return
instructions

Table continues on the next page...

Chapter 4 Debug Configurations

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 127

Table 4-20. Trace and Profile Tab Options (QDS Hardware Target) (continued)

Option Description

Profiling - advanced Traces each change of flow instructions

Program trace Trace values of counters of both triad A
and B on subroutine/interrupt call/return
instructions

Coverage For C source lines, displays the
percentage of number of assembly
instructions executed from the total
number of assembly instructions
corresponding to the source line. For
assembly source lines, it shows if the
instructions were executed or not

None Traces only subroutine/interrupt call/
return instructions

Extend Trace Scenario with: Ownership Trace Traces information on current task ID.
Ownership trace facilitates tracking the
active operating system task by
providing visibility to the special purpose
registers designated for use by the OS
for process ID

User defined events Traces any write to TMDAT and TMTAG
core registers

Bandwidth Each default trace scenario has a
specific bandwidth. The bandwidth
indicates how many messages are
routed in trace stream, on hardware,
depending on used trace scenario to
collect trace

Intermediate Tab

Trace collection One Buffer When the buffer is full, tracing stops, but
not the target.

Overwrite Continue to write trace to buffer by
overwriting old records in buffer - circular
buffer.

Continuos Collects trace continuously till you
suspend the target application.

Location NPC Buffer Saves trace data in NPC internal buffer.

Gigabit TAP + Trace Saves trace data in probe buffer.

Probe buffer size (bytes) Specifies the size of the probe buffer.

DDR buffer Saves trace data in DDR. Magenta is the
bus that transfers trace data from NPC
internal buffer to DDR.

Buffer start address Specifies the start address of the DDR
where trace data is saved.

Buffer size Specifies the DDR memory size of the
region used as trace buffer.

Use settings from LCF file Uses trace buffer start address and size
from linker files. File common.l3k
contains _TRACE_BUFFER_size and

Table continues on the next page...

Using Debug Configurations Dialog Box

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

128 Freescale Semiconductor, Inc.

Table 4-20. Trace and Profile Tab Options (QDS Hardware Target) (continued)

Option Description

_TRACE_BUFFER_start variables that
allow you to change the start address
and size. File mmu_attr.l3k contains
_ENABLE_TB variable that allows to
enable and disable settings for trace
buffer from linker's files.

Trace Control Settings Allows you to specify trace configuration
settings.

Automatically (when debug session
starts)

The trace collection process is started
automatically when the debug session is
launched.

Manually (using debug toolbar trace
buttons)

This is the default behavior. This option
is used when you want to manually
control the trace collection. The trace
collection process will not be started
automatically on debug session launch,
but the trace configuration options are
applied, when you click on the Start
Trace Collection button.

Advanced Tab

Triad Settings Triad A In the Advanced tab, you need to
configure triad settings if you have
selected Profile trace checkbox in
Customize Trace Scenario. After
selecting Profile trace checkbox, the
default profiling events are mapped on
Triad A - L1 Icache Access Sorting and
Triad B - Program L1 L2 Cacheable
Access Sorting.

Triad B

NOTE
For more details about the Trace and Profile tab options, see
the CodeWarrior Development Studio for StarCore SC3900FP
DSP Architectures Tracing and Analysis Tools User Guide.

4.2 Customizing Debug Configurations

When you use the CodeWarrior wizard to create a new project, the wizard sets the
project's launch configurations to default values.

You can change the default values of your project's launch configurations, according to
your program's requirements.

To modify the launch configurations:

Chapter 4 Debug Configurations

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 129

1. Start the CodeWarrior IDE.
2. From the main menu bar of the IDE, select Run > Debug Configurations.

The Debug Configurations dialog box appears. The left side of this dialog box has a
list of debug configurations that apply to the current application.

3. Expand the CodeWarrior configuration.
4. From the expanded list, select the debug configuration that you want to modify.

The follwoing figure shows the Debug Configurations dialog box with the settings
for the debug configuration you selected.

Figure 4-14. Debug Configurations Dialog Box
5. In the group of tabs in the upper-right side of the dialog box, click a tab.
6. Change the settings on the debug configuration page as per your requirements. See

Using Debug Configurations Dialog Box for details on the various settings of this
page.

7. Click Apply to save the new settings.

When you finish, you can click Debug to start a new debugging session, or click Close to
save your changes and close the Debug Configurations dialog box.

Customizing Debug Configurations

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

130 Freescale Semiconductor, Inc.

4.3 Reverting Debug Configuration Settings

After making some modifications in a debug configuration's settings, you can either save
the pending (unsaved) changes or revert to last saved settings.

To save the pending changes, click the Apply button of the Debug Configurations
dialog box, or click the Close button and then the Yes button.

To undo pending changes and restore the last saved settings, click the Revert button at
the bottom of the Debug Configurations dialog box.

The IDE restores the last set of saved settings to all pages of the Debug Configurations
dialog box. Also, the IDE disables the Revert button until you make new pending
changes.

Chapter 4 Debug Configurations

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 131

Reverting Debug Configuration Settings

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

132 Freescale Semiconductor, Inc.

Chapter 5
Working with Debugger

This chapter explains various aspects of CodeWarrior debugging, such as debugging a
project, configuring connections, setting breakpoints and watchpoints, working with
registers, viewing memory, viewing cache, and debugging externally built executable
files.

NOTE
This chapter documents debugger features that are specific to
CodeWarrior Development Studio for StarCore 3900FP DSP
Architectures. For more information on debugger features that
are common in all CodeWarrior products, see CodeWarrior
Development Studio Common Features Guide.

This chapter explains:

• Debugging a CodeWarrior project
• Configuring Connections
• Editing remote system configuration
• Working with Breakpoints
• Working with Watchpoints
• Working with Registers
• Viewing memory
• Viewing Cache
• Changing Program Counter Value
• Hard resetting
• Per Core Reset
• Setting Stack Depth
• Import a CodeWarrior Executable file Wizard
• Debugging Externally Built Executable Files

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 133

5.1 Debugging a CodeWarrior project

This section explains how to debug a CodeWarrior project.

This section describes the following two ways of debugging a CodeWarrior project:

• Debugging Project Using Simulator
• Debugging Project using Target Hardware

5.1.1 Debugging Project Using Simulator

This section describes how to debug a project using simulator.

To debug a CodeWarrior project using a simulator, follow these steps:

1. Select the project you want to debug in the CodeWarrior Projects view.
2. From the CodeWarrior IDE menu bar, select Run > Debug Configurations.

The Debug Configurations dialog box appears, as shown in the figure below.

Debugging a CodeWarrior project

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

134 Freescale Semiconductor, Inc.

Figure 5-1. Debug Configurations Dialog Box
3. Select the required launch configuration, for example B4860-

Sim_Debug_B4860_Download_core00.

You can also debug the B4860 simulator projects using the B4860 instruction set
simulator (ISS) supported on Linux 64-bit operating system.

a. In the Connection area, click Edit.

The Properties for <project> dialog box appears (shown in the figure below).

b. Select CCSSIM2 ISS from the Connection type drop-down list.
c. In the Connection tab, select the Manual Launch option.
d. Specify the IP address of the Linux 64-bit machine, CCSSIM2 is started on, in

the Server hostname/IP text box.

NOTE
For information about launching simulator on a Linux
PC, see "Creating, Building, and Debugging a Project"
section in CodeWarrior for StarCore 3900FP DSPs -
Windows Edition Quick Start.

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 135

e. Specify the port number used while launching the CCSSIM2 in the Server port
number text box.

Figure 5-2. Properties for <Project> Dialog Box
f. Click OK.

4. Configure the launch configuration settings, using the various tabs available in the
Debug Configurations dialog box.

5. Click Debug.

The debugger downloads your program to the selected core, switches to the Debug
perspective, and halts execution at first statement of main().

6. Similarly, download your program to all the other cores.

The Debug view displays all the threads associated with the cores.

7. Click Multicore Resume in the Debug view (see the figure below) to resume all
cores.

Debugging a CodeWarrior project

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

136 Freescale Semiconductor, Inc.

Figure 5-3. Multi-core Debugging - Resume All Cores
8. Select Run > Multicore Terminate.

NOTE
For details on multi-core debugging, see the Multi-Core
Debugging chapter.

The debugger terminates the active debug session. The threads associated with each
core in the Debug view disappear.

You just finished debugging a simulator project.

5.1.2 Debugging Project using Target Hardware

This section describes how to debug a project using target hardware.

To debug a CodeWarrior project using target hardware, follow these steps:

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 137

1. Select the hardware project you want to debug in the CodeWarrior Projects view.
2. From the CodeWarrior IDE menu bar, select Run > Debug Configurations.

The Debug Configurations dialog box appears, as shown in the figure below.

Figure 5-4. Debug Configurations Dialog Box
3. Select the required launch configuration, for example

board_project_Debug_B4860_Download_core00.
4. Click Edit next to the Connection drop-down list.

The Properties for <connection> dialog box appears (shown in the figure below).

5. Select required TAP connection from the Connection type drop-down list. For
example, Ethernet TAP.

6. Enter the JTAG clock speed in the JTAG clock speed text box.
7. Specify the hostname/IP of the target board in the Server hostname/IP text box.
8. Specify the port number in the Server port number text box.

Debugging a CodeWarrior project

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

138 Freescale Semiconductor, Inc.

Figure 5-5. Properties for <connection> Dialog Box - Connection Settings
9. Click OK.

10. Configure the launch configuration settings, using the various tabs available in the
Debug Configurations dialog box.

11. Click Apply.
12. Click Debug.

The debugger downloads your program to the selected core, switches to the
Debug perspective, and halts execution at first statement of main().

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 139

Figure 5-6. Debugging - Target Board Project
13. Select Run > Terminate.

The debugger terminates the active debug session.

NOTE
For details on multi-core debugging, see the Multi-Core
Debugging chapter.

You just finished debugging a project using the target board.

5.2 Configuring Connections

This section describes how to configure the debugger connections.

Configuring Connections

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

140 Freescale Semiconductor, Inc.

The CodeWarrior debugger can communicate with StarCore devices in several ways. The
table below lists each StarCore device along with the protocols the debugger can use to
communicate with that device.

Table 5-1. Debugger Communication Protocols for StarCore Devices

Device family StarCore device CCS Simulator TAP

Qonverge B4060 QDS

B4420 QDS

B4420 ISS

B4460 QDS

B4860 QDS

B4860 ISS

G4860 QDS

SC3900 SC3900fp Platform ISS

SC3900fp Platform
PACC

In this section:

• CodeWarrior Connection Server
• Connection types

5.2.1 CodeWarrior Connection Server

The CodeWarrior Connection Server (CCS) provides a TCP/IP connection point for
debugger communications.

If you run a CCS instance on your computer, remote instances of the CodeWarrior
debugger can access each target board connected to your system. Similarly, each instance
of the CodeWarrior debugger can access the target boards connected to each remote
computer that runs a CCS instance.

In this section:

• Running CCS

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 141

• Displaying CCS Console
• Configuring CCS

5.2.1.1 Running CCS

Each time you debug a project that uses a local CCS connection, the CodeWarrior IDE
automatically starts CCS if it is not running already. Also, you can run CCS yourself
from this location, where <CWInstallDir> is the path to your CodeWarrior installation:

<CWInstallDir>\ccs\bin\ccs.exe

If CCS is running, the icon appears in the Windows® taskbar. Right-click this icon to
display the CCS context menu. The menu has these commands:

• Show Console: Displays the CCS console
• Hide Console: Hides the CCS console
• About CCS: Displays version information
• Quit CCS: Terminates CCS

5.2.1.2 Displaying CCS Console

The CodeWarrior Connection Server (CCS) console allows you to view and change
server-connection options. You can issue commands by typing them into the command-
line window or by selecting options from the console's menus.

To display CCS console, follow these steps:

1. Run <CWInstallDir>\ccs\bin\ccs.exe, where <CWInstallDir> is the path to your
CodeWarrior installation.

CCS starts and the icon appears in the Windows® taskbar.

2. Right-click the CCS icon and select Show console from the context menu.

The CodeWarrior Connection Server console appears, as shown in the figure
below.

Configuring Connections

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

142 Freescale Semiconductor, Inc.

Figure 5-7. CodeWarrior Connection Server Console

5.2.1.3 Configuring CCS

CodeWarrior Connection Server uses parallel port 1 to communicate with a target device
and listens for commands on port 41475. The CCS connection configuration can be set
up using the ccs.cfg file. CCS reads ccs.cfg for start up commands to configure the
connection. ccs.cfg is located in <CWInstallDir>\ccs\bin\. To change these default settings,
follow these steps:

1. Run <CWInstallDir>\ccs\bin\ccs.exe, where <CWInstallDir> is the path to your
CodeWarrior installation.

CCS starts and the icon appears in the Windows® taskbar.

2. Right-click the CCS icon and select Show console from the context menu.

The CodeWarrior Connection Server console appears.

3. At the console command prompt, issue these commands:
a. delete all

This command deletes the current CCS configuration.

b. config cc

where cc can be:

• parallel:<#>
• lpt (same as parallel)
• epp:<#>

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 143

• usb

• powertap:<ipaddr>
• wiretap:<#>
• lspusb

This command defines the command converter that CCS uses.

c. config port port_num

where port_num is the port on which CCS listens for commands. The default
CCS port number is 41475.

4. Right click the CCS icon.

The CCS context menu appears.

5. Select Quit CCS from this menu.

CodeWarrior Connection Server console exits.

NOTE
Any changes you make to the CCS configuration are
permanent. They persist from one CCS session to the next.

You have modified the default CCS settings.

5.2.2 Connection types

This section describes the different connection types provided by CodeWarrior debugger
for connecting the target board to a computer.

The connection types supported by CodeWarrior debugger are:

• CCSSIM2 ISS
• CCSSIM2 PACC
• Ethernet TAP
• Gigabit TAP + Trace
• Gigabit TAP
• USB TAP
• CodeWarrior TAP

Configuring Connections

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

144 Freescale Semiconductor, Inc.

5.2.2.1 CCSSIM2 ISS

Select this connection type to connect to simulators based on the CCSSIM2 ISS interface.

To configure the settings of the CCSSIM2 ISS connection type, perform the following
steps:

1. Select Run > Debug Configurations.

The Debug Configurations dialog box appears.

2. In the Connection group, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> window appears.

3. Select CCSSIM2 ISS from the Connection type drop-down list.

The Connection and Advanced tabs display options with respect to the settings of
the selected connection type.

The table below describes various options available on the Connection tab page.

Table 5-2. CCSSIM2 ISS - Connection Tab Options

Option Description

CCS server Automatic launch Select to automatically launch the specified CCS
server on the specified port.

Server port number Specifies the port number to launch the CCS
server on.

CCS executable Select to specify the path of, or browse to, the
executable file of the CCS server.

Manual launch Select to manually launch the specified CCS
server on the specified port.

Server hostname/IP Specifies hostname or the IP address of the CCS
server.

Server port number Specifies the port number to launch the CCS
server on.

The table below describes the various options available on the Advanced tab page.

Table 5-3. CCSSIM2 ISS - Advanced Tab Options

Option Description

Target connection lost settings Try to reconnect If this option is selected, the lost CCS connection
between the target and host is reset. Select the
Timeout checkbox to specify the time interval (in
seconds) after which the connection will be lost.

Table continues on the next page...

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 145

Table 5-3. CCSSIM2 ISS - Advanced Tab Options (continued)

Option Description

Terminate the debug session If this option is selected, the debug session is
terminated and the lost connection between
JTAG and CCS server is not reset.

Ask me This is the default setting. If the CCS connection
is lost between the target and host, the user is
asked if the connection needs to be reset or
terminated.

Advanced CCS settings CCS timeout Specifies the CCS timeout period. If the target
does not respond in the provided time-interval,
you receive a CCS timeout error.

Enable logging Select to display protocol logging in console.

5.2.2.2 CCSSIM2 PACC

Select this connection type to connect to simulators based on the CCSSIM2 PACC
interface.

NOTE
CCSSIM2 PACC connection is available only for the SC3900fp
target.

To configure the settings of the CCSSIM2 PACC connection type, perform the
following steps:

1. Select Run > Debug Configurations.

The Debug Configurations window appears.

2. In the Connection group, click the Edit button next to the Connection drop-down
list.

The Properties for <connection launch configuration> window appears.

3. Select CCSSIM2 PACC from the Connection type drop-down list.

The Connection and Advanced tabs display options with respect to the settings of
the selected connection type.

The table below describes various options available on the Connection tab page.

Configuring Connections

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

146 Freescale Semiconductor, Inc.

Table 5-4. CCSSIM2 PACC - Connection Tab Options

Option Description

CCS Server Automatic launch Select to automatically launch the specified CCS
server on the specified port.

Server port number Specifies the port number to launch the CCS
server on.

CCS executable Select to specify the path of, or browse to, the
executable file of the CCS server.

Manual launch Select to manually launch the specified CCS
server on the specified port.

Server hostname/IP Specifies hostname or the IP address of the CCS
server.

Server port number Specifies the port number to launch the CCS
server on.

The table below describes the various options available on the Advanced tab page.

Table 5-5. CCSSIM2 PACC - Advanced Tab Options

Option Description

Target connection lost settings Try to reconnect If this option is selected, the lost CCS connection
between the target and host is reset. Select the
Timeout checkbox to specify the time interval (in
seconds) after which the connection will be lost.

Terminate the debug session If this option is selected, the debug session is
terminated and the lost connection between
JTAG and CCS server is not reset.

Ask me This is the default setting. If the CCS connection
is lost between the target and host, the user is
asked if the connection needs to be reset or
terminated.

Advanced CCS settings CCS timeout Specifies the CCS timeout period. If the target
does not respond in the provided time-interval,
you receive a CCS timeout error.

Enable logging Select to display protocol logging in console.

5.2.2.3 Ethernet TAP

The CodeWarrior and Ethernet TAP and USB TAP hardware use emulation technology
to control and provide visibility into your target system. They let you control and debug
software running in-target, with minimal intrusion into target operation. You use the
OnCE connector on your target hardware to interface with the TAP hardware.

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 147

Select this connection type when Ethernet network is used as interface to communicate
with the hardware device.

To configure the settings of an Ethernet TAP connection type, perform the following
steps:

1. Select Run > Debug Configurations.

The Debug Configurations dialog box appears.

2. In the Connection group, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> window appears.

3. Select the Ethernet TAP from the Connection type drop-down list.

The Connection and Advanced tabs display options with respect to the settings of
the selected connection type.

The table below describes various options available on the Connection tab page.

Table 5-6. Ethernet TAP - Connection Tab Options

Option Description

Ethernet TAP Hostname/IP Specifies hostname or the IP address of the TAP.

JTAG settings JTAG clock speed (kHz) Specifies the JTAG clock speed.

CCS server Automatic launch Select to automatically launch the specified CCS
server on the specified port.

Server port number Specifies the port number to launch the CCS
server on.

CCS executable Click to specify the path of, or browse to, the
executable file of the CCS server.

Manual launch Select to manually launch the specified CCS
server on the specified port.

Server hostname/IP Specifies hostname or the IP address of the CCS
server.

Server port number Specifies the port number to launch the CCS
server on.

Connect server to TAP Select to enable the CCS server to connect to
the TAP.

The table below describes the various options available on the Advanced tab page.

Table 5-7. Ethernet TAP - Advanced Tab Options

Option Description

Target connection lost settings Try to reconnect If this option is selected, the lost CCS connection
between the target and host is reset. Select the

Table continues on the next page...

Configuring Connections

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

148 Freescale Semiconductor, Inc.

Table 5-7. Ethernet TAP - Advanced Tab Options (continued)

Option Description

Timeout checkbox to specify the time interval (in
seconds) after which the connection will be lost.

Terminate the debug session If this option is selected, the debug session is
terminated and the lost connection between
JTAG and CCS server is not reset.

Ask me This is the default setting. If the CCS connection
is lost between the target and host, the user is
asked if the connection needs to be reset or
terminated.

Advanced CCS settings CCS timeout Specifies the CCS timeout period. If the target
does not respond in the provided time-interval,
you receive a CCS timeout error.

Enable logging Select to display protocol logging in console.

JTAG config file This panel displays the JTAG configuration file
being used. This panel is populated only if you
have selected a JTAG configuration file for your
project. If a JTAG configuration file is not
selected, this panel displays a None value. For
more details on JTAG configuration files, see
Creating a JTAG Initialization File and Setting
Launch Configurations.

Advanced TAP settings Force shell download Select to force a reload of the TAP shell
software.

5.2.2.4 Gigabit TAP + Trace

Select this connection type when Gigabit TAP and Trace is used as interface to
communicate with the hardware device.

To configure the settings of a Gigabit TAP + Trace connection type, perform the
following steps:

1. Select Run > Debug Configurations.

The Debug Configurations dialog box appears.

2. In the Connection group, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> window appears.

3. Select the Gigabit TAP + Trace from the Connection type drop-down list.

The Connection and Advanced tabs display the options with respect to the settings
of the selected connection type.

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 149

The table below describes various options available on the Connection tab page.

Table 5-8. Gigabit TAP + Trace - Connection Tab Options

Option Description

Gigabit TAP + Trace Hostname/IP Specifies hostname or the IP address of the TAP.

Debug connection Specifies the type of debug connection to use.
The options available are JTAG over JTAG cable
connection, JTAG over Aurora cable connection,
and Aurora connection.

JTAG settings JTAG clock speed (kHz) Specifies the JTAG clock speed.

Aurora settings Aurora data rate Specifies the Aurora data rate, which refers to
the frequency with which the raw data bits are
transferred on the wire. The Aurora connection is
used only for trace analysis.

Receive lanes Select to specify the Aurora receive lane settings.

Transmit lanes Select to specify the Aurora transmit lane
settings.

CCS server Automatic launch Select to automatically launch the specified CCS
server on the specified port.

Server port number Specifies the port number to launch the CCS
server on.

CCS executable Select to specify the path of, or browse to, the
executable file of the CCS server.

Manual launch Select to manually launch the specified CCS
server on the specified port.

Server hostname/IP Specifies hostname or the IP address of the CCS
server.

Server port number Specifies the port number to launch the CCS
server on.

Connect server to TAP Select to enable the CCS server to connect to
the TAP.

The table below describes the various options available on the Advanced tab page.

Table 5-9. Gigabit TAP + Trace - Advanced Tab Options

Option Description

Target connection lost settings Try to reconnect If this option is selected, the lost CCS connection
between the target and host is reset. Select the
Timeout checkbox to specify the time interval (in
seconds) after which the connection will be lost.

Terminate the debug session If this option is selected, the debug session is
terminated and the lost connection between
JTAG and CCS server is not reset.

Ask me This is the default setting. If the CCS connection
is lost between the target and host, the user is
asked if the connection needs to be reset or
terminated.

Table continues on the next page...

Configuring Connections

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

150 Freescale Semiconductor, Inc.

Table 5-9. Gigabit TAP + Trace - Advanced Tab Options (continued)

Option Description

Advanced CCS settings CCS timeout Specifies the CCS timeout period. If the target
does not respond in the provided time-interval,
you receive a CCS timeout error.

Enable logging Select to display protocol logging in console.

JTAG config file This panel displays the JTAG configuration file
being used. This panel is populated only if you
have selected a JTAG configuration file for your
project. If a JTAG configuration file is not
selected, this panel displays a None value. For
more details on JTAG configuration files, see
Creating a JTAG Initialization File and Setting
Launch Configurations.

Advanced TAP settings Force shell download Select to force a reload of the TAP shell
software.

5.2.2.5 Gigabit TAP

Select this connection type when Gigabit TAP is used as interface to communicate with
the hardware device.

To configure the settings of a Gigabit TAP connection type, perform the following steps:

1. Select Run > Debug Configurations.

The Debug Configurations dialog box appears.

2. In the Connection group, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> window appears.

3. Select the Gigabit TAP from the Connection type drop-down list.

The Connection and Advanced tabs display options with respect to the settings of
the selected connection type.

The table below describes various options available on the Connection tab page.

Table 5-10. Gigabit TAP - Connection Tab Options

Option Description

Gigabit TAP Hostname/IP Specifies hostname or the IP address of the TAP.

JTAG settings JTAG clock speed (kHz) Specifies the JTAG clock speed.

Table continues on the next page...

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 151

Table 5-10. Gigabit TAP - Connection Tab Options (continued)

Option Description

CCS server Automatic launch Select to automatically launch the specified CCS
server on the specified port.

Server port number Specifies the port number to launch the CCS
server on.

CCS executable Click to specify the path of, or browse to, the
executable file of the CCS server.

Manual launch Select to manually launch the specified CCS
server on the specified port.

Server hostname/IP Specifies hostname or the IP address of the CCS
server.

Server port number Specifies the port number to launch the CCS
server on.

Connect server to TAP Select to enable the CCS server to connect to
the TAP.

The table below describes the various options available on the Advanced tab page.

Table 5-11. Gigabit TAP - Advanced Tab Options

Option Description

Target connection lost settings Try to reconnect If this option is selected, the lost CCS connection
between the target and host is reset. Select the
Timeout checkbox to specify the time interval (in
seconds) after which the connection will be lost.

Terminate the debug session If this option is selected, the debug session is
terminated and the lost connection between
JTAG and CCS server is not reset.

Ask me This is the default setting. If the CCS connection
is lost between the target and host, the user is
asked if the connection needs to be reset or
terminated.

Advanced CCS settings CCS timeout Specifies the CCS timeout period. If the target
does not respond in the provided time-interval,
you receive a CCS timeout error.

Enable logging Select to display protocol logging in console.

JTAG config file This panel displays the JTAG configuration file
being used. This panel is populated only if you
have selected a JTAG configuration file for your
project. If a JTAG configuration file is not
selected, this panel displays a None value. For
more details on JTAG configuration files, see
Creating a JTAG Initialization File and Setting
Launch Configurations.

Advanced TAP settings Force shell download Select to force a reload of the TAP shell
software.

Configuring Connections

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

152 Freescale Semiconductor, Inc.

5.2.2.6 USB TAP

Select this connection type when USB TAP is used as interface to communicate with the
hardware device.

To configure the settings of a USB TAP connection type, perform the following steps:

1. Select Run > Debug Configurations.

The Debug Configurations dialog box appears.

2. In the Connection group, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> window appears.

3. Select USB TAP from the Connection type drop-down list.

The Connection and Advanced tabs display the options with respect to the settings
of the selected connection type.

4. n

The table below describes various options available on the Connection tab page.

Table 5-12. USB TAP - Connection Tab Options

Option Description

USB TAP USB serial number Select and specify the USB serial number of the
USB TAP, required only if using multiple USB
TAPs.

JTAG settings JTAG clock speed (kHz) Specifies the JTAG clock speed.

CCS server Automatic launch Select to automatically launch the specified CCS
server on the specified port.

Server port number Specifies the port number to launch the CCS
server on.

CCS executable Click to specify the path of, or browse to, the
executable file of the CCS server.

Manual launch Select to manually launch the specified CCS
server on the specified port.

Server hostname/IP Specifies hostname or the IP address of the CCS
server.

Server port number Specifies the port number to launch the CCS
server on.

Connect server to TAP Select to enable the CCS server to connect to
the TAP.

The table below describes the various options available on the Advanced tab page.

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 153

Table 5-13. USB TAP - Advanced Tab Options

Option Description

Target connection lost settings Try to reconnect If this option is selected, the lost CCS connection
between the target and host is reset. Select the
Timeout checkbox to specify the time interval (in
seconds) after which the connection will be lost.

Terminate the debug session If this option is selected, the debug session is
terminated and the lost connection between
JTAG and CCS server is not reset.

Ask me This is the default setting. If the CCS connection
is lost between the target and host, the user is
asked if the connection needs to be reset or
terminated.

Advanced CCS settings CCS timeout Specifies the CCS timeout period. If the target
does not respond in the provided time-interval,
you receive a CCS timeout error.

Enable logging Select to display protocol logging in console.

JTAG config file This panel displays the JTAG configuration file
being used. This panel is populated only if you
have select a JTAG configuration file for your
project. If a JTAG configuration file is not
selected, this panel displays a None value. For
more details on JTAG configuration files, see
Creating a JTAG Initialization File and Setting
Launch Configurations.

Advanced TAP settings Force shell download Select to force a reload of the TAP shell
software.

5.2.2.7 CodeWarrior TAP

Select this connection type when either the CodeWarrior TAP is used as interface to
communicate with the hardware device.

To configure the settings of a CodeWarrior TAP connection type, perform the
following steps:

1. Select Run > Debug Configurations.

The Debug Configurations dialog box appears.

2. In the Connection group, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> window appears.

3. Select CodeWarrior TAP from the Connection type drop-down list.

Configuring Connections

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

154 Freescale Semiconductor, Inc.

The Connection and Advanced tabs display the options with respect to the settings
of the selected connection type.

The table below describes various options available on the Connection tab page.

Table 5-14. CodeWarrior TAP - Connection Tab Options

Option Description

CodeWarrior TAP Hardware Connection Specifies CodeWarrior TAP interface to
communicate with the hardware device.
CodeWarrior TAP supports both USB and
Ethernet network interfaces.

Hostname/IP Specifies hostname or the IP address of the TAP.

NOTE: Enabled only if Hardware Connection
is set to Ethernet.

Serial Number Select and specify the USB serial number of the
USB TAP; required only if using multiple
CodeWarror TAPs (over USB).

NOTE: Enabled only if Hardware Connection
is set to USB.

JTAG settings JTAG clock speed (kHz) Specifies the JTAG clock speed.

CCS server Automatic launch Select to automatically launch the specified CCS
server on the specified port.

Server port number Specifies the port number to launch the CCS
server on.

CCS executable Click to specify the path of, or browse to, the
executable file of the CCS server.

Manual launch Select to manually launch the specified CCS
server on the specified port.

Server hostname/IP Specifies hostname or the IP address of the CCS
server.

Server port number Specifies the port number to launch the CCS
server on.

Connect server to TAP Select to enable the CCS server to connect to
the CodeWarrior TAP.

The table below describes the various options available on the Advanced tab page.

Table 5-15. CodeWarrior TAP - Advanced Tab Options

Option Description

Target connection lost settings Try to reconnect If this option is selected, the lost CCS connection
between the target and host is reset. Select the
Timeout checkbox to specify the time interval (in
seconds) after which the connection will be lost.

Terminate the debug session If this option is selected, the debug session is
terminated and the lost connection between
JTAG and CCS server is not reset.

Table continues on the next page...

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 155

Table 5-15. CodeWarrior TAP - Advanced Tab Options (continued)

Option Description

Ask me This is the default setting. If the CCS connection
is lost between the target and host, the user is
asked if the connection needs to be reset or
terminated.

Advanced CCS settings CCS timeout Specifies the CCS timeout period. If the target
does not respond in the provided time-interval,
you receive a CCS timeout error.

Enable logging Select to display protocol logging in console.

JTAG config file This panel displays the JTAG configuration file
being used. This panel is populated only if you
have select a JTAG configuration file for your
project. If a JTAG configuration file is not
selected, this panel displays a None value. For
more details on JTAG configuration files, see
Creating a JTAG Initialization File and Setting
Launch Configurations.

Advanced TAP settings Force shell download Select to force a reload of the TAP shell
software.

You can connect to the CodeWarrior TAP connection using two options:
• CodeWarrior TAP - JTAG Connection through USB
• CodeWarrior TAP - JTAG Connection through Ethernet

5.2.2.7.1 CodeWarrior TAP - JTAG Connection through USB

This section describes how to connect to a board using the CodeWarrior TAP – JTAG
physical connection through USB.

To connect perform the following steps:

1. Select Run > Debug Configurations.

The Debug Configurations dialog box appears.

2. In the Connection group, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> dialog box appears.

3. Select CodeWarrior TAP from the Connection type drop-down list.
4. Select USB from the Hardware connection drop-down list.
5. If you have more than one target connected to your machine through USB, then you

have specify the serial number of the device for the connection, for this check the
corresponding checkbox and specify the correct serial number in the text box (Figure
5-8).

Configuring Connections

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

156 Freescale Semiconductor, Inc.

NOTE
The CodeWarrior TAP USB serial number is its MAC
address.

Figure 5-8. CodeWarrior TAP - USB Connection
6. Configures the JTAG speed and the advanced CCS settings as per the requirement.
7. Validate the settings.
8. Selects the new connection in the launch configuration and starts the debug session.

NOTE
The connection through JTAG interface through USB has the
same settings as the CodeWarrior USB TAP connection.

5.2.2.7.2 CodeWarrior TAP - JTAG Connection through Ethernet

This section describes how to connect to a board using the CodeWarrior TAP – JTAG
physical connection through Ethernet.

To connect the board, perform the following steps:

1. Select Run > Debug Configurations.

The Debug Configurations dialog box appears.

2. In the Connection group, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> dialog box appears.

3. Select CodeWarrior TAP from the Connection type drop-down list.
4. Select Ethernet from the Hardware connection drop-down list.

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 157

5. Specify the correct IP address of the device in the Hostname/IP text box (Figure
5-9).

Figure 5-9. CodeWarrior TAP - Ethernet Connection
6. Configures the JTAG speed and the advanced CCS settings as per the requirement.
7. Validate the settings.
8. Selects the new connection in the launch configuration and starts the debug session.

NOTE
The connection through JTAG interface through Ethernet has
the same settings as the CodeWarrior Ethernet TAP connection.

5.3 Editing remote system configuration

The remote system configuration model defines the connection and system configurations
where you can define a single system configuration that can be referred to by multiple
connection configurations.

To edit the system configuration, perform these steps:

1. Select Run > Debug Configurations.

The Debug Configurations dialog box appears.

2. In the Connection panel, click Edit next to the Connection drop-down list.

The Properties for <connection launch configuration> window appears.

Editing remote system configuration

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

158 Freescale Semiconductor, Inc.

3. Click Edit next to the Target drop-down list.

The Properties for <system launch configuration> window appears.

4. Select the appropriate system type from the Target type drop-down list.
5. Make the respective settings in Initialization tab, Memory tab, I/O Model Tab and

Advanced tab.
6. Click OK to save the settings.
7. Click OK to close the Properties window.

In this section:

• Initialization tab
• Memory tab
• I/O Model Tab
• Advanced tab

5.3.1 Initialization tab

Use the Initialization tab to specify target initialization file for various cores.

Figure 5-10. Initialization tab

The table below lists the various options available on the Initialization tab page.

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 159

Table 5-16. Initialization tab options

Option Description

Target Select to execute target system reset.

NOTE: If the current core is the first core debugged from the JTAG chain, then
debugger will reset all cores from the chain (from all processors of the current
JATG chain, including the non-StarCore cores). If you have other debug
sessions started for the cores from the current chain, then ‘target reset’ will be
ignored.

Processor reset Select to execute processor reset.

NOTE: If the current core is the first debugged core from the current processor, then
the debugger will reset all StarCore cores of that processor, but the non-
StarCore cores of the processor will not be affected. If you have other debug
session started for the cores of the current processor, then ‘processor reset’
will be ignored, also, if for the current debug session a ‘target reset’ was
executed, then also ‘processor reset’ will be ignored.

Core reset Select to include the respective core for core reset operation.

NOTE: Core reset option resets only the current core. If for the current debug session
a ‘target reset’ or a ‘processor reset’ was executed, then ‘core reset’ will be
ignored.

Run out of reset Select to include the respective core for run out of reset operation. Debugger runs this
command right after reset (independent of the reset type) and will trigger a core
resume.

Initialize target Click to specify a target initialization file for the respective core. Debugger executes this
command at launch/debug, if the current core has the corresponding control checked.

Initialize target script Lists the path to a Debugger Shell Tcl script that runs when launching a debug session
for the respective core. To edit, select a cell, then click the ellipsis (...) button to open
the Target InitializationFile dialog box. The settings for a group of cores can be
changed all at once by editing the cell of a common ancestor node in the Target
hierarchy.

5.3.2 Memory tab

Use the Memory tab to specify memory configuration file for various cores.

Editing remote system configuration

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

160 Freescale Semiconductor, Inc.

Figure 5-11. Memory tab

The table below lists the various options available on the Memory tab page.

Table 5-17. Memory tab options

Option Description

Target Lists the targets and the supported cores.

Memory configuration Select to specify a memory configuration file for the respective core.

Memory configuration file Lists the path to the memory configuration file for the respective core. To edit, select a
cell, then click the ellipsis button to open the Memory Configuration File dialog box.
The settings for a group of cores can be changed all at once by editing the cell of a
common ancestor node in the Target hierarchy.

5.3.3 I/O Model Tab
Use the I/O Model tab to specify the I/O support option for the selected target (shown in
the figure below).

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 161

Figure 5-12. I/O Model Tab

5.3.4 Advanced tab

Use the Advanced tab to specify that Palladium is used to emulate the target.

Figure 5-13. Advanced tab

Working with Breakpoints

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

162 Freescale Semiconductor, Inc.

5.4 Working with Breakpoints

A breakpoint is set on an executable line of a program; if the breakpoint is enabled when
you debug, the execution suspends before that line of code executes.

The different breakpoint types that you can set are listed below:

• Software breakpoints: The debugger sets a software breakpoint into target memory.
When program execution reaches the breakpoint, the processor stops and activates
the debugger. The breakpoint remains in the target memory until the user removes it.

The breakpoint can only be set in writable memory, such as SRAM or DDR. You
cannot use this type of breakpoints in ROM.

• Hardware breakpoints: Selecting the Hardware menu option causes the debugger to
use the internal processor breakpoints. These breakpoints are usually very few and
can be used with all types of memories (ROM/RAM) because they are implemented
by using processor registers.

Tip
You can also set breakpoint types by issuing the bp
command in the Debugger Shell view.

In this section:

• Setting Breakpoints
• Setting Hardware Breakpoints
• Removing Breakpoints
• Removing Hardware Breakpoints

5.4.1 Setting Breakpoints

This section explains how to set breakpoints within a program in CodeWarrior IDE.

To set a breakpoint, perform the following steps:

1. Switch to the Debug perspective in CodeWarrior IDE.
2. Open the Debug view if it is not already open by selecting Window > Show View >

Debug.

The Debug view appears, shown in the figure below.

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 163

Figure 5-14. Debug View
3. Expand the Thread group.
4. Under the Thread group, select the thread that has the main() function.

The source code appears in the Editor view (shown in the figure below). The small
blue arrow to the left of the source code indicates which code statement the
processor's program counter is set to execute next.

Figure 5-15. Editor View
5. In the Editor view, place the cursor on the line that has this statement: printf("Output

%d\n",DataOut[i]);

6. Select Run > Toggle Line Breakpoint.

Working with Breakpoints

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

164 Freescale Semiconductor, Inc.

A blue dot appears in the marker bar to the left of the line (shown in the figure
below). This dot indicates an enabled breakpoint. After the debugger installs the
breakpoint, a blue checkmark appears beside the dot. The debugger installs a
breakpoint by loading into the Java™ virtual machine the code in which you set that
breakpoint.

Tip
An alternate way to set a breakpoint is to double-click the
marker bar to the left of any source-code line. If you set the
breakpoint on a line that does not have an executable
statement, the debugger moves the breakpoint to the closest
subsequent line that has an executable statement. The
marker bar shows the installed breakpoint location. If you
want to set a hardware breakpoint instead of a software
breakpoint, use the bp command in the Debugger Shell
view. You can also right-click on the marker bar to the left
of any source-code line, and select Set Special Breakpoint
from the context menu that appears.

Figure 5-16. Editor View - After Setting Breakpoints
7. From the menu bar, select Run > Resume.

The debugger executes all lines up to, but not including, the line at which you set the
breakpoint. The editor view highlights the line at which the debugger suspended
execution.

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 165

5.4.2 Setting Hardware Breakpoints

This section explains how to set hardware breakpoints within a program in CodeWarrior
IDE.

There are two ways to set hardware breakpoints:

• Using IDE to Set Hardware Breakpoints
• Using Debugger Shell to Set Hardware Breakpoints

5.4.2.1 Using IDE to Set Hardware Breakpoints

To set a hardware breakpoint using the IDE, follow these steps:

1. In the CodeWarrior IDE, select Run > Breakpoint Types > C/C++ Hardware
Breakpoints.

2. In the Editor view, click in the source line where you want to place the breakpoint.
3. Select Run > Toggle Breakpoint.

A hardware breakpoint appears in the marker bar on the left side of the source line.

5.4.2.2 Using Debugger Shell to Set Hardware Breakpoints

You can use the Debugger Shell view to set hardware breakpoints. Follow these steps to
set a hardware breakpoint using the Debugger Shell view:

1. Open the Debugger Shell view.
2. Begin the command line with the text:

bp -hw

3. Complete the command line by specifying the function, address, or file at which you
want to set the hardware breakpoint.

For example, to set a breakpoint for line 6 in your program, type:

bp -hw 6

4. Press the Enter key.

The debugger shell executes the command and sets the hardware breakpoint.

Working with Breakpoints

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

166 Freescale Semiconductor, Inc.

Tip
Enter help bp at the command-line prompt to see examples
of the bp command syntax and usage.

5.4.3 Removing Breakpoints

This section explains how to remove breakpoints from a program in CodeWarrior IDE.

To remove a breakpoint from your program, you have two options:

• Remove Breakpoints using Marker Bar
• Remove Breakpoints using Breakpoints View

5.4.3.1 Remove Breakpoints using Marker Bar

To remove an existing breakpoint using the marker bar, follow these steps:

1. Right-click the breakpoint in the marker bar.
2. Select Toggle Breakpoint from the menu that appears.

5.4.3.2 Remove Breakpoints using Breakpoints View

To remove an existing breakpoint using the Breakpoints view, follow these steps:

1. Open the Breakpoints view if it is not already open by selecting Window > Show
View > Breakpoints.

The Breakpoints view appears, displaying a list of breakpoints.

2. Right-click on the breakpoint you wish to remove and select Remove from the menu
that appears (shown in the figure below).

The selected breakpoint is removed, and it disappears from the both the marker bar
and the list in the view.

NOTE
To remove all of the breakpoints from the program at once,
select Remove All from the menu.

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 167

Figure 5-17. Removing Breakpoint

5.4.4 Removing Hardware Breakpoints

This section explains how to remove hardware breakpoints from a program in
CodeWarrior IDE.

There are two ways to remove existing hardware breakpoints:

• Remove Hardware Breakpoints using the IDE
• Remove Hardware Breakpoints using Debugger Shell

5.4.4.1 Remove Hardware Breakpoints using the IDE

To remove a hardware breakpoint, follow these steps:

1. Right-click on the existing breakpoint in the marker bar.
2. Select Toggle Breakpoint from the menu that appears.

Alternatively, you can remove the breakpoint from the Breakpoints view, using the
following steps:

Working with Breakpoints

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

168 Freescale Semiconductor, Inc.

1. Open the Breakpoints view if it is not already open by choosing Window > Show
View > Breakpoints.

The Breakpoints view appears, displaying a list of breakpoints.

2. Right-click on the hardware breakpoint you wish to remove and select Remove from
the menu that appears.

The selected breakpoint is removed, and it disappears from the both the marker bar
and the list in the view.

5.4.4.2 Remove Hardware Breakpoints using Debugger Shell

To remove a hardware breakpoint using the Debugger Shell view, follow these steps:

1. Open the debugger shell.
2. Begin the command line with the text:

bp -hw

3. Complete the command line by specifying the function, address, or file at which you
want to remove the hardware breakpoint.

For example, to remove a breakpoint at line 6 in your program, type:

bp -hw 6 off

4. Press the Enter key.

The debugger shell executes the command and removes the hardware breakpoint.

5.5 Working with Watchpoints

A watchpoint is another name for a data breakpoint that you can set on an address or a
range of addresses in the memory.

The debugger halts execution each time the watchpoint location is read, written, or
accessed (read or written). You can set a watchpoint using the Add Watchpoint dialog
box. To open the Add Watchpoint dialog box, use one of the following views:

• Breakpoints view
• Memory view
• Variables view

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 169

The debugger handles both watchpoints and breakpoints in similar manners. You can use
the Breakpoints view to manage both watchpoints and breakpoints. It means, you can
use the Breakpoints view to add, remove, enable, and disable both watchpoints and
breakpoints. The debugger attempts to set the watchpoint if a session is in progress based
on the active debugging context (the active context is the selected project in the Debug
view).

If the debugger sets the watchpoint when no debugging session is in progress, or when re-
starting a debugging session, the debugger attempts to set the watchpoint at startup as it
does for breakpoints. The Problems view displays error messages when the debugger
fails to set a watchpoint. For example, if you set watchpoints on overlapping memory
ranges, or if a watchpoint falls out of execution scope, an error message appears in the
Problems view. You can use this view to see additional information about the error.

The following sections explain how to set or remove watchpoints:

• Setting Watchpoints
• Removing Watchpoints

5.5.1 Setting Watchpoints

Use the Add Watchpoint dialog box to create a watchpoint for a memory range. You can
specify these parameters for a watchpoint:

• An address (including memory space)
• An expression that evaluates to an address
• A memory range
• An access type on which to trigger

To open the Add Watchpoint dialog box, follow these steps:

1. Open the Debug perspective.
2. Click one of these tabs:

• Breakpoints
• Memory
• Variables

The corresponding view appears.

Working with Watchpoints

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

170 Freescale Semiconductor, Inc.

3. Right-click the appropriate content inside the view as mentioned in the table below.

Table 5-18. Opening the Add Watchpoint dialog
box

In the View... Right-Click...

Breakpoints An empty area inside the view.

Memory The cell or range of cells on which you want to set the watchpoint.

Variables A global variable.

NOTE
The debugger does not support setting a watchpoint on a
stack variable or a register variable. Setting a watchpoint on
a local variable may result in halt of execution at
unexpected locations.

4. Select Add Watchpoint (C/C++) from the context menu that appears.

The Add Watchpoint dialog box appears (shown in the figure below). The debugger
sets the watchpoint according to the settings that you specify in the Add Watchpoint
dialog box. The Breakpoints view shows information about the newly set
watchpoint. The Problems view shows error messages when the debugger fails to set
the watchpoint.

Figure 5-18. Add Watchpoint Dialog Box

The table below describes the options available in the Add Watchpoint dialog box.

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 171

Table 5-19. Add Watchpoint dialog box options

Option Description

Expression to watch Enter an expression that evaluates to an address on the target device. When the
specified expression evaluates to an invalid address, the debugger halts execution and
displays an error message. You can enter these types of expressions:

• An r-value, such as &variable
• A register-based expression. Use the $ character to denote register names. For

example, enter $SP-12 to have the debugger set a watchpoint on the stack
pointer address minus 12 bytes.

The Add Watchpoint dialog box does not support entering expressions that evaluate
to registers.

Memory space Select this option to specify an address, including memory space, at which to set the
watchpoint. Use the text box to specify the address or address range on which to set
the watchpoint. If a debugging session is not active, the text/list box is empty, but you
can still type an address or address range.

Units Enter the number of addressable units that the watchpoint monitors.

Write Select this option to enable the watchpoint to monitor write activity on the specified
memory space and address range. Clear this option if you do not want the watchpoint
to monitor write activity.

Read Select this option to enable the watchpoint to monitor read activity on the specified
memory space and address range. Clear this option if you do not want the watchpoint
to monitor read activity.

5.5.2 Removing Watchpoints

To remove a watchpoint, perform these steps:

1. Open the Breakpoints view if it is not already open by selecting Window > Show
View > Breakpoints.

The Breakpoints view appears, displaying a list of watchpoints.

2. Right-click on the watchpoint you wish to remove and select Remove from the menu
that appears.

The selected watchpoint is removed, and it disappears from the list in the
Breakpoints view.

5.6 Working with Registers

Working with Registers

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

172 Freescale Semiconductor, Inc.

Use the Registers view to display and modify the contents of the registers of the
processor on your target board.

To display the Registers view, select Window > Show View > Other > Debug >
Registers. The Registers view appears (shown in the figure below). The default state of
the Registers view provides details on the processor's registers.

The Registers view displays categories of registers in a tree format. To display the
contents of a particular category of registers, expand the tree element of the register
category of interest.

Tip
You can also view and update registers by issuing the reg,
change, and display commands in the Debugger Shell view.

Figure 5-19. Registers View

In this section:

• Viewing Register Details
• Registers View Context Menu
• Working with Register Groups

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 173

5.6.1 Viewing Register Details

This section explains how to use the Registers view to show the details of a register.

To open the Registers view, you must first start a debugging session.

To see the registers and their descriptions, follow these steps:

1. In the Debug perspective, click the Registers view tab.

The Registers view appears, as shown in the figure below.

Figure 5-20. Registers View - Register Details
2. Click the View Menu button (the inverted triangle) on the Registers view toolbar.
3. Select Layout > Vertical or Layout > Horizontal to show register details.

NOTE
Selecting Layout > Registers View Only hides the register
details.

4. Expand a register group to see individual registers.

Working with Registers

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

174 Freescale Semiconductor, Inc.

5. Select a specific register by clicking it.

The details of the selected register get displayed.

NOTE
Use the Format list box to change the format of data
displayed for the selected register.

6. Examine register details. For example,
• Use the Bit Fields group to see a graphical representation of the selected

register's bit fields. You can use this graphical representation to select specific
bits or bit fields.

• Use the Actions group to perform operations, such as update bit field values and
format the displayed register data.

• Use the Description group to see an explanation of the selected register, bit
field, or bit value.

Tip
To enlarge the Registers view, click Maximize on the
view's toolbar. After you finish looking at the register
details, click Restore on the view's toolbar to return the
view to its previous size. Alternatively, right-click the
Registers tab and select Detached. The Registers view
becomes a floating window that you can resize. After you
finish looking at the register details, right-click the
Registers tab of the floating window and select Detached
again. You can rearrange the re-attached view by dragging
its tab to a different collection of view tabs.

In this section:

• Bit Fields
• Changing Bit Fields
• Actions
• Description

5.6.1.1 Bit Fields

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 175

The Bit Fields group of the Registers view (see the figure below) shows a graphical
representation of the selected register's bit values. This graphical representation shows
how the register organizes bits. You can use this representation to select and change the
register's bit values. Hover the cursor over each part of the graphical representation to see
additional information.

Figure 5-21. Register Details - Bit Fields Group

Tip
You can also view register details by issuing the reg command
in the Debugger Shell view.

A bit field is either a single bit or a collection of bits within a register. Each bit field has a
mnemonic name that identifies it. You can use the Field list box to view and select a
particular bit field of the selected register. The list box shows the mnemonic name and
bit-value range of each bit field. In the Bit Fields graphical representation, a box
surrounds each bit field. A red box surrounds the bit field shown in the Field list box.

After you use the Field list box to select a particular bit field, you see its current value in
the = text box. If you change the value shown in the text box, the Registers view shows
the new bit field value.

The minimum resolution of bit field descriptions is 2 bits. Consequently, register details
are not available for single-bit overflow registers.

The maximum resolution of bit field descriptions is 32 bits.

5.6.1.2 Changing Bit Fields

To change a bit field in a register, you must first start a debugging session, and then open
the Registers view.

To change a bit field, perform these steps:

1. In the Registers view, view register details.
2. Expand the register group that contains the bit field you want to change.

Register details appear in the Registers view.

Working with Registers

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

176 Freescale Semiconductor, Inc.

3. From the expanded register group above the register details, select the name of the
register that contains the bit field that you want to change.

The Bit Fields group displays a graphical representation of the selected bit field. The
Description group displays explanatory information about the selected bit field and
parent register.

4. In the Bit Fields group, click the bit field that you want to change. Alternatively, use
the Field list box to specify the bit field that you want to change.

5. In the = text box, type the new value that you want to assign to the bit field.
6. In the Action group, click Write.

The debugger updates the bit field value. The bit values in the Value column and the
Bit Fields group change to reflect your modification.

NOTE
Click Revert to discard your changes and restore the
original bit field value.

5.6.1.3 Actions

Use the Actions group of the Registers view (see the figure below) to perform various
operations on the selected register's bit field values.

Figure 5-22. Register View - Actions Group

The table below lists each item in the Actions group and explains the purpose of each.

Table 5-20. Actions Group Items

Item Description

Revert Discard your changes to the current bit field value and restore the original value. The
debugger disables this button if you have not made any changes to the bit field value.

Write Save your changes to the current bit field value and write those changes into the
register's bit field. The debugger disables this button after writing the new bit field
value, or if you have not made any changes to that value.

Reset Change each bit of the bit field value to its register-reset value. The register takes on
this value after a target-device reset occurs. To confirm the bit field change, click Write.
To cancel the change, click Revert.

Table continues on the next page...

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 177

Table 5-20. Actions Group Items (continued)

Item Description

Summary Display Description group content in a pop-up window. Press the Esc key to close the
pop-up window.

Format Specify the data format of the displayed bit field values.

5.6.1.4 Description

The Description group of the Registers view (see the figure below) shows explanatory
information for the selected register.

Figure 5-23. Register View - Description Group

The register information covers:

• Current value
• Description
• Bit field explanations and values

Some registers have multiple modes (meaning that the register's bits can have multiple
meanings, depending on the current mode). If the register you examine has multiple
modes, you must select the appropriate mode.

5.6.2 Registers View Context Menu

The Registers view context menu provides you various options for working with
registers.

To display the Registers view context menu, right-click a register in the Registers view.

The table below lists the options of the Registers view context menu.

Working with Registers

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

178 Freescale Semiconductor, Inc.

Table 5-21. Registers View Context Menu Options

Option Description

Select All Selects the entire contents of the current register.

Copy Registers Copies to the system clipboard the contents of the selected register.

Enable Allows the debugger to access the selected register.

Disable Prevents the debugger from accessing the selected register.

View Memory Displays the corresponding memory for the selected register.

Format Use to specify the displayed data format for the selected register:
• Natural: Default data format
• Decimal: Decimal data format
• Hexadecimal: Hexadecimal data format
• Binary: Binary data format
• Fractional: Fractional data formats, Q0-Q39

Cast to Type Opens a dialog box that you can use to cast the selected register value to a different
data type.

Restore Original Type Reverts the selected register value to its default data type.

Find Opens a dialog box that you can use to select a particular register.

Change Value Opens a dialog box that you can use to change the current register value.

Show Details As Allows you to specify how the debugger displays the register's contents. The options
are:

• Default Viewer: The register's contents are displayed as a hexadecimal value.
• Register Details Panel: The register's values are display in a bit format, along

with a description of their purpose.

Add Register Group Opens a dialog box that you can use to create a new collection of registers to display in
the Registers view.

Restore Default Register Groups Resets the custom groups of registers created using the Add Register Group option,
and restores the default groups provided by the debugger as they were when
CodeWarrior was installed. Note that if you select this option, all custom groupings of
registers done by you are lost.

Add Watchpoint (C/C++) Opens the Add Watchpoint dialog box, proposing to set a watchpoint on an
expression representing the register. The debugger sets the watchpoint according to
the settings that you specify in the Add Watchpoint dialog box. The Breakpoints view
shows information about the newly set watchpoint. The Problems view shows error
messages when the debugger fails to set the watchpoint.

Watch Adds a new watch-expression entry to the Expressions view.

5.6.3 Working with Register Groups

This section describes different operations that can be performed on register groups.

You can perform the following operations on the register groups:

• Adding a Register Group
• Editing a Register Group
• Removing a Register Group

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 179

5.6.3.1 Adding a Register Group

The default display of the Registers view groups related registers into a tree structure.

You can add a custom group of registers to the default register tree structure.

To add a new register group, perform these steps:

1. Right-click in the Registers view.

A context menu appears.

2. Select Add Register Group from the context menu.

The Register Group dialog box appears, as shown in the figure below.

Figure 5-24. Register Group Dialog Box
3. Enter in the Group Name text box a descriptive name for the new group.
4. Select the checkbox next to each register you want to appear in the new group.

Working with Registers

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

180 Freescale Semiconductor, Inc.

Tip
Click Select All to check all of the checkboxes. Click
Deselect All to clear all of the checkboxes.

5. Click OK.

The Register Group dialog box closes. The new group name appears in the
Registers view.

5.6.3.2 Editing a Register Group

In the Registers view, you can edit both the default register groups and the groups that
you add.

To do so, use the following steps:

1. In the Registers view, right-click the name of the register group you want to edit.

A context menu appears.

2. Select Edit Register Group from the context menu.

The Register Group dialog box appears.

3. If you wish, enter in the Group Name text box a new name for the group.
4. Check the checkbox next to each register you want to appear in the group.

Tip
Click Select All to check all of the checkboxes. Click
Deselect All to clear all of the checkboxes.

5. Click OK.

The Register Group dialog box closes. The new group name appears in the
Registers view.

5.6.3.3 Removing a Register Group

In the Registers view, you can remove register groups.

To remove a register group, follow these steps:

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 181

1. In the Registers view, right-click the name of register group that you wish to
remove.

A context menu appears.

2. Select Remove Register Group from the context menu.

The selected register group disappears from the Registers view.

5.7 Viewing memory

This section explains how to view memory of a target processor.

Use the Memory view to examine the active memory rendering of a specified expression
or address. To display the Memory view, select Window > Show View > Other >
Debug > Memory (shown in the figure below).

The Memory view supports the display of multiple memory spaces. The figure below
shows the Memory view with the Expression:baseaddr <name> tree active memory
rendering tab.

Figure 5-25. Memory View

In this section:
• Adding Memory Monitor
• Adding Memory Rendering
• Removing Memory Rendering
• Resetting to Base Address
• Go to Address

Viewing memory

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

182 Freescale Semiconductor, Inc.

5.7.1 Adding Memory Monitor

This section describes how to add memory monitor in the Memory view.

To display the supported memory spaces for a target in the Memory view, perform the
following steps:

You can add multiple memory monitors to the Memory view. To add a new memory
monitor, follow these steps:

1. Start a debugging session.
2. Open the Memory view.
3. Click the plus sign (+) icon on the Monitors pane toolbar. Alternatively, right-click

in the Monitors pane and select Add Memory Monitor from the context menu.

The Monitor Memory dialog box appears, as shown in the figure below.

NOTE
The Memory space option appears only when the
debugger associated with the active debugging context
supports memory spaces, and the currently debugged
process has multiple memory spaces.

Figure 5-26. Monitor Memory Dialog Box
4. Specify information about the memory monitor:

• To enter a memory space and literal address, simply enter an address.
• To enter an expression, type in the expression. If you enter a literal address as

the expression, use the prefix 0x to indicate hexadecimal notation, or use no
prefix to indicate decimal notation. You can use the drop-down list to select a
previously specified expression.

NOTE
If you do not select a memory space and the expression
does not contain a memory space then the memory

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 183

space is set to default data memory space that is
specific for each architecture

5. Select the Memory space checkbox to translate the memory address or the
expression to another memory space.

The Memory space drop-down list is enabled.

6. Select one of the following values from the Memory space drop-down list:

Figure 5-27. Monitor Memory Dialog Box - Memory space Options

• Physical: Indicates that the specified address or expression refers to physical
memory space.

• Data: Indicates that the specified address or expression refers to data memory
space.

• Program: Indicates that the specified address or expression refers to program
memory space.

• Physical cache - inhibited: Similar with the Physical memory space, but no
cached information will be used when the data is displayed.

• SAP: The memory is accessible while the system is running. The target must not
be running for the above listed memory spaces. While using this memory space,
other memory spaces will not be available.

NOTE
This memory space is available only for hardware
targets.

7. Click OK.

After evaluating the expression, an address and a memory space are generated. The
debugger is responsible for converting the address and the memory space into a new
address and other memory space that user selected.

The debugger uses the following rules to perform the address and memory space
conversion:

Viewing memory

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

184 Freescale Semiconductor, Inc.

• If memory space is NA or it is not compatible with selected memory space, then
the new expression address has the same value as evaluated address. For
example, Data:0x100 should be converted to Program:0x100, because the Data and
Program memory spaces are not compatible.

• If memory space is compatible with selected memory space, than the new
expression address is computed based on the MMU information. For example,
Data:0x100 should be converted to Physical:0x2100 based on MMU configuration
(data:0x0 --> physical:0x2000).

NOTE
In both scenarios, the new address and new memory space
for expression will be displayed in memory rendering label
and title along with the original expression.

The memory monitor is added to the Monitors panel and the default rendering is
displayed in the Renderings panel.

5.7.2 Adding Memory Rendering

You can use the Renderings tab page of the Memory view to examine the memory
content, starting at any valid address. The information displayed in this page is read-only
and cannot be used to modify the memory content.

To add a new memory rendering, follow these steps:

1. Start a debugging session.
2. Open the Memory view.
3. In the Monitors pane, select the memory monitor for which you want to add a

memory rendering.

NOTE
To create a memory monitor, right-click a blank area in the
Monitors pane and select Add Memory Monitor.
Alternatively, click the plus sign (+) icon in the Monitors
pane toolbar.

4. Click the New Renderings tab in the Memory view.

The New Renderings tab page appears, as shown in the figure below.

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 185

Figure 5-28. New Renderings Tab Page
5. Select a rendering type from the Select rendering(s) to create list.
6. Click Add Rendering(s).

The selected memory rendering type appears in the Memory view.

5.7.3 Removing Memory Rendering

To remove a memory rendering from the Memory view, follow these steps:

1. Open the Memory view.
2. In the Renderings tab page, select the tab that corresponds to the memory rendering

that you want to remove.
3. Select Remove Rendering from the context menu.

The memory rendering is removed from the Memory view.

5.7.4 Resetting to Base Address

To reset the memory rendering and display the base address of the rendering, follow
these steps:

1. Open the Memory view.
2. In the Renderings tab page, select the tab that corresponds to the disassembly

rendering that you want to reset to the base address.
3. Select Reset to Base from the context menu.

Viewing memory

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

186 Freescale Semiconductor, Inc.

The disassembly rendering scrolls to the line that contains the base address of the
displayed rendering.

5.7.5 Go to Address

The memory view provides graphical controls to display memory at a specific address.
To go to a specific address, follow these steps:

1. Open the Memory view.
2. In the Renderings tab page, select the tab that corresponds to the disassembly

rendering for which you want to display a specific address.
3. Select Go to Address from the context menu.

A group of controls appears on the Renderings tab page, as shown in the figure
below.

Figure 5-29. Disassembly Rendering - Go to Address
4. In the blank text box, enter the address that you want to display.

NOTE
Select the Input as Hex checkbox only if you enter the
address in hexadecimal notation.

5. Click OK to have the Disassembly rendering scroll to the specified address.
Alternatively, click Cancel to abort the operation and hide the group of controls.

5.8 Viewing Cache

This section provides detailed information on working with caches.

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 187

The CodeWarrior debugger allows you to view and modify the instruction cache and data
cache of the target system during a debug session. The CodeWarrior for StarCore current
release supports the cache viewer for L1 instruction, L1 data, L2 and L3 both instruction
and data cache.

NOTE
Projects created for ISS targets do not support cache.

In this section:

• Cache View
• Cache View Toolbar Menu

5.8.1 Cache View

This section describes how to use Cache view.

Use the Cache view to examine L1 cache (such as instruction cache or data cache). Also,
you can use the viewer to display L2 and L3 cache for targets that support it.

Use the Cache view to examine L1 cache (such as instruction cache or data cache). You
can also use the viewer to display L2 and L3 cache for the supported targets. To open the
Cache view, use the following steps:

1. Start a debugging session.
2. From the CodeWarrior IDE menu bar, select Window > Show View > Other.

The Show View dialog box appears.

3. Expand the Debug group.
4. Select Cache.
5. Click OK.

The Cache view appears, as shown in the figure below.

Viewing Cache

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

188 Freescale Semiconductor, Inc.

Figure 5-30. Cache View
6. Use the Choose a Cache drop-down list to specify the cache that you want to

examine.

NOTE
For each target, you can view the content of all caches if they
are enabled. If the Choose a Cache list box is grayed out, the
current target does not support viewing the cache.

The table below explains the column headers displayed in the Cache view.

Table 5-22. Cache View Column Headers

Cache Column Header Description

L1 Cache

L2 Cache

L3 Cache

Set Specifies the line in current way.

Way Specifies the way in current cache.

Address Displays the storage address of the
current cache line.

Valid Specifies if the current line is valid. For
targets supporting L1 cache viewer, the
information is at the line level.

Task ID Displays the task ID of the task holding
the current cache line. Currently
supported only for L1 cache.

Word Specifies groups of bytes that are read
at once and are aligned in cache
memory at a given range offset.

L2 Cache

L3 Cache

Dirty Specifies if the cache line is dirty or not.

Lock Locks the cache and prevent the
debugger from fetching new lines or
discarding current valid lines.

LRU Displays the Least Recently Used (LRU)
attribute for each cache line.

L2 Cache CoreID Lists the core that caused the reload of
the address into the L2 cache.

Table continues on the next page...

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 189

Table 5-22. Cache View Column Headers (continued)

Cache Column Header Description

CoreValid core_id[0:3] indicates which of the dL1s
have a copy of the line (core_valid[0]=1 -
core0 dL1 has a copy, core_valid[1]=1 -
core1 dL1 has a copy). The bits are not
mutually exclusive, because a SC
cluster has only 2 cores core_valid[2] &
core_valid[3] are not used.

5.8.2 Cache View Toolbar Menu

Use the Cache view toolbar menu is to configure the cache information.

To display this menu, click the Menu button (inverted triangle) in the Cache view
toolbar.

Tip
The Cache view toolbar buttons are alternative ways to
implement the control actions defined in the toolbar menu.

NOTE
Depending upon the selected target, the options available in the
Cache view toolbar may vary.

The table below describes the Cache view toolbar menu options.

Table 5-23. Cache View Toolbar Menu Options

Option Description

Write Commits content changes from the Cache view to the cache
registers on the target hardware (if the target hardware
supports doing so).

Refresh Reads data from the target hardware and updates the Cache
view display.

Invalidate Discards the cache.

Flush Flushes the entire contents of the cache. This option commits
uncommitted data to the next level of the memory hierarchy,
then invalidates the data within the cache.

Lock Locks the cache and prevent the debugger from fetching new
lines or discarding current valid lines.

Enable/Disable Turns on/off the cache.

Disable LRU Removes the Least Recently Used (LRU) attribute from the
existing display for each cache line.

Table continues on the next page...

Viewing Cache

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

190 Freescale Semiconductor, Inc.

Table 5-23. Cache View Toolbar Menu Options (continued)

Option Description

Enable/Disable Parity Turns on/off the line data parity checksum calculation.

Inverse LRU Displays the inverse of the Least Recently Used attribute for
each cache line.

Copy Cache Copies the cache contents to the system clipboard.

Export Cache Exports the cache contents to a file.

Search Finds an occurrence of a string in the cache lines.

Search Again Finds the next occurrence of a string in the cache lines.

Preserve Sorting Preserves sorting of the cache when the cache data is
updated and the cache is refreshing. This option is disabled
by default. If enabled, every operation that triggers cache
refresh (such as step, run to breakpoint) will have to wait for
cache data loading and sorting.

View Memory Allows you to view the corresponding memory for the selected
cache lines.

Lock Line Locks the selected cache lines.

Invalidate Line Invalidates the selected cache lines.

Flush Line Flushes the entire contents of the selected cache lines.

Synchronize Line Synchronizes selected cache data with memory data.

Lock Way Locks the cache ways specified with the Lock Ways menu
option. Locking a cache way means that the data contained in
that way must not change. If the cache needs to discard a
line, it will not discard locked lines (such as lines explicitly
locked, or lines belonging to locked ways).

Unlock Way Unlocks the cache ways specified with the Lock Ways menu
option.

Lock Ways Specifies the cache ways on which the Lock Way and
Unlock Way menu options operate.

5.9 Changing Program Counter Value

This section explains how to change the program counter value in the CodeWarrior IDE
to make the debugger execute a specific line of code.

To change the program counter value, follow these steps:

1. Start a debugging session.
2. In the Editor view, place the cursor on the line that you want the debugger to execute

next.
3. Right-click in the Editor view.

A context menu appears.

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 191

4. From the context menu, select Move To Line.

The CodeWarrior IDE modifies the program counter according to the specified location.
The Editor view shows the new location.

5.10 Hard resetting

Use the reset hard command in the Debugger Shell view to send a hard reset signal to the
target processor.

NOTE
The Hard Reset command is enabled only if the debug
hardware you are using supports it.

Tip

You can also perform a hard reset by clicking Reset () on
the Debug perspective toolbar.

5.11 Per Core Reset

This section describes how to enable per core reset.

To enable, follow the steps listed below:

1. Select Run > Debug Configurations from the IDE menu bar.

The Debug Configurations dialog box appears.

2. Expand the CodeWarrior tree control, and select the desired target core.
3. In the right panel, click Edit from the Target settings group.

The Properties for <target> dialog box appears.

4. Click Edit.

The Properties for <target> Target dialog box with Hardware or Simulator
Target page in the right panel appears, as the Figure 5-31 shows.

Hard resetting

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

192 Freescale Semiconductor, Inc.

Figure 5-31. Properties for <target> Target Dialog Box
5. Select the checkbox in the Core reset column, corresponding to the desired target in

the Target column (Figure 5-31).
6. Click OK.

The Properties for <target> Target dialog box closes and the core reset is enabled
for the selected target.

NOTE
Per-core reset affects only the debugged core if the
corresponding Core reset option is selected.

NOTE
Core reset will be ignored when the current core is the first
debugged core from the processor and Execute target reset or
the Processor reset checkboxes are checked.

5.12 Setting Stack Depth

This section describes how to control the depth of the call stack displayed by the
debugger.

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 193

Select Window > Preferences > C/C++ > Debug > Maximum stack crawl depth
option to set the depth of the stack to read and display. Showing all levels of calls when
you are examining function calls several levels deep can sometimes make stepping
through code more time consuming. Therefore, you can use this menu option to reduce
the depth of calls that the debugger displays.

5.13 Import a CodeWarrior Executable file Wizard

The Import a CodeWarrior Executable file wizard helps you to import a CodeWarrior
executable file and create a new project.

To use the Import a CodeWarrior Executable file wizard, perform these steps:

1. From the CodeWarrior IDE menu bar, select File > Import.

The Import wizard launches and the Select page appears, as shown in the figure
below.

Figure 5-32. Import Wizard - Selecting CodeWarrior Executable Importer
2. Expand the CodeWarrior group.
3. Select the CodeWarrior Executable Importer to import a StarCore .eld file.
4. Click Next.

Import a CodeWarrior Executable file Wizard

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

194 Freescale Semiconductor, Inc.

The wizard name changes to Import a CodeWarrior Executable file and the
Import a CodeWarrior Executable file page appears.

The following sections describe the various pages that the wizard displays as it assists
you in importing an executable (.eld) file:

• Import a CodeWarrior Executable file Page
• Import C/C++/Assembler Executable Files Page
• Processor Page
• Debug Target Settings Page

5.13.1 Import a CodeWarrior Executable file Page

Use the Import a CodeWarrior Executable file page to specify the name and location
for your project.

Figure 5-33. StarCore Executable - Import a CodeWarrior Executable File Page

The table below describes the options available on this page.

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 195

Table 5-24. Import a CodeWarrior Executable file page settings

Option Description

Project name Specify the name of the project. The specified name identifies the project created for
debugging (but not building) the executable file.

Use default location If you select this option, the project files required to build the program are stored in the
current workspace directory of the workbench. If you clear this option, the project files
are stored in the directory that you specify in the Location option.

Location Specifies the directory that contains the project files. Use the Browse button to navigate
to the desired directory. This option is only available when the Use default location
option is cleared.

5.13.2 Import C/C++/Assembler Executable Files Page

Use the Import C/C++/Assembler Executable Files page to select an executable file or
a folder to search for C/C++/assembler executable files.

Figure 5-34. StarCore Executable - Import C/C++/Assembler Executable Files Page

The table below explains the options available on the page.

Import a CodeWarrior Executable file Wizard

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

196 Freescale Semiconductor, Inc.

Table 5-25. Import C/C++/Assembler Executable Files page settings

Option Description

File to import Specifies the C/C++/assembler executable file. Click Browse
to choose an executable file.

Copy the selected file to current project folder Select this option to copy the executable file in the project
folder.

5.13.3 Processor Page

Use the Processor page to specify the processor family for the imported executable file.

Figure 5-35. StarCore Executable - Processor Page

The table below describes the options available on the page.

Table 5-26. Processor page settings

Option Description

Processor Expand the processor family and select the appropriate target processor for the
execution of the specified executable file.

Tip: You can also type the processor name in the text box.

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 197

5.13.4 Debug Target Settings Page

Use the Debug Target Settings page to specify debugger connection type, board type,
launch configuration type, and connection type for your project.

This page also allows you to configure connection settings for your project.

Figure 5-36. StarCore Executable - Debug Target Settings Page

The table below describes the options available on the page.

Table 5-27. Debug Target Settings page settings

Option Description

Debugger Connection Types Specifies what target the program executes on.
• Hardware: Select to execute the program on the hardware available for the

product.
• Simulator: Select to execute the program on a software simulator.
• Emulator: Select to execute the program on a hardware emulator.

Board Specifies the hardware (board) supported by the selected processor.

Launch Specifies the launch configurations and corresponding connection configurations,
supported by the selected processor.

Connection Specifies the connection configuration used by the project.
• Default: Select to create a new connection with default configuration.
• Create New: Select to create a new connection configuration manually.
• Edit Remote Systems: Select to edit existing remote systems.

Table continues on the next page...

Import a CodeWarrior Executable file Wizard

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

198 Freescale Semiconductor, Inc.

Table 5-27. Debug Target Settings page settings (continued)

Option Description

Connection Type Specifies the interface to communicate with the hardware.

TAP address Enter the IP address of the selected TAP device.

5.14 Debugging Externally Built Executable Files

You can use the Import a CodeWarrior Executable file wizard to debug an externally
built executable file, that is, an executable (.eld) file that has no associated CodeWarrior
project.

For example, you can debug a .eld file that was generated using a different IDE. The
process of debugging an externally built executable file can be divided into the following
tasks:

• Import an Executable File
• Edit the Launch Configuration
• Specify the Source Lookup Path
• Debug Executable File

5.14.1 Import an Executable File

First of all, you need to import the executable file that you want the CodeWarrior IDE to
debug.

The IDE imports the executable file into a new project.

To import an externally built executable file, follow these steps:

1. From the CodeWarrior IDE menu bar, select File > Import.

The Import wizard appears.

2. Expand the CodeWarrior group.
3. Select CodeWarrior Executable Importer to import a StarCore .eld file.
4. Click Next.

The wizard name changes to Import a CodeWarrior Executable file and the
Import a CodeWarrior Executable file page appears.

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 199

5. In the Project name text box, enter the name of the project. This name identifies the
project that the IDE creates for debugging (but not building) the executable file.

6. Clear the Use default location checkbox and click Browse to specify a different
location for the new project. By default, the Use default location checkbox is
selected.

7. Click Next.

The Import C/C++/Assembler Executable Files page appears.

8. Click Browse.

The Select file dialog box appears. Use the dialog box to navigate to the executable
file that you want to debug.

9. Select the required file and click Open.

The Select file dialog box closes. The path to the executable file appears in the File
to import text box.

10. Check the Copy the selected file to current project folder checkbox to copy the
executable file in the current workspace.

11. Click Next.

The Processor page appears.

12. Select the appropriate target processor from the StarCore Family list.

13. Click Next.

The Debug Target Settings page appears.

14. Select a debugger connection type for the execution of the specified executable file:
• Simulator: If you select this option, the program executes on a software

simulator.
• Hardware: If you select this option, the program executes on the hardware

available for the product.
15. Select the connection type you want to use, from the Debugger Connection Types

group.
16. Select the board, you plan to use, from the Board drop-down list.
17. Select the launch configurations, that you want to include in your project and the

corresponding connection configuration.

NOTE
For more information on remote systems, see CodeWarrior
Development Studio Common Features Guide.

18. Click Finish.

Debugging Externally Built Executable Files

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

200 Freescale Semiconductor, Inc.

The CodeWarrior Executable Importer wizard creates a new project according to
your specifications. You can access the project from the CodeWarrior Projects
view in the IDE.

5.14.2 Edit the Launch Configuration

Using the tabs of the Debug Configurations dialog box, you can change the launch
configuration settings that you specified while importing the .eld file.

To edit the launch configuration for your executable file, follow these steps:

1. Click the Debugger tab of the Debug Configurations dialog box.

The corresponding page appears.

2. Configure the debugger options as appropriate for your executable file.

For example, specify the appropriate target processor, any initialization files, and
connection protocol.

5.14.3 Specify the Source Lookup Path

Source lookup path is specified in terms of the compilation path and the local file system
path.

The CodeWarrior debugger uses both these paths to debug the executable file.

The compilation path is the path to the original project that built the executable file. If the
original project is from an IDE on a different computer, you need to specify the
compilation path in terms of the file system on that computer.

The local file system path is the path to the project that the CodeWarrior IDE creates to
debug the executable file.

The CodeWarrior IDE supports automatic as well as manual path mapping.

In this section:

• Automatic Path Mapping
• Manual Path Mapping

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 201

5.14.3.1 Automatic Path Mapping

This section describes how to set automatic path mapping for your project.

The Automatic Path Mapping feature focuses on reducing as much as possible the
manual steps required by the user to set up the path mapping settings to support source
level debugging.

For automatic path mapping, use these steps:

1. In the CodeWarrior Projects view, expand Binaries folder.
2. Right-click the *.eld file and select Properties from the context menu that appears.

The Properties for <project>.eld dialog box appears.

3. Select Path Mappings from the list.

The Path Mappings page appears. The Path Mapping Configuration page displays
every path mapping settings for the launch configurations associated with a project.
You can edit either a single set of settings for all launch configurations associated
with a project or the settings for a given launch configuration by selecting the
appropriate value from the launch configuration combo box.

Under each path mapping, the table displays a list of source files that exist in the
binary executable that share the same source mapping prefix. In the Local Path
column, a green () is displayed if the file exists after being mapped by the
destination path or a red () if it does not. Also, the local path itself is displayed in
red if it does not exist on the local file system.

A default folder named Files Not Mapped is created if the user explicitly removes
existing mappings. All unmapped files that are not found on the file system are
automatically shown under this folder.

Debugging Externally Built Executable Files

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

202 Freescale Semiconductor, Inc.

Figure 5-37. Automatic Path Mapping

The table below describes various options available in the Path Mappings page.

Table 5-28. Automatic Path Mappings
Options

Options Description

Auto Correct The Auto Correct button automatically iterate through all the files not found
on the file system and attempt to group them with their common prefix. This
action often generates satisfactory results from the source files listed in the
binaries so that the manual steps required by the user are kept at a
minimum.

Add The Add button allows you to create a new Path Mapping entry. If any
paths are selected, the dialog will be pre-initialized with their common prefix.

Remove The Remove button allows you to remove any path mapping or default entry.

Edit The Edit button allows you to change the values of the selected path
mapping entry. Editing non-path mapping entry is not supported.

Up The Up button allows the user to reorder the entries by moving the selected
entry up in the list. Note that path mappings need always to be grouped
together, and as such moving up the top most path mapping will always
move its siblings above the preceding entry as well.

Down The Down button allows the user to reorder the entries by moving the
selected entry down in the list. Note that path mappings need always to be

Table continues on the next page...

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 203

Table 5-28. Automatic Path Mappings Options
(continued)

Options Description

grouped together, and as such moving down the bottom most path mapping
will always move its siblings below the following entry as well.

Restore Defaults The Restore Defaults button resets the launch configuration path mappings
settings to their previous values, including the library path mapping
automatically generated by the APM plug-in.

NOTE
If you create a new path mappings manually from the
source lookup path, the source files are automatically
resorted to their most likely path mapping parent.

4. Click OK.

The Path Mappings dialog box closes.

5.14.3.2 Manual Path Mapping

This section describes how to set path mapping manually in your project.

To manually specify the source lookup path for the newly imported executable file, use
these steps:

1. Click the Source tab of the Debug Configurations dialog box.

The corresponding page appears, as shown in the figure below.

Debugging Externally Built Executable Files

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

204 Freescale Semiconductor, Inc.

Figure 5-38. Debug Configurations - Source Page

Like Source tab, you can also use Edit Source Lookup Path dialog box to manually
specify the source lookup path. To open the Edit Source Lookup Path dialog box,
right-click in the Debug view and select Edit Source Lookup.

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 205

Figure 5-39. Edit Source Lookup Path Dialog Box
2. Click Add.

The Add Source dialog box appears.

3. Select Path Mapping (see the figure below).

Debugging Externally Built Executable Files

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

206 Freescale Semiconductor, Inc.

Figure 5-40. Add Source Dialog Box
4. Click OK.

The Path Mappings dialog box appears (shown in the figure below).

5. In the Name text box, enter the name of the new path mapping.

The name you enter also appears in the Source Lookup Path list of the Source page.

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 207

Figure 5-41. Path Mappings Dialog Box
6. Click Add.
7. In the Compilation path text box, enter the path to the parent project of the

executable file, relative to the computer that generated the file.

For example, the computer on which you debug the executable file is not the same
computer that generated that executable file. On the computer that generated the
executable file, the path to the parent project is D:\workspace\originalproject. Enter this
path in the Compilation path text box.

Tip
You can use the IDE to discover the path to the parent
project of the executable file, relative to the computer that
generated the file. In the C/C++ Projects view of the C/C+
+ perspective, expand the project that contains the
executable file that you want to debug. Next, expand the
group that has the name of the executable file itself. A list
of paths appears, relative to the computer that generated the
file. Search this list for the names of source files used to
build the executable file. The path to the parent project of
one of these source files is the path you should enter in the
Compilation path text box.

Debugging Externally Built Executable Files

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

208 Freescale Semiconductor, Inc.

8. In the Local file system path text box, enter the path to the parent project of the
executable file, relative to your computer. Alternatively, click the Browse button to
specify the parent project.

Suppose the computer on which you debug the executable file is not the same
computer that generated that executable file. On your current computer, the path to
the parent project of the executable file is C:\projects\thisproject. Enter this path in
the Local file system path text box.

9. Click OK.

The Path Mappings dialog box closes. The mapping information now appears under
the path mapping shown in the Source Lookup Path list of the Source page.

10. If needed, change the order in which the IDE searches the paths.

The IDE searches the paths in the order shown in the Source Lookup Path list,
stopping at the first match. To change this order, select a path, then click the Up or
Down button to change its position in the list.

11. Click Apply.

The IDE saves your changes.

5.14.4 Debug Executable File

You can use the CodeWarrior debugger to debug the externally built executable file.

To debug the executable file:

1. Select the project in the CodeWarrior Projects view.
2. Click the Debug button from the IDE toolbar.

The IDE switches to Debug perspective listing the debugging output.

Chapter 5 Working with Debugger

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 209

Debugging Externally Built Executable Files

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

210 Freescale Semiconductor, Inc.

Chapter 6
Target Initialization File

This chapter explains the target initialization file and lists an example.

The initialization file is a text file that contains commands that tell the debugger how to
initialize your hardware after reset but before downloading code. Use the initialization
file commands to write values to various registers, core registers, and memory locations.

To use an initialization file, you must check the Use Initialization File box and specify
the name of your initialization file in the Debugger settings panel.

The target initialization files for the StarCore 3900FP DSP targets are available at:

Windows

 <CWInstallDir>\SC\StarCore_Support\Initialization_Files\RegisterConfigFiles\

For example, B4860_QDS_Init.tcl.

NOTE
You can customize the contents of B4860_QDS_Init.tcl if needed.

For details about commands, see Debugger Shell Command List .

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 211

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

212 Freescale Semiconductor, Inc.

Chapter 7
Memory Configuration File

This chapter explains the memory configuration file, and lists an example.

The memory configuration file is a text file that contains commands that tell the compiler
how to initialize the hardware memory after reset, but before downloading code. Use the
memory configuration files to write values to various memory locations.

The memory configuration files are available at the following location:

<CWinstallDir>\SC\StarCore_Support\Initialization_Files\MemoryConfigFiles

The syntax for memory configuration is defined in each of memory configuration files
available with the CodeWarrior layout. For example, you can refer to the
B4860_Memory_Example.mem file at the mentioned location.

To specify memory configuration file for a target:

1. Open the Debug Configurations dialog box.
2. Click the Edit button in the Target settings area.

The Properties for <connection> dialog box appears.

3. Click the Edit button next to the Target field.

The Properties for <project> Target dialog box appears.

4. Select the target for which you want to specify the memory file from the Target type
drop-down list.

5. Click the Memory tab.
6. Check the Memory configuration checkbox for the target or core(s) for which you

want to specify the memory file.
7. Click the corresponding Memory configuration file column.
8. Locate and specify a valid memory configuration file using the Memory

Configuration File dialog box that appears on clicking the Ellipse button in the
Memory configuration file column.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 213

Figure 7-1. Specify Memory Configuration File
9. Click OK.

The specified memory configuration file appears in the Memory configuration file
column.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

214 Freescale Semiconductor, Inc.

Chapter 8
CodeWarrior Command-Line Debugging

CodeWarrior supports a command-line interface to some of its features including the
debugger.

You can use the command-line interface together with various scripting engines, such as
the Microsoft® Visual Basic® script engine, the Java™ script engine, TCL, Python, and
Perl. You can even issue a command that saves the command-line activity to a log file.

This chapter explains:

• Working with Debugger Shell
• Tcl Support
• Command-Line Debugging Tasks
• Debugger Shell Command List

8.1 Working with Debugger Shell

You use the Debugger Shell view to issue command lines to the IDE.

For example, you enter the command debug in this window to start a debugging session.
The window lists the standard output and standard error streams of command-line
activity.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 215

Figure 8-1. Debugger Shell View

To open the Debugger Shell view, perform these steps:

1. Switch the IDE to the Debug perspective and start a debugging session.
2. Select Window > Show View > Debugger Shell.

The Debugger Shell view appears.

NOTE
Alternatively, select Window > Show View > Other.
Expand the Debug tree control in the Show View dialog
box, select Debugger Shell, and click OK.

Working with Debugger Shell

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

216 Freescale Semiconductor, Inc.

Figure 8-2. Show View - Debugger Shell

To issue a command-line command, type the desired command at the command prompt
(%>) in the Debugger Shell view, then press Enter or Return. The command-line
debugger executes the specified command.

If you work with hardware as part of your project, you can use the command-line
debugger to issue commands to the debugger while the hardware is running.

NOTE
To list the commands the command-line debugger supports,
type help at the command prompt and press Enter. The help
command lists each supported command along with a brief
description of each command.

Tip
To view page-wise listing of the debugger shell commands,
right-click in the Debugger Shell view and select Paging from

the context menu. Alternatively, click the Enable Paging
icon.

Chapter 8 CodeWarrior Command-Line Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 217

8.2 Tcl Support

This section provides the following details on using the command-line debugger with Tcl
script engine.

• Resolution of Conflicting Command Names
• Execution of Script Files
• Tcl Startup Script

8.2.1 Resolution of Conflicting Command Names

The names of several command-line debugger commands conflict with the Tcl
commands.

The following table explains how the command-line debugger resolves such conflicts (if
the mode is set to auto).

Table 8-1. Resolving Conflicting Commands

Command Resolution

bp If you pass the command-line debugger a bp command from
within a script and the command has arguments, the
debugger invokes the Tcl break command. Otherwise, the
debugger interprets a break command as a command to
control breakpoints.

8.2.2 Execution of Script Files

Tcl usually executes a script file as one large block, returning only after execution of the
entire file.

For the run command, however, the command-line debugger executes script files line-by-
line. If a particular line is not a complete Tcl command, the debugger appends the next
line. The debugger continues appending lines until it gets a complete Tcl script block.

Tcl Support

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

218 Freescale Semiconductor, Inc.

The following listing lists code that includes a script. For the Tcl source command, the
debugger executes this script as one block. But for the run debug command, the debugger
executes this script as two blocks: the set statement and the while loop.

Listing: Example Tcl Script

set x 0;
while {$x < 5}

{

puts "x is $x";

set x [expr $x + 1]

}

NOTE
The run debug command synchronizes debug events between
blocks in a script file. For example, after a go, next, or step
command, run polls the debug thread state and does not execute
the next line or block until the debug thread terminates.
However, the Tcl source command does not consider the debug
thread state. Consequently, use the run debug command to
execute script files that contain these debug commands: debug,
go, next, stop, and kill.

8.2.3 Tcl Startup Script

The command-line debugger can automatically run a Tcl script each time you open the
command-line debugger window.

This script is called a startup script.

You can use both Tcl and command-line debugger commands in the startup script. For
example, you might include commands that set an alias or a define color configuration in
a startup script.

To create a command-line debugger startup script, follow these steps:

1. Put the desired Tcl and command-line debugger commands in a text file.
2. Name this file tcld.tcl.
3. Place tcld.tcl in one of the directories listed below.

• On a Windows® PC, put tcld.tcl in the system directory.

Chapter 8 CodeWarrior Command-Line Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 219

For example, put tcld.tcl in the WINDOWS directory.

• On a Solaris Workstation, put tcld.tcl in your home directory.

NOTE
There is no synchronization of debug events in the
startup script. Consequently, put the c debug command
to the startup script and place these debug commands
in another script so they will execute properly: debug,
go, stop, kill, next, and step.

8.3 Command-Line Debugging Tasks

This section provides instructions for common command-line debugging tasks.

See the following table for details.

Table 8-2. Common Command-Line Debugging Tasks

Task Instruction Comments

Open the Debugger Shell Select Windows > Show View >
Others > Debugger Shell.

The Debugger Shell view appears.

Use the help command 1. On the Debugger shell command
prompt (%>), type help. 2. Press Enter.

The Command List for the CodeWarrior
tool appears.

Enter a command 1. On the Debugger shell, type a
command followed by a space. 2. Type
any valid command-line options,
separating each with a space. 3. Press
Enter.

You can use shortcuts instead of
complete command names, such as k
for kill.

View debug command hints Type alias followed by a space The syntax for the rest of the command
appears.

Review previous commands Press Up Arrow and Down Arrow keys

Clear command from the command line Press the Esc key

Stop an executing script Press the Esc key

Toggle between insert/overwrite mode Press the Insert key

Scroll up/ down a page Press Page Up or Page Down key

Scroll left/right one column Press Ctrl-Left Arrow or Ctrl-Right Arrow
keys

Scroll to beginning or end of buffer Press Ctrl-Home or Ctrl-End keys

Command-Line Debugging Tasks

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

220 Freescale Semiconductor, Inc.

8.4 Debugger Shell Command List

This section lists commands that are unique to the CodeWarrior tool.

The list of the commands that can be used in the CodeWarrior Debugger Shell view is as
follows:

NOTE
For information on the Tcl built-in commands, visit http://
sourceforge.net/projects/tcl.

Table 8-3. Debugger Shell Command List

about alias bp

cd change cls

config copy debug

dir disassemble display

evaluate finish fl::blankcheck

fl::checksum fl::device fl::diagnose

fl::disconnect fl::dump fl::erase

fl::image fl::protect fl::secure

fl::target fl::verify fl::write

funcs getIDEpref getpid

go help history

jtagclock kill launch

loadsym log mc::config

mc::go mc::group mc::kill

mc::reset mc::restart mc::stop

mc::type mem next

nexti oneframe protocol

pwd quitIDE radix

redirect refresh reg

reset restart restore

run save sc::setMaxAccessLength

sc::setReset sc::getPhysicalAddress setpc

setpicloadaddr stack status

step stepi stop

switchtarget system var

wait watchpoint

Chapter 8 CodeWarrior Command-Line Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 221

http://sourceforge.net/projects/tcl
http://sourceforge.net/projects/tcl

8.4.1 about

Lists the version information.

Syntax

 about

8.4.2 alias

Creates an alias for a debug command, removes such an alias, or lists all current aliases.

Syntax

 alias [<alias> [<command>]]

Parameters

alias

Lists current aliases.

Examples

Table 8-4 lists and defines examples of the alias command.

Table 8-4. alias Command-Line Debugger Command - Examples

Command Description

alias Lists current aliases.

alias ls dir Issue the dir command when ls is typed.

alias ls Remove the alias ls.

8.4.3 bp

Sets a breakpoint, removes a breakpoint, or lists the current breakpoints.

Syntax

 bp [-{hw|sw|auto}] {<func>|[<ms>:]<addr>|<file> <line> [<column>]}

 bp all|#<id>|<func>|<addr> off|enable|disable

Debugger Shell Command List

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

222 Freescale Semiconductor, Inc.

Examples

Table 8-5 lists and defines examples of the bp command.

Table 8-5. bp Command-Line Debugger Command - Examples

Command Description

bp Lists all breakpoints.

bp -hw fn Set hardware breakpoint at function fn().

bp -autofile.cpp 101 1 Set an auto breakpoint on file file.cpp at line 101, column 1.

bp fn off Remove the breakpoint at function fn().

bp 10343 Set a breakpoint at memory address 10343.

bp #4 off Remove the breakpoint number 4.

bp #4 disable Disable the breakpoint number 4.

bp #4 cond x == 3 Set the condition for breakpoint number 4 to fire only if x == 3.

bp #4 cond Hit Count % 3 == 0 Break every third time. Hit Count corresponds to the
breakpoint property of the same name.

8.4.4 cd

Changes to a different directory or lists the current directory.

Pressing the Tab key completes the directory name automatically.

Syntax

 cd [<path>]

Parameter

 path

Directory pathname; accepts asterisks and wildcards.

Examples

Table 8-6 lists and defines examples of the cd command.

Table 8-6. cd Command-Line Debugger Command-Examples

Command Description

cd Lists current directory.

cd c: Changes to the C: drive root directory.

cd d:/mw/0622/ test Changes to the specified D: drive directory

cd c:p*s Changes to any C: drive directory whose name starts with p
and ends with s.

Chapter 8 CodeWarrior Command-Line Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 223

8.4.5 change

Changes the contents of register, memory location, block of registers, or memory
locations.

Syntax

 change <addr-spec> [<range>] [-s|-ns] [%<conv>] <value>

 change <addr-spec>{..<addr>|#<n>} [<range>] [-s|-ns] [%<conv>] <value>

 change <reg-spec> [<n>] [-s|-ns] [%<conv>] <value>

 change <reg-spec>{..<reg>|#<n>} [-s|-ns] [%<conv>] <value>

 change <var-spec> [-s|-ns] [%<conv>] <value>

 change v <var> [-s|-ns] [%<conv>] <value>

Parameter

 <addr-spec> [<ms>:]<addr>

On architectures supporting multiple memory spaces, specifies the memory space in
which <addr> is to be found.

See the help for the option -ms of display or mem for more information on memory
spaces. If unspecified, the setting config MemIdentifier is used.

 <addr>

Target address in hex format.

 <count>

Number of memory cells.

 x<cell-size>

Memory is displayed in units called cells, where each cell consists of <cell-size> bytes. If
unspecified, the setting config MemWidth is used.

 h<access-size>

Memory is accessed with a hardware access size of <access-size> bytes.

If unspecified, the setting config MemWidth is used.

 %<conv>

Debugger Shell Command List

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

224 Freescale Semiconductor, Inc.

Specifies the type of the data. Possible values for <conv> are given below. The default
conversion is set by the radix command for memory and registers and by the config var
command for variables.

• %x Hexadecimal
• %d Signed decimal
• %u Unsigned decimal
• %f Floating point

NOTE
You can not access array elements in Tcl except through
array and set commands. Therefore, to use the change or var
command on an array element, enclose it in curly braces {}.

Examples

The examples assume the following settings:

• radix x

• config MemIdentifier 0

• config MemWidth 32

• config MemAccess 32

• config MemSwap off

Table 8-7 lists and defines Memory examples of the change command.

Table 8-7. change Command-Line Debugger Command-Memory Examples

Command Description

change 10000 10 Change memory range 0x10000-3 to 0x10 (because radix
is hex).

change 1:10000 20 Change memory range 0x10000-3, memory space 1, to
0x20.

change 10000 16 20 Change each of 16 cells in the memory range 0x10000-3f
to 0x20.

change 10000 16x1h8 31 Change each of 16, 1-byte cells to 0x31, using a hardware
access size of 8-bytes per write.

change 10000 -s %d 200 Change memory range 0x10000-3 to c8000000.

change {x[1]} 10 Change the second element in the array x to the value 10.

change {t1.x} 2 Change the value of the variable x in the structure t1 to 2.

Chapter 8 CodeWarrior Command-Line Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 225

Table 8-8 lists and defines Register examples of the change command.

Table 8-8. change Command-Line Debugger Command-Register Examples

Command Description

change R1 123 Change register R1 to 0x123.

change R1..R5 5432 Change registers R1 through R5 to 0x5432.

change "General Purpose Registers/R1" 100 Change register R1 in the General Purpose Register group to
0x100.

Table 8-9 lists and defines Variable examples of the change command.

Table 8-9. change Command-Line Debugger Command-Variable Examples

Command Description

change myVar 10 Change the value of variable myVar to 16 (0x10)

8.4.6 cls

Clears the command line debugger window.

Syntax

 cls

8.4.7 config

Lists current configuration information.

Provides the name of the default project or build target, or configures:

• command-line debugger window colors.
• command-line debugger window scrolling size.
• command-line debugger window mode.
• Default build target
• Hexadecimal prefix
• Memory identifier
• Processor name
• Subprocessor name

Debugger Shell Command List

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

226 Freescale Semiconductor, Inc.

Syntax

 conf[ig] [c[olor] [r | m | c | s | e | n]

 text_color [background_color] |

 m[ode] [dsp | tcl | auto] |

 s[croll] number_of_lines |

 h[exprefix] hexadecimal_prefix |

 mem[identifier] memory_identifier |

 p[rocessor] processor_name [subprocessor_name]]

Parameter

 color text indicators -

r (registers), m (memory), c (commands), s (script), e (errors), or n (normal)

 text_color

Text color values for red, green, and blue, each from 0 through 255.

 background_color

Background color values for red, green, and blue, each from 0 through 255.

mode

Command-name conflict resolution mode:

• dsp: use command-line debug commands
• tcl: use tcl commands
• auto: resolve automatically

 number_of_lines

Number of lines to scroll.

 hexadecimal_prefix

Prefix for display of hexadecimal values.

 memory_identifier

Memory identifier.

 processor_name

Name or identifier of target processor.

 subprocessor_name

Name or identifier of target subprocessor.

 target_name

Chapter 8 CodeWarrior Command-Line Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 227

Name of build target.

Examples

Table 8-10 lists and defines examples of the config command.

Table 8-10. config Command-Line Debugger Command-Examples

Command Description

config Lists current configuration information.

config c e $ff $0 $0 Sets error text to red.

config c r $0 $0 $0 $ff $ff $ff Sets register display to black, on a white background.

config m dsp Sets clash resolution to dsp mode.

config hexprefix 0x Specifies 0x prefix for hexadecimal values.

config memidentifier m Sets memory identifier to m.

config processor 8101 Sets processor to 8101.

config project Lists default-project name.

config target Lists default build-target name.

config target debug release x86 Changes default build-target name to debug release x86.

8.4.8 copy

Copies contents of a memory address or address block to another memory location.

Syntax

 copy [<ms>:]<addr>[..<addr>|#<bytes>] [<ms>:]<addr>

Parameter

 <addr>

One of these memory-address specifications:

• A single address
• First address of the destination memory block.

Examples

Table 8-11 lists and defines examples of the copy command.

Table 8-11. copy Command-Line Debugger Command-Examples

Command Description

copy 00..1f 30 Copy memory addresses 00 through 1f to address 30.

Table continues on the next page...

Debugger Shell Command List

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

228 Freescale Semiconductor, Inc.

Table 8-11. copy Command-Line Debugger Command-Examples (continued)

Command Description

copy 20#10 50 Copy 10 memory locations beginning at memory location 20
to memory beginning at location 50.

8.4.9 debug

Launches a debug session.

Syntax

 debug [<index> | <debug-config-name>]

Examples

Table 8-12 lists and defines examples of the debug command.

Table 8-12. debug Command-Line Debugger Command-Examples

Command Description

debug Start debugging using the default launch configuration, which
is the last debugged configuration if one exists and index 0
otherwise.

debug 3 Start debugging using the launch configuration at index 3.
Type launch for the current set of launch configurations.

debug {My Launch Config} Start debugging using the launch configuration named My
Launch Config. Type launch for the current set of launch
configurations.

8.4.10 dir

Lists directory contents.

Syntax

 dir [path|files]

Examples

Chapter 8 CodeWarrior Command-Line Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 229

Table 8-13 lists and defines examples of the dir command.

Table 8-13. dir Command-Line Debugger Command-Examples

Command Description

dir Lists all files of the current directory.

di *.txt Lists all current-directory files that have the .txt file name
extension.

dir c:/tmp Lists all files in the tmp directory on the C: drive.

dir /ad Lists only the subdirectories of the current directory.

8.4.11 disassemble

Disassembles the instructions of the specified memory block.

Syntax

 disassemble

 disassemble pc|[<ms>:]<addr> [<count>]

 disassemble reset

 disassemble [<ms>:]<a1>{..<a2>|#<n>}

Parameter

[none]

With no options, the next block of instructions is listed. After a target stop event, the next
block starts at the PC.

[<ms>:]<addr>

Target address in hex. On targets with multiple memory spaces, a memory space id can
be specified.

pc

The current program counter.

<count>

Number of instructions to be listed.

reset

Reset the next block to the PC and the instruction count to one screen.

Debugger Shell Command List

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

230 Freescale Semiconductor, Inc.

<a1>{..<a2>|#<n>}

Specifies a range of memory either by two endpoints, <a1> and <a2>, or by a startpoint
and a count, <a1> and <n>.

Examples

Table 8-14 lists and defines examples of the disassemble command.

Table 8-14. disassemble Command-Line Debugger Command-Examples

Command Description

disassemble Lists the next block of instructions.

disassemble reset Reset the next block to the PC and the instruction count to
one screenful.

disassemble pc Lists instructions starting at the PC.

disassemble pc 4 Lists 4 instructions starting at the PC. Sets the instruction
count to 4.

disassemble 1000 Lists instructions starting at address 0x1000.

disassemble p:1000 4 Lists 4 instructions from memory space p, address 1000. Sets
the instruction count to 4.

8.4.12 display

Lists the contents of a register or memory location.

This command lists all register sets of a target, adds register sets, registers, or memory
locations, or removes register sets, registers, or memory locations.

Syntax

 display <addr-spec> [<range>] [-s|-ns] [%<conv>] [-np]

 display -ms

 display <addr-spec>{..<addr>|#<n>} [<range>] [-s|-ns] [%<conv>] [-np]

 display <reg-spec> [<n>] [-{d|nr|nv|np} ...] [-s|-ns] [%<conv>]

 display <reg-spec>{..<reg>|#<n>} [-{d|nr|nv|np} ...] [-s|-ns] [%<conv>]

 display all|r:|nr: [-{d|nr|nv|np} ...] [-s|-ns] [%<conv>]

 display [-]regset

 display <var-spec> [-np] [-s|-ns] [%<conv>]

 display v: [-np] [-s|-ns] [%<conv>]

Parameter

Chapter 8 CodeWarrior Command-Line Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 231

 <ms>

On architectures supporting multiple memory spaces, specifies the memory space in
which <addr> is to be found.

 <addr>

Target address in hex.

 <range>

[<count>][x<cell-size>][h<access-size>] | [<count>] [{8,16,32,64}bit].

 <count>

Number of memory cells.

 x<cell-size>

Memory is displayed in units called cells, where each cell consists of <cell-size> bytes. If
unspecified, the setting config MemWidth is used.

 {8,16,32,64}bit

Sets both <cell-size> and <access-size>.

Examples

The examples assume the following settings:

• radix x

• config MemIdentifier 0

• config MemWidth 32

• config MemAccess 32

• config MemSwap off

Table 8-15 lists and defines examples of the display command.

Table 8-15. display Command-Line Debugger Command-Examples

Command Description

display 10000 Display memory range 0x10000-3 as one cell.

display 1:10000 Display memory range 0x10000-3, memory space 1, as one
cell.

display 10000 16 Display memory range 0x10000-3f as 16 cells.

display 10000 16x1h8 Display 16, 1-byte cells, with a hardware access size of 8-
bytes per read.

display 10000 8bit Display one byte, with a hardware access size of one byte.

display 10000 -np Return one cell, but don't print it to the Command Window.

display 10000 -s Display one cell with the data endian-swapped.

display 10000 %d Display one cell in decimal format.

Table continues on the next page...

Debugger Shell Command List

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

232 Freescale Semiconductor, Inc.

Table 8-15. display Command-Line Debugger Command-Examples (continued)

Command Description

display -ms Display the available memory spaces, if any.

display -regset List all the available register sets on the target chip.

display R1 Display the value of register R1.

display "General Purpose Registers/R1" Display the value of register R1 in the General Purpose
Register group.

display R1 -d Display detailed "data book" contents of R1, including bitfields
and definitions.

display "nr:General Purpose Registers/R1" 25 Beginning with register R1, display the next 25 registers.
Register groups are not recursively searched.

8.4.13 evaluate

Lists variable or expression.

Syntax

 evaluate [#<format>] [-l] [<var|expr>]

Parameter

 <format>

Output format and possible values:

 #-, #Default

 #d, #Signed

 #u, #Unsigned

 #h, #x, #Hex

 #c, #Char

 #s, #CString

 #p, #PascalString

 #f, #Float

 #e, #Enum

 #i, #Fixed

 #o, #w, #Unicode

 #b, #Binary

 <none>, #Fract

Chapter 8 CodeWarrior Command-Line Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 233

 <none>, #Boolean

 <none>, #SignedFixed

Examples

Table 8-16 lists and defines examples of the evaluate command.

Table 8-16. evaluate Command-Line Debugger Command-Examples

Command Description

evaluate List the types for all the variables in current and global stack.

evaluate i Return the value of variable 'i'

evaluate #b i Return the value of variable 'i' formatted in binary

evaluate -l 10 Return the address for line 10 in the current file

evaluate -l myfile.c,10 Return the address for line 10 in file myfile.c

evaluate -l +10 Return the address to an offset of 10 lines starting from the
current line

8.4.14 finish

Executes until the current function returns.

Syntax

 finish

8.4.15 fl::blankcheck

Tests that the flash device is in the blank state.

Syntax

 fl::blankcheck

8.4.16 fl::checksum

Calculates a checksum.

Syntax

Debugger Shell Command List

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

234 Freescale Semiconductor, Inc.

 fl::checksum

8.4.17 fl::device

Defines the flash device.

Syntax

 fl::device

8.4.18 fl::diagnose

Dumps flash information like ID, sector map, sector factory, protect status.

Syntax

 fl::diagnose [full]

Parameter

 full

Dumps sector status (programmed/erased). This could take a few minutes for large
flashes

Remarks

Use fl::device command prior to this command in order to set the flash device.

8.4.19 fl::disconnect

Closes the connection to the target.

Syntax

 fl::disconnect

8.4.20 fl::dump

Chapter 8 CodeWarrior Command-Line Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 235

Dumps the content of entire flash.

Syntax

 fl::dump [all | -range start_addr end_addr] -o <file>

Parameter

 -all

Dumps content of entire flash.

 -range <start_addr> <end_addr>

Sets the range of flash region to be dumped.

 -t <type>

Sets the type of flash region ("Motorola S-Record Format" or "Binary/Raw Format") to
be dumped .

 -o <file>

Dumps the flash to the specified file.

8.4.21 fl::erase

Erases the flash device.

Syntax

 fl::erase

8.4.22 fl::image

Defines the flash image settings.

Syntax

 fl::image

8.4.23 fl::protect

Protects the sectors.

Debugger Shell Command List

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

236 Freescale Semiconductor, Inc.

Syntax

 fl::protect [on | off]

Parameter

 on | off

Enable or disable protection of sectors.

8.4.24 fl::secure

Secures the device

Syntax

 fl::secure [on | off] [password <pass>]

Parameter

 on | off

Secure or unsecure device.

 password <pass>

Password used to secure the device.

8.4.25 fl::target

Defines the target configuration settings.

Syntax

 fl::target

8.4.26 fl::verify

Verifies the flash device.

Syntax

 fl::verify

Chapter 8 CodeWarrior Command-Line Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 237

8.4.27 fl::write

Writes the flash device.

Syntax

 fl::write

8.4.28 funcs

Displays information about functions.

Syntax

 funcs [-all] <file> <line>

Parameter

 [-all]

Displays information about the functions using all debug contexts.

 <file>

Specifies the file name.

 <line>

Specifies the line number.

Examples

Table 8-17 lists and defines examples of the funcs command.

Table 8-17. funcs Command-Line Debugger Command-Examples

Command Description

funcs main.c 100 Display information about the functions containing line 100 in
file main.c, using the active debug context

funcs -all main.c 100 Display information about the functions containing line 100 in
file main.c, using all debug contexts.

Debugger Shell Command List

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

238 Freescale Semiconductor, Inc.

8.4.29 getIDEpref

The command displays the value of the launch configuration attribute associated with the
user-provided key; <attribute_key> and <attribute_type> are mandatory parameters.

Syntax

getIDEpref <attribute_key> <attribute_type>

Parameter

<attribute_type> = [bool | int | str | strlist]

8.4.30 getpid

List the ID of the process being debugged.

Syntax

 getpid

8.4.31 go

Starts to debug your program from the current instruction.

Syntax

 go [nowait | <timeout_s>]

Parameter

 <none>

Run the default thread. The command may wait for a thread break event before returning,
depending on the settings config runControlSync and config autoThreadSwitch.

 nowait

Return immediately without waiting for a thread break event.

 <timeout_s>

Maximum number of seconds to wait for a thread break event. Can be set to nowait.

Examples

Chapter 8 CodeWarrior Command-Line Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 239

Table 8-18 lists and defines examples of the go command.

Table 8-18. go Command-Line Debugger Command-Examples

Command Description

go Run the default thread.

go nowait Run the default thread without waiting for a thread break
event.

go 5 Run the default thread. If config runControlSync is enabled,
then the command will wait for a thread break event for a
maximum of 5 seconds.

8.4.32 help

Lists debug command help in the command-line debugger window.

Syntax

 help [-sort | -tree | <cmd>]

Parameter

 command

Name or short-cut name of a command.

Examples

Table 8-19 lists and defines examples of the help command.

Table 8-19. help Command-Line Debugger Command-Examples

Command Description

help Lists all debug commands.

help b Lists help information for the break command.

8.4.33 history

Lists the history of the commands entered during the current debug session.

Syntax

 history

Debugger Shell Command List

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

240 Freescale Semiconductor, Inc.

8.4.34 jtagclock

Reads or updates the current JTAG clock speed.

Syntax

 jtagclock <chain-position> [<speed-in-kHz>]

Parameter

 <chain-position>

Specifies the chain position.

 <speed-in-kHz>

Specifies the speed in kilo hertz.

Examples

Table 8-20 lists and defines examples of the help command.

Table 8-20. jtagclock Command-Line Debugger Command-Examples

Command Description

jtagclock 3 Read the current jtag clock speed for chain position 3.

jtagclock 3 1000 update the current jtag clock speed to 1000 kHz for chain
position 3.

8.4.35 kill

Stops one or all current debug sessions.

Syntax

 kill [<index> ...]

Parameter

 all

Specifier for all debug sessions.

Examples

Chapter 8 CodeWarrior Command-Line Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 241

Table 8-21 lists and defines examples of the help command.

Table 8-21. kill Command-Line Debugger Command-Examples

Command Description

kill Kills the debug session for the current process.

kill 0 1 Kills debug sessions 0 and 1.

8.4.36 launch

Lists the launch configurations.

Syntax

 launch

8.4.37 loadsym

Load a symbolic file.

Syntax

loadsym

8.4.38 log

Logs the commands or lists entries of a debug session.

If issued with no parameters, the command lists all open log files.

Syntax

 log c|s <filename>

 log off [c|s] [all]

 log

Parameter

 c

Debugger Shell Command List

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

242 Freescale Semiconductor, Inc.

Command specifier.

 s

Lists entry specifier.

 <filename>

Name of a log file.

Examples

Table 8-22 lists and defines examples of the log command.

Table 8-22. log Command-Line Debugger Command-Examples

Command Description

log Lists currently opened log files.

log s session.log Log all display entries to file session.log.

log off c Close current command log file.

log off Close current command and log file.

log off all Close all log files.

8.4.39 mc::config

List or edit multicore group options.

Syntax

 mc::config

8.4.40 mc::go

Resumes multiple cores.

Syntax

 mc::go

Examples

Chapter 8 CodeWarrior Command-Line Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 243

Table 8-23 lists and defines examples of the mc::go command.

Table 8-23. mc::go Command-Line Debugger Command-Examples

Command Description

debug {SBL1_FWK_core0_ADS}debug
{SBL1_FWK_core1_ADS}debug
{SBL1_FWK_core2_ADS}debug
{SBL1_FWK_core3_ADS}debug
{SBL1_FWK_core4_ADS}debug
{SBL1_FWK_core5_ADS}mc::go

Sample usage of mc::go command.

8.4.41 mc::group

List or edit multicore groups.

Syntax

 mc::group

8.4.42 mc::kill

Terminates multiple cores.

Syntax

 mc::kill

8.4.43 mc::reset

Resets multiple cores.

Syntax

 mc::reset

8.4.44 mc::restart

Debugger Shell Command List

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

244 Freescale Semiconductor, Inc.

Restarts multiple cores.

Syntax

 mc::restart

8.4.45 mc::stop

Suspend multiple cores.

Syntax

 mc::stop

8.4.46 mc::type

List or edit system types.

Syntax

 mc::type

8.4.47 mem

Read and write one or more adjacent "cells" of memory, where a cell is defined as a
contiguous block of bytes.

The cell size is determined by the <cell-size> parameter or by the using MemWidth attribute
of the config command.

Syntax

 Read memory

 mem <addr-spec> [<range>] [-s|-ns] [%<conv>] [-np]

 Write memory

 mem <addr-spec> [<range>] [-s|-ns] [%<conv>] =<value>

Parameter

 [none]

Chapter 8 CodeWarrior Command-Line Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 245

With no options, the next block of memory is read.

 <addr-spec> [<ms>:]<addr>

 <ms>

On architectures supporting multiple memory spaces, specifies the memory space in
which <addr> is to be found. See the help for the option -ms of display or mem for more
information on memory spaces. If unspecified, the setting " config MemIdentifier" is used.

 <addr>

Target address in hex.

 <range> [<count>][x<cell-size>][h<access-size>] | [<count>]
 [{8,16,32,64}bit]

 <count>

Number of memory cells.

 x<cell-size>

Memory is displayed in units called cells, where each cell consists of <cell-size> bytes. If
unspecified, the setting " config MemWidth" is used.

 h<access-size>

Memory is accessed with a hardware access size of <access-size> bytes. If unspecified,
the setting " config MemAccess" is used.

 {8,16,32,64}bit

Sets both <cell-size> and <access-size>.

 -np

Don't print anything to the display, only return the data.

 -ms

On architectures supporting multiple memory spaces, displays the list of available
memory spaces including a mnemonic and/or an integer index which may be used when
specifying a target address.

 -s|-ns

Specifies whether each value is to be swapped. For memory, specifies whether each cell
is to be swapped. With a setting of -ns, target memory is written in order from lowest to
highest byte address. Otherwise, each cell is endian swapped. If unspecified, the setting
config MemSwap is used.

 %<conv>

Debugger Shell Command List

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

246 Freescale Semiconductor, Inc.

Specifies the type of the data. Possible values for <conv> are given below. The default
conversion is set by the radix command for memory and registers and by the config var
command for variables.

 %x Hexadecimal.

 %d Signed decimal.

 %u Unsigned decimal.

 %f Floating point.

 %[E<n>]F Fixed or Fractional. The range of a fixed
 point value depends on the (fixed) location
 of the decimal point. The default location is
 set by the config command option
 "MemFixedIntBits".

 %s Ascii.

Examples

Table 8-24 lists and defines examples of the mem command.

Table 8-24. mem Command-Line Debugger Command-Examples

Command Description

mem x:1000 4 Read program memory starting from address 1000 for four
32-bit cells.

mem m:1000 16bit 4 Read data memory starting from address 1000 for four 16-bit
cells.

mem m:1000 16bit 4 %d =48 Starting at address 1000, write the decimal value 48 into data
memory for four 16-bit cells

8.4.48 next

Runs to next source line or assembly instruction in current frame.

Syntax

 next

Remarks

If you execute the next command interactively, the command returns immediately, and
target-program execution starts. Then you can wait for execution to stop (for example,
due to a breakpoint) or type the stop command.

Chapter 8 CodeWarrior Command-Line Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 247

If you execute the next command in a script, the command-line debugger polls until the
debugger stops (for example, due to a breakpoint). Then the command line debugger
executes the next command in the script. If this polling continues indefinitely because
debugging does not stop, press the ESC key to stop the script.

8.4.49 nexti

Executes over function calls, if any, to the next assembly instruction.

Syntax

 nexti

8.4.50 oneframe

Query or set the one-frame stack crawl mode for the current thread.

Syntax

 oneframe

8.4.51 protocol

Executes a protocol plugin command (internal).

Syntax

 protocol

8.4.52 pwd

Lists current working directory.

Syntax

 pwd

Debugger Shell Command List

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

248 Freescale Semiconductor, Inc.

8.4.53 quitIDE

Quits the IDE.

Syntax

 quitIDE

8.4.54 radix

Lists or changes the default input radix (number base) for command entries, registers and
memory locations.

Entering this command without any parameter values lists the current default radix.

Syntax

 radix [x|d|u|b|f|h]

Parameter

 x

Hexadecimal

 d

Decimal

 u

Unsigned decimal

 b

Binary

 f

Fractional

 h

Hexadecimal

Examples

Chapter 8 CodeWarrior Command-Line Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 249

Table 8-25 lists and defines examples of the radix command.

Table 8-25. radix Command-Line Debugger Command-Examples

Command Description

radix Lists the current setting.

radix d Change the setting to decimal.

radix x Change the setting to hexadecimal.

8.4.55 redirect

Redirects I/O streams of the current target process.

Syntax

 redirect

8.4.56 refresh

Discard all cached target data and refresh views.

Syntax

 refresh

8.4.57 reg

Read and write registers.

Syntax

 reg

8.4.58 reset

Reset the target hardware.

Debugger Shell Command List

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

250 Freescale Semiconductor, Inc.

Syntax

 reset

8.4.59 restart

Restarts the current debug session.

Syntax

 restart

8.4.60 restore

Write file contents to memory.

Syntax

 restore

8.4.61 run

Launch a process.

Syntax

 run

8.4.62 save

Saves the contents of memory locations to a binary file or a text file containing
hexadecimal values.

Syntax

 save -h|-b [<ms>:]<addr>... <filename> [-a|-o] [8bit|16bit|32bit|64bit]

Parameter

Chapter 8 CodeWarrior Command-Line Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 251

 -h|-b

Sets the output file format to hex or binary. For hex format, the address is also saved so
that the contents can easily be restored with the "restore" command.

 [<ms>:]<addr>

Address to read from. For architectures with multiple memory spaces, a memory space id
may be specified.

 -a

Append specifier. Instructs the command-line debugger to append the saved memory
contents to the current contents of the specified file.

 -o

Overwrite specifier: tells the debugger to overwrite any existing contents of the specified
file.

Examples

Table 8-26 lists and defines examples of the save command.

Table 8-26. save Command-Line Debugger Command-Examples

Command Description

set addressBlock1 "p:10..`31"set
addressBlock2 "p:10000#20"save -h
$addressBlock1 $addressBlock2hexfile -a

Dumps contents of two memory blocks to the text file
hexfile.lod (in append mode).

set addressBlock1 "p:10..`31"set
addressBlock2 "p:10000#20"save -b
$addressBlock1 $addressBlock2binfile -o

Dumps contents of two memory blocks to the binary file
binfile.lod (in overwrite mode).

8.4.63 sc::setMaxAccessLength

Sets the maximum amount of data accessible in one target operation.

Syntax

 sc::setMaxAccessLength

Example

The following command sets a maximum of 1000 elements that can be read or written:

 sc::setMaxAccessLength 1000

Debugger Shell Command List

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

252 Freescale Semiconductor, Inc.

8.4.64 sc::setReset

Sets the reset mode.

Syntax

 sc::setReset <mode>

Parameter

 <mode>

Can be ToUser or ToDebug. ToUser sets the reset to run out of reset. For debug mode after
reset, use ToDebug parameter.

8.4.65 sc::getPhysicalAddress

Returns the physical address that corresponds to the specified virtual address.

Use mem –ms command, to view the list of supported memory spaces. For more
information, refer to the mem command.

Syntax

 sc::getPhysicalAddress <mem_space>:<virtual_address>

8.4.66 setpc

Set the value of the program counter register.

Syntax

 setpc

8.4.67 setpicloadaddr

Indicate where a PIC executable is loaded.

Chapter 8 CodeWarrior Command-Line Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 253

Syntax

 setpicloadaddr

8.4.68 stack

Print the call stack.

Syntax

 stack

8.4.69 status

Lists the debug status of all existing active targets.

Syntax

 status

8.4.70 step

Steps through a program, automatically executing the display command.

Syntax

 step [asm|src] [into|over|out]

 step [nve|nxt|fwd|end|aft]

Parameter

 asm|src

Controls whether the step is performed at the assembly instruction level or the source
code level.

 into|over|out

Controls the type of step operation. If unspecified, into is used.

 nve

Step non optimized action.

Debugger Shell Command List

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

254 Freescale Semiconductor, Inc.

 nxt

Step next action.

 fwd

Step forward action.

 end

Step end of statement action.

 aft

Step end all previous action.

Examples

Table 8-27 lists and defines examples of the step command.

Table 8-27. step Command-Line Debugger Command-Examples

Command Description

step Step into the current source or assembly line.

step over Step over the current source or assembly line.

step out Step out of a function.

step asm Step over a single assembly instruction.

8.4.71 stepi

Execute to the next assembly instruction.

Syntax

 stepi

8.4.72 stop

Stops a running program (started by a go, step, or next command).

Syntax

 stop

Examples

Chapter 8 CodeWarrior Command-Line Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 255

Table 8-28 lists and defines examples of the stop command.

Table 8-28. stop Command-Line Debugger Command-Examples

Command Description

stop Using it after command go/step out/next, this will stop the
target program.

8.4.73 switchtarget

Chooses a thread for subsequent commands.

Syntax

 switchtarget [<index> | -cur | -ResetIndex]

Parameter

 index

Session Index number.

Examples

Table 8-29 lists and defines examples of the switchtarget command.

Table 8-29. switchtarget Command-Line Debugger Command-Examples

Command Description

switchtarget list currently available debug sessions.

switchtarget 0 choose the thread with index 0

switchtarget -cur list the index of the current thread.

switchtarget -ResetIndex reset the index counter to 0, not valid while debugging.

8.4.74 system

execute system command.

Syntax

 system [command]

Parameter

Debugger Shell Command List

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

256 Freescale Semiconductor, Inc.

 command

Any system command that does not use a full screen display.

Examples

Table 8-30 lists and defines examples of the system command.

Table 8-30. system Command-Line Debugger Command-Examples

Command Description

system del *.tmp Delete from the current directory all files that have the .tmp
filename extension.

8.4.75 var

Read and write variables or C-expressions.

Syntax

 Display variable

 var

 var <var-spec> [-np] [-s|-ns] [%<conv>]

 var v: [-np] [-s|-ns] [%<conv>]

 Modify variable

 var <var-spec> [-s|-ns] [%<conv>] =<value>

Parameter

 [none]

With no options, this is equivalent to using var v:.

 <var-spec> [v:]<var>

 v:

If this option appears with no <var> following it, then all variables pertinent to the current
scope are printed.

 <var>

Symbolic name of the variable to print. Can be a C expression as well.

 -np

Don't print anything to the display, only return the data.

Chapter 8 CodeWarrior Command-Line Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 257

 -s|-ns

Specifies whether each value is to be swapped. For memory, specifies whether each cell
is to be swapped. With a setting of -ns, target memory is written in order from lowest to
highest byte address. Otherwise, each cell is endian swapped. If unspecified, the setting
config MemSwap is used.

 %<conv>

Specifies the type of the data. Possible values for <conv> are given below. The default
conversion is set by the radix command for memory and registers and by the config var
command for variables.

 %x Hexadecimal.

 %d Signed decimal.

 %u Unsigned decimal.

 %f Floating point.

 %[E<n>]F Fixed or Fractional. The range of a fixed
 point value depends on the (fixed) location
 of the decimal point. The default location is
 set by the config command option
 "MemFixedIntBits".

 %s Ascii.

Examples

Table 8-31 lists and defines examples of the var command.

Table 8-31. var Command-Line Debugger Command-Examples

Command Description

var flag =0 Set the value of the variable flag to 0.

var {x[2]} =11 Set the value of the third element in the array x to 11.

var {t1.y} =3 Set the value of the variable y in the structure t1 to 3.

8.4.76 wait

Tells the debugger to wait for a specified amount of time, or until you press the space bar.

Syntax

 wait <time-ms>

Parameter

 time-ms

Debugger Shell Command List

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

258 Freescale Semiconductor, Inc.

Number of milliseconds to wait.

Examples

Table 8-32 lists and defines examples of the wait command.

Table 8-32. wait Command-Line Debugger Command-Examples

Command Description

wait Debugger waits until you press the space bar.

wait 2000 Wait for 2 seconds.

8.4.77 watchpoint

Sets, removes, disables, enables or list watchpoints. You can also set condition on
watchpoint.

Syntax

 watchpoint

 watchpoint [-{r|w|rw}] {<var>|[<ms>:]<addr> <length>}

 watchpoint all|#<id>|<var>|[<ms>:]<addr> off|enable|disable

 watchpoint #<id> cond <c-expr>

Examples

Table 8-33 lists and defines examples of the watchpoint command.

Table 8-33. watchpoint Command-Line Debugger Command-Examples

Command Description

watchpoint Display all watchpoints.

watchpoint gData Set read-write (the default) watchpoint on variable gData.

watchpoint -r gData Set read-only watchpoint on variable gData.

watchpoint all off Remove all watchpoints.

watchpoint #4 disable Disable watchpoint number 4.

watchpoint 10343 4 Set a watchpoint at memory address 10343 of length 4.

Chapter 8 CodeWarrior Command-Line Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 259

Debugger Shell Command List

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

260 Freescale Semiconductor, Inc.

Chapter 9
Multi-Core Debugging

This chapter explains how to use the multi-core debugging capability of the CodeWarrior
debugger.

In this chapter:

• Creating a JTAG Initialization File
• Debugging Multi-Core Projects
• Multi-Core Debugging Commands

9.1 Creating a JTAG Initialization File

This section explains how to create a JTAG initialization file that specifies the type and
chain order of the cores you want to debug.

The listing below shows the JTAG initialization file for a StarCore processor and a
generic device, connected to a JTAG chain.

Listing 9-1. JTAG Initialization File for Generic Device Connected to JTAG Chain

JTAG Initialization File

Standards for this file

1. Comments begin with the character '#'.

2. A StarCore device is specified with:

B4860

3. A non-StarCore device is specified with:

Generic <Value_1> <Value_2> <Value_3>

Value_1 is the length in bits of the JTAG instruction register.

Value_2 is the length in bits of the JTAG bypass register.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 261

Value_3 is the hex value of the JTAG bypass instruction.

Hex values are prefixed with 0x.

4. Each device is specified on a new line.

5. Device specification is case sensitive, and a Generic device

cannot be specified without all three values.

#

#An example configuration is shown below:

B4860

Generic 4 1 Oxf

You can also include entries for other StarCore, non-StarCore devices connected to the
JTAG chain by adding the following lines of code to your JTAG initialization file:

 Generic
 instruct_reg_len
 data_reg_bypass_len
 JTAG_bypass_instruct

The table below shows the variable definitions that you must specify for a generic device.

Table 9-1. Syntax Variables to Specify Generic Device on JTAG Chain

Variable Description

instruct_reg_len Length (in bits) of the JTAG instruction register.

data_reg_bypass_len Length (in bits) of the JTAG bypass register.

JTAG_bypass_instruct Value of the JTAG bypass instruction (in hexadecimal).

9.2 Debugging Multi-Core Projects

This section explains how to set launch configurations and how to debug multiple cores
in a multi-core project.

The CodeWarrior debugger provides the facility to debug multiple StarCore processors
using a single debug environment. The run control operations can be operated
independently or synchronously. A common debug kernel facilitates multi-core, run
control debug operations for examining and debugging the interaction of the software
running on the different cores on the system.

Debugging Multi-Core Projects

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

262 Freescale Semiconductor, Inc.

NOTE
This procedure assumes that you have already created a multi-
core project, named board_project.

To debug multiple cores connected to a JTAG chain, perform the steps given in the
following sections:

• Setting Launch Configurations
• Debugging Multiple Cores

9.2.1 Setting Launch Configurations

Setting a launch configuration allows you to specify all core-specific initializations.

To set up the launch configurations, follow these steps:

1. Connect to your JTAG chain.

NOTE
The JTAG chain includes multiple boards or multiple
processors on the same or multiple boards.

2. Create a JTAG initialization file that describes the items on the JTAG chain. For
more information on how to create a JTAG initialization file, see Creating a JTAG
Initialization File.

3. Open the CodeWarrior project you want to debug.
4. Switch to the Debug perspective.
5. Select Run > Debug Configurations.

The Debug Configurations dialog box appears (shown in the figure below) with a
list of debug configurations that apply to the current application.

6. Expand the CodeWarrior tree control.
7. From the expanded list, select the debug configuration for which you want to modify

the debugger settings. For example, board_project_Debug_B4860_Download_Core00.

Chapter 9 Multi-Core Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 263

Figure 9-1. Debug Configurations Dialog Box
8. On the Main tab, select a connection from the Connection drop-down list.
9. Select a core from the Target list.

10. Click Edit next to the Connection drop-down list.

The Properties for <connection> dialog box appears.

Debugging Multi-Core Projects

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

264 Freescale Semiconductor, Inc.

Figure 9-2. Properties for <connection> Dialog Box
11. Select a target from the Target drop-down list.
12. Select the required TAP connection from the Connection type drop-down list. For

example, Ethernet TAP.
13. On the Connection tab, specify the hostname/IP of the target board in the

Hostname/IP text box.
14. Enter the JTAG clock speed in the JTAG clock speed text box.
15. Specify the port number of the CCS server in the Server port number text box.

Chapter 9 Multi-Core Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 265

Figure 9-3. Properties for <connection> Dialog Box - Connection Settings
16. Click Edit.

The Properties for <project> Target dialog box appears.

Figure 9-4. Debug Configurations - Properties for <target> Dialog Box

Debugging Multi-Core Projects

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

266 Freescale Semiconductor, Inc.

17. Select a target from the Target type drop-down list.
18. Click Edit.

The Target Types dialog box appears.

19. Click Import.

The Import Target Type dialog box appears.

20. Select the JTAG initialization file that describes the items on the JTAG chain.
21. Click Open.

The items on the JTAG chain described in the file appear in the Target Types dialog
box.

Figure 9-5. Target Types Dialog Box
22. Click OK.

The selected JTAG configuration file appears on the Initialization tab.

Chapter 9 Multi-Core Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 267

Figure 9-6. Initialization Tab - JTAG Configuration
23. Click OK.
24. Click OK.
25. Click the Debugger tab in the Debug Configurations dialog box.

The Debugger tab page appears.

26. Ensure that the Stop on startup at checkbox is selected and main is specified in the
User specified text box.

27. Click Apply to save the changes.

You have successfully configured a debug configuration.

28. Similarly, configure remaining debug configurations.

NOTE
To successfully debug multiple cores, the connection
settings must be identical for all debug configurations.

9.2.2 Debugging Multiple Cores

The CodeWarrior debugger enables system developers to simultaneously develop and
debug applications on a system with multiple processors, within the same debug
environment.

Debugging Multi-Core Projects

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

268 Freescale Semiconductor, Inc.

NOTE
Ensure that you have attached a debug probe to the target board
and to the computer hosting the CodeWarrior IDE before
performing the steps listed in this section.

To debug multiple cores, follow these steps:

1. Select a multi-core project in the CodeWarrior Projects view.
2. Select Run > Debug.

The debugger downloads core 0 and switches to the Debug perspective. The
debugger halts execution at the first statement of main(). The Debug view displays all
the threads associated with the core.

Figure 9-7. Multi-Core Debugging - Debug Core 0
3. Download all other cores associated with the project.
4. Select a thread from core 0 in the Debug view.

All the views in the Debug perspective will be updated to display the debug session
for the selected core. The figure below displays the debug session for a selected
thread in core 0.

Chapter 9 Multi-Core Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 269

Figure 9-8. Viewing Debug Information for Core 0
5. Select and expand the General Purpose Registers group.
6. Select Run > Step Over.

The following actions occur:

• Debugger executes the current statement and halts at the next statement.
• The program counter (PC) indicator moves to the next executable source line in

the Source view.
• In the Debug view, the status of the program changes to (Suspended).
• Modified register values are highlighted in yellow.

7. Select Window > New Window.

Another instance of the Debug perspective opens in a new window. The figure below
displays multiple instances of an active debug session.

Debugging Multi-Core Projects

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

270 Freescale Semiconductor, Inc.

Figure 9-9. Viewing Multiple Instances of Active Debug Session
8. Select a thread from core 1 in the Debug view of the newly opened Debug -

<project> window.

All the views in the Debug perspective will be updated to display the debug session
for the selected core.

9. Select and expand the Extended Simulator Registers group.
10. Select Run > Step Over.

The following actions occur:

• Debugger executes the current statement and halts at the next statement.
• The program counter (PC) indicator moves to the next executable source line in

the Source view.
11. Issue several more Step Over commands and watch the register values change.
12. Select main() thread from core 0 again.

Notice that the register values remain unchanged. This is because the CodeWarrior
debugger controls each core's execution individually.

Chapter 9 Multi-Core Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 271

13.
With core 0 still selected, click the Step Over button several times until you
reach the printf() statement.

Debugger executes the current statement, the following statements, and halts at the
printf() statement.

14. Switch to the other debug window.
15. Select the main() thread for core 1 by clicking it. Notice that the program counter icon

in the Source view did not move. The debugger controls the execution of each core
individually.

16.
In the Debug view, click the Resume button.

Core 1 enters an infinite loop. The status of the program changes to (Running).

17.
In the Debug view, click the main() thread for core 0 and click the Resume
button.

Core 0 enters an infinite loop and core 1 continues to execute in its loop.

18.
Select main() thread from core 1 and click the Suspend button.

The debugger halts core 1 at the current statement and the status of the program
changes to (Halted). Core 0 continues to execute.

19. Select Run > Multicore Terminate.

The debugger terminates the active debug session. The threads associated with each
core in the Debug view disappear.

9.3 Multi-Core Debugging Commands

This section describes the multi-core commands available in the Run menu of
CodeWarrior IDE and in the Debugger Shell.

If you are debugging a multi-core project, you can use single and multi-core debugging
commands to debug parts of each core project.

• Multi-Core Commands in CodeWarrior IDE
• Multi-Core Commands in Debugger Shell

Multi-Core Debugging Commands

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

272 Freescale Semiconductor, Inc.

9.3.1 Multi-Core Commands in CodeWarrior IDE

This section describes the multi-core commands in the CodeWarrior IDE.

When you start a multi-core debug session, multi-core commands are enabled on the
CodeWarrior IDE Run menu. These commands, when issued, affect all cores
simultaneously. The table below describes each menu choice. For detailed information on
these commands, see CodeWarrior Development Studio Common Features Guide.

Table 9-2. Multi-Core Debugging Commands

Command Icon Description

Multicore Resume Starts all cores of a multi-core system running simultaneously.

Multicore Suspend Stops execution of all cores of a multi-core system simultaneously.

Multicore Restart Restarts all the debug sessions for all cores of a multi-core system
simultaneously.

Multicore Terminate Kills all the debug sessions for all cores of a multi-core system
simultaneously.

Multicore Groups Use All Cores: If the selected debug context is a multi-core system, then
all cores are used for multi-core operations.

Disable Halt Groups: Disables breakpoint halt groups. For more
information on halt groups, see "Multicore Breakpoint Halt Groups" in
CodeWarrior Development Studio Common Features Guide.

Limit new breakpoints to current group: If selected, all new breakpoints
set during a debug session are reproduced only on cores belonging to the
group of the core on which the breakpoint is set.

Edit Target Types: Opens Target Types dialog box that lets you add and
remove system types.

Edit Multicore Groups: Opens the Multicore Groups dialog box to
create multi-core groups. You can also use this option to modify the
existing multi-core groups.

NOTE
For more information about creating/modifying multi-core
groups, or editing target type, see "Multicore Groups" in
CodeWarrior Development Studio Common Features Guide.

To use the multi-core commands from the Debug perspective, follow these steps:

1. Start a debugging session by selecting the appropriately configured launch
configuration.

2. If necessary, expand the desired core's list of active threads by clicking on the tree
control in the Debug view.

3. Click the thread you want to use with multi-core operations.

Chapter 9 Multi-Core Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 273

4. From the Run menu, specify the multi-core operation to perform on the thread.

NOTE
The keyboard shortcut for the Multicore Resume
operation is Alt+Shift+F8.

9.3.2 Multi-Core Commands in Debugger Shell

This section describes the multi-core commands in debugger shell.

In addition to the multicore-specific toolbar buttons and menu commands available in the
Debug view, the Debugger Shell has multi-core specific commands that can control the
operation of one or more processor cores at the same time. Like the menu commands, the
multi-core debugger shell commands allow you to select, start, and stop a specific core.
You can also restart or kill sessions executing on a particular core. The table below lists
and defines the affect of each multi-core debugging command.

Table 9-3. Multi-Core Debugging Commands

Command Shortcut Description

mc::config mc::c List or edit multicore group options.

Syntax

mc::config

mc::go mc::g Resume multiple cores

Syntax

mc::go

Examples

mc::go

Resumes the selected cores associated with the current thread context.

mc::group mc::gr Display or edit multicore groups

Syntax

group group new <type-name> [<name>] group rename
<name>|<group-index> <new-name>group remove <name>|
<group-index> ... group removeall group enable|disable
<index> ...|all

Examples

mc::group

Shows the defined groups, including indices for use in the mc::group
rename|enable|remove set of commands.

mc::group new 8572

Table continues on the next page...

Multi-Core Debugging Commands

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

274 Freescale Semiconductor, Inc.

Table 9-3. Multi-Core Debugging Commands (continued)

Command Shortcut Description

Creates a new group for system type 8572. The group name will be based
on the system name and will be unique. The enablement of the group
elements will be all non-cores enabled, all cores disabled.

mc::group rename 0 "My Group Name"

Renames the group at index 0 to "My Group Name".

mc::group enable 0 0.0

Enables the group at index 0 and the element at index 0.0 of the
mc::group command.

mc::group remove "My Group Name"

Removes the group named "My Group Name".

mc::group removeall

Removes all groups.

mc::kill mc::kill Terminates the debug session for selected cores associated with the
current thread context.

Syntax

mc::kill

Examples

mc::kill

Terminates multiple cores.

mc::reset mc::reset Resets multiple cores.

Syntax

mc::reset

mc::restart mc::restart Restarts the debug session for selected cores associated with the current
thread context.

Syntax

mc::restart

Examples

mc::restart

Restarts multiple cores.

mc::stop mc::stop Stops the selected cores associated with the current thread context.

Syntax

mc::stop

Examples

mc::stop

Suspends multiple cores.

mc::type mc::t Shows the system types available for multicore debugging as well as type
indices for use by the mc::type remove and mc::group new
commands.

Syntax

Chapter 9 Multi-Core Debugging

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 275

Table 9-3. Multi-Core Debugging Commands

Command Shortcut Description

type type import <filename> type remove <filename>|
<type-index> ... type removeall

Examples

mc::type

Display or edit system types.

mc::type import 8572_jtag.txt

Creates a new type from the JTAG configuration file.

mc::type remove 8572_jtag.txt

Removes the type imported from the specified file.

mc::type removeall

Removes all imported types.

Multi-Core Debugging Commands

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

276 Freescale Semiconductor, Inc.

Chapter 10
Working with Hardware Tools

This chapter explains how to use the CodeWarrior hardware tools. Use these tools for
board bring-up, test, and analysis.

In this chapter:

• Flash programmer
• Flash File to Target
• Hardware diagnostics
• Import/Export/Fill memory

10.1 Flash programmer

Flash programmer is a CodeWarrior plug-in that lets you program the flash memory of
the supported target boards from within the IDE.

The flash programmer can program the flash memory of the target board with code from
a CodeWarrior IDE project or a file. You can perform the following actions on a flash
device using the flash programmer:

• Erase/Blank check actions
• Program/Verify actions
• Checksum actions
• Diagnostics actions
• Dump Flash actions
• Protect/Unprotect actions

The flash programmer runs as a target task in the Eclipse IDE. To program the flash
memory on a target board, you need to perform the following tasks:

• Create a flash programmer target task

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 277

• Configure flash programmer target task
• Execute flash programmer target task

NOTE
Click the Save button or press Ctrl+S to save task settings.

10.1.1 Create a flash programmer target task

You can create a flash programmer task using the Create New Target Task wizard.

1. Choose Window > Show View > Other from the CodeWarrior IDE menu bar.

The Show View dialog appears.

Figure 10-1. Show View dialog
2. Expand the Debug group and select Target Tasks.
3. Click OK.

The Target Tasks view appears.

Flash programmer

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

278 Freescale Semiconductor, Inc.

Figure 10-2. Target Tasks view
4. Click the Create a new Target Task button in the Target Tasks view toolbar.

The Create New Target Task wizard appears.

Figure 10-3. Create New Target Task window
5. In the Task Name textbox, enter a name for the new flash programming target task.
6. Choose a launch configuration from the Run Configuration pop-up menu.

• Choose Active Debug Context when flash programmer is used over an active
debug session.

• Choose a project-specific debug context when flash programmer is used without
an active debug session.

7. Choose Flash Programmer from the Task Type pop-up menu.

Chapter 10 Working with Hardware Tools

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 279

8. Click Finish.

The target task is created and the Flash Programmer Task editor window appears.
You use this window to configure the flash programmer target task.

• Flash Devices - Lists the devices added in the current task.
• Target RAM - Lets you specify the settings for Target RAM.
• Flash Program Actions - Displays the programmer actions to be performed on

the flash devices.

10.1.2 Configure flash programmer target task

You can add flash devices, specify Target RAM settings, and add flash program actions
to a flash programmer task to configure it.

This topic contains the following sub-topics:

• Add flash device
• Specify target RAM settings
• Add flash programmer actions

10.1.2.1 Add flash device

To add a flash device to the Flash Devices table:

1. Click the Add Device button.

The Add Device dialog appears.

2. Select a flash device from the device list.
3. Click the Add Device button.

The flash device is added to the Flash Devices table in the Flash Programmer Task
editor window.

NOTE
You can select multiple flash devices to add to the Flash
Devices table. To select multiple devices, hold down the
Control key while selecting the devices.

4. Click Done.

Flash programmer

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

280 Freescale Semiconductor, Inc.

The Add Device dialog closes and the flash device appears in the Flash Devices
table in the Flash Programmer Task editor window.

NOTE
For NOR flashes, the base address indicates the location
where the flash is mapped in the memory. For SPI and
NAND flashes, the base address is usually 0x0.

10.1.2.2 Specify target RAM settings

The Target RAM is used by Flash Programmer to download its algorithms.

NOTE
The Target RAM memory area is not restored by flash
programmer. If you are using flash programmer with Active
Debug Context, it will impact your debug session.

The Target RAM(Add flash device) group contains fields to specify settings for the
Target RAM.

• Address textbox: Use it to specify the address from the target memory. The Address
textbox should contain the first address from target memory used by the flash
algorithm running on a target board.

• Size textbox: Use it to specify the size of the target memory. The flash programmer
does not modify any memory location other than the target memory buffer and the
flash memory.

• Verify Target Memory Writes checkbox: Select this checkbox to verify all write
operations to the hardware RAM during flash programming.

10.1.2.3 Add flash programmer actions

In the Flash Programmer Actions group in the Flash Programmer Task editor window
(Create a flash programmer target task), you can add following actions on the flash
device.

• Erase/Blank check actions
• Program/Verify actions
• Checksum actions
• Diagnostics actions

Chapter 10 Working with Hardware Tools

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 281

• Dump Flash actions
• Protect/Unprotect actions

The Flash Programmer Actions group contains the following UI controls to work with
flash programmer actions:

• Add Action pop-up menu
• Erase/Blank Check Action: Allows you to add erase or blank check actions for

a flash device.
• Program/Verify Action: Allows you to add program or verify flash actions for a

flash device.
• Checksum Action: Allows you to add checksum actions for a flash device.
• Diagnostics Action: Lets you add a diagnostics action.
• Dump Flash Action: Lets you add a dump flash action.
• Protect/Unprotect Action: Lets you add protect or unprotect action.
• Secure/Unsecure Action: Lets you add secure or unsecure action.

• Duplicate Action button: Allows you to duplicate a flash program action in the
Flash Programmer Actions table.

• Remove Action button: Allows you to remove a flash program action from the Flash
Programmer Actions table.

• Move Upbutton: Allows you to move up the selected flash action in the Flash
Programmer Actions table.

• Move Down button: Allows you to move down the selected flash action in the Flash
Programmer Actions table.

NOTE
Actions can also be enabled or disabled using the Enabled
column. The Description column contains the default
description for the flash programmer actions. You can also edit
the default description.

10.1.2.3.1 Erase/Blank check actions

The Erase action erases sectors from the flash device.

You can also use the erase action to erase the entire flash memory without selecting
sectors. The blank check action verifies if the specified areas have been erased from the
flash device.

NOTE
Flash Programmer will not erase a bad sector in the NAND
flash. After the erase action a list of bad sectors is reported (if
any).

Flash programmer

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

282 Freescale Semiconductor, Inc.

To add an erase/blank check action:

1. Choose Erase/Blank Check Action from the Add Action pop-up menu.

The Add Erase/Blank Check Action dialog appears.

2. Select a sector from the Sectors table and click the Add Erase Action button to add
an erase operation on the selected sector.

NOTE
Press the Control or the Shift key for selecting multiple
sectors from the Sectors table.

3. Click the Add Blank Check button to add a blank check operation on the selected
sector.

4. Select the Erase All Sectors Using Chip Erase Command checkbox to erase the
entire flash memory.

NOTE
After selecting the Erase All Sectors Using Chip Erase
Command checkbox, you need to add either erase or blank
check action to erase all sectors.

5. Click Done.

The Add Erase/Blank Check Action dialog closes and the added erase/blank check
actions appear in the Flash Programmer Actions table in the Flash Programmer
Task editor window.

10.1.2.3.2 Program/Verify actions

The Program action allows you to program the flash device and the verify action verifies
the programmed flash device.

NOTE
The program action will abort and fail if it is performed in a bad
block for NAND flashes.

To add a program/verify action:

1. Choose Program/Verify Action from the Add Action pop-up menu.

The Add Program/Verify Action dialog appears.

2. Select the file to be written to the flash device.

Chapter 10 Working with Hardware Tools

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 283

3. Select the Use File from Launch Configuration checkbox to use the file from the
launch (run) configuration associated with the task.

4. Specify the file name in the File textbox. You can use Workspace, File System, or
Variables buttons to select the desired file.

5. Choose a file type from the File Type pop-up menu. You can select any one of the
following file types:

• Auto - Detects the file type automatically.
• Elf - Specifies executable in ELF format.
• Srec - Specifies files in Motorola S-record format.
• Binary - Specifies binary files.

6. Select the Erase sectors before program checkbox to erase sectors before program.
7. [Optional] Select the Verify after program checkbox to verify after the program.

NOTE
The Verify after program checkbox is available only with
the processors supporting it.

8. Select the Restricted To Address in this Range checkbox to specify a memory
range. The write action is permitted only in the specified address range. In the Start
textbox, specify the start address of the memory range sector and in the End textbox,
specify the end address of the memory range.

9. Select the Apply Address Offset checkbox and set the memory address in the
Address textbox. Value is added to the start address of the file to be programmed or
verified.

10. Click the Add Program Action button to add a program action on the flash device.
11. Click the Add Verify Action button to add a verify action on the flash device.
12. Click Done.

The Add Program/Verify Action dialog closes and the added program/verify
actions appear in the Flash Programmer Actions table in the Flash Programmer
Task editor window.

10.1.2.3.3 Checksum actions

The checksum can be computed over host file, target file, memory range or entire flash
memory.

To add a checksum action:

1. Choose Checksum Action from the Add Action pop-up menu.

The Add Checksum Action dialog appears.

Flash programmer

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

284 Freescale Semiconductor, Inc.

2. Select the file for checksum action.
3. Select the Use File from Launch Configuration checkbox to use the file from the

launch (run) configuration associated with the task.
4. Specify the filename in the File textbox. You can use the Workspace, File System,

or Variables buttons to select the desired file.
5. Choose the file type from the File Type pop-up menu.
6. Select an option from the Compute Checksum Over options. The checksum can be

computed over the host file, the target file, the memory range, or the entire flash
memory.

7. Specify the memory range in the Restricted To Addresses in this Range group. The
checksum action is permitted only in the specified address range. In the Start
textbox, specify the start address of the memory range sector and in the End textbox,
specify the end address of the memory range.

8. Select the Apply Address Offset checkbox and set the memory address in the
Address textbox. Value is added to the start address of the file to be programmed or
verified.

9. Click the Add Checksum Action button.
10. Click Done.

The Add Checksum Action dialog closes and the added checksum actions appear in
the Flash Programmer Actions table in the Flash Programmer Task editor
window.

10.1.2.3.4 Diagnostics actions

The diagnostics action generates the diagnostic information for a selected flash device.

NOTE
Flash Programmer will report bad blocks, if they are present in
the NAND flash.

To add a diagnostics action:

1. Choose Diagnostics from the Add Action pop-up menu.

The Add Diagnostics Action dialog appears.

2. Select a device to perform the diagnostics action.
3. Click the Add Diagnostics Action button to add diagnostic action on the selected

flash device.

Chapter 10 Working with Hardware Tools

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 285

NOTE
Select the Perform Full Diagnostics checkbox to perform
full diagnostics on a flash device.

4. Click Done.

The Add Diagnostics Action dialog closes and the added diagnostics action appears
in the Flash Programmer Actions table in the Flash Programmer Task editor
window.

10.1.2.3.5 Dump Flash actions

The dump flash action allows you to dump selected sectors of a flash device or the entire
flash device.

To add a dump flash action:

1. Choose Dump Flash Action from the Add Action pop-up menu.

The Add Dump Flash Action dialog appears.

2. Specify the file name in the File textbox. The flash is dumped in this selected file.
3. Choose the file type from the File Type pop-up menu. You can choose any one of

the following file types:
• Srec: Saves files in Motorola S-record format.
• Binary: Saves files in binary file format.

4. Specify the memory range for which you want to add dump flash action.
• Enter the start address of the range in the Start textbox.
• Enter the end address of the range in the End textbox.

5. Click the Add Dump Flash Action button to add a dump flash action.
6. Click Done.

The Add Dump Flash Action dialog closes and the added dump flash action appear
in the Flash Programmer Actions table in the Flash Programmer Task editor
window.

10.1.2.3.6 Protect/Unprotect actions

The protect/unprotect actions allow you to change the protection of a sector in the flash
device.

To add a protect/unprotect action:

Flash programmer

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

286 Freescale Semiconductor, Inc.

1. Choose the Protect/Unprotect Action from the Add Action pop-up menu.

The Add Protect/Unprotect Action dialog appears.

2. Select a sector from the Sectors table and click the Add Protect Action button to
add a protect operation on the selected sector.

NOTE
Press the Control or Shift key for selecting multiple sectors
from the Sectors table.

3. Click the Add Unprotect Action button to add an unprotect action on the selected
sector.

4. Select the All Device checkbox to add action on full device.
5. Click Done.

The Add Protect/Unprotect Action dialog closes and the added protect or unprotect
actions appear in the Flash Programmer Actions table in the Flash Programmer
Task editor window.

10.1.2.3.7 Duplicate action

You can duplicate a flash programmer action from the Flash Programmer Actions
table.

1. Select the action in the Flash Programmer Actions table.
2. Click the Duplicate Action button.

The selected action is copied in the Flash Programmer Action table.

10.1.2.3.8 Remove action

You can remove a flash programmer action from the Flash Programmer Actions table.

1. Select the action in the Flash Programmer Actions table.
2. Click the Remove Action button.

The selected action is removed from the Flash Programmer Action table.

Chapter 10 Working with Hardware Tools

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 287

10.1.3 Execute flash programmer target task

You can execute the flash programmer tasks using the Target Tasks view.

To execute the configured flash programmer target task, select a target task and click the
Execute button in the Target Tasks view toolbar. Alternatively, right-click on a target
task and choose Execute from the shortcut menu.

Figure 10-4. Execute target task

NOTE
You can use predefined target tasks for supported boards. To
load a predefined target task, right-click in the Target Tasks
view and choose Import Target Task from the shortcut menu.
To save your custom tasks, right-click in the Target Tasks
view and then choose Export Target Task from the shortcut
menu.

You can check the results of flash batch actions in the Console view. The green color
indicates the success and the red color indicates the failure of the task.

Flash programmer

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

288 Freescale Semiconductor, Inc.

Figure 10-5. Console view

10.1.4 Flash Programmer Use Case

This topic lists the following use case:

• Using Flash Programmer to Write uboot Image to Target

10.1.4.1 Using Flash Programmer to Write uboot Image to Target

You need to perform the following actions to write uboot images using CodeWarrior for
StarCore 3900FP DSP flash programmer:

NOTE
You need B4860QDS_NOR_FLASH.xml for RCW writing at step 5, and
the offset at step 7 is 0xE8000000.

1. Edit the launch configuration.

NOTE
CodeWarrior for StarCore 3900FP DSP flash programmer
supports both SRAM and DDR init files. For this tutorial,
you must change the default init file with the SRAM init for
core 0.

To edit the launch config, perform these steps:

Chapter 10 Working with Hardware Tools

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 289

a. Select Run > Debug Configurations to open the Debug configurations dialog
box.

b. Select Core 0 launch config
c. From the Target settings group, click Edit.

The Properties for <connection> dialog box appears.

d. From the Target option, click Edit.

The Properties for <connection> Target dialog box appears.

e. Check the Target Initialize checkbox for core 0, then click in the Initialize
target script column.

f. Click the browse button (...) to open the Target Initialization File dialog box.
g. Click File System and select B4860_QDS_SRAM_Init.tcl file from SC

\StarCore_Support\Initialization_Files\RegisterConfigFiles\B4860_QDS
folder.

Figure 10-6. Target Initialization File Dialog Box
2. Start a debugging session. Wait until the control stops at address 0x00000000.
3. Press Ctrl + 3 and write Commander to open the Commander view.
4. From Commander view, click Flash programmer.
5. From the Flash Configuration File group click Browse and select

B4860QDS_NOR_FLASH.xml to write u-boot in NOR memory, otherwise use the NAND file.
6. Click Browse to specify for your u-boot image file in the File textbox.
7. Write your u-boot offset in Offset textbox. You may use 0xeff80000.
8. You can save the file by selecting Save as Target Task option, otherwise, clear the

checkbox.
9. Click Erase and Program.

Flash programmer

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

290 Freescale Semiconductor, Inc.

Figure 10-7. Flash File To Target Dialog Box

The flash programmer writes the uboot image file to the target.

NOTE
If you cannot connect to the board anymore, you can write the
new RCW by following these steps:

1. Note and save the current configuration of SW2 and SW3.
2. Modify the switches to boot from hard-coded RCW:

a. SW3 -> 0100_0011
b. SW2 -> 0111_0100
c. SW2: SRC8 (b1) set to 0 and RES_REQ(b5) set to 0.

3. Connect to the board and write the new RCW using the
instructions listed above.

4. Set the switches back to the saved configuration.

10.2 Flash File to Target

You can use the Flash File to Target feature to perform flash operations such as erasing
a flash device or programming a file.

Chapter 10 Working with Hardware Tools

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 291

You do not need any project for using Flash File to Target feature, only a valid Remote
System is required.

To open the Flash File to Target dialog, click the Flash Programmer button on the IDE
toolbar.

• Connection pop-up menu- Lists all run configurations defined in Eclipse. If a
connection to the target has already been made the control becomes inactive and
contains the text Active Debug Configuration.

• Flash Configuration File pop-up menu - Lists predefined target tasks for the
processor selected in the Launch Configuration and tasks added by user with the
Browse button. The items in this pop-up menu are updated based on the processor
selected in the launch configuration. For more information on launch configurations,
see product's Targeting Manual.

• Unprotect flash memory before erase checkbox - Select to unprotect flash
memory before erasing the flash device. This feature allows you to unprotect the
flash memory from Flash File To Target dialog.

• File to Flash group - Allows selecting the file to be programmed on the flash device
and the location.

• File textbox - Used for specifying the filename. You can use the Workspace,
File System, or Variables buttons to select the desired file.

• Offset:0x textbox - Used for specifying offset location for a file. If no offset is
specified the default value of zero is used. The offset is always added to the start
address of the file. If the file does not contain address information then zero is
considered as start address.

• Save as Target Task - Select to enable Task Name textbox.
• Task Name textbox - Lets you to save the specified settings as a Flash target

task. Use the testbox to specify the name of the target task.
• Erase Whole Device button - Erases the flash device. In case you have multiple

flash blocks on the device, all blocks are erased. If you want to selectively erase or
program blocks, use the Flash programmer feature.

• Erase and Program button - Erases the sectors that are occupied with data and then
programs the file. If the flash device can not be accessed at sector level then the flash
device is completely erased.

This feature helps you perform these basic flash operations:

• Erasing flash device
• Programming a file

Flash File to Target

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

292 Freescale Semiconductor, Inc.

10.2.1 Erasing flash device

To erase a flash device, follow these steps:

1. Click the Flash Programmer button on the IDE toolbar.

The Flash File to Target dialog appears.

2. Choose a connection from the Connection pop-up menu.

NOTE
If a connection is already established with the target, this
control is disabled.

The Flash Configuration File pop-up menu is updated with the supported
configurations for the processor from the launch configuration.

3. Choose a flash configuration from the Flash Configuration File pop-up menu.
4. Select the Unprotect flash memory before erase checkbox to unprotect flash

memory before erasing the flash device.
5. Click the Erase Whole Device button.

10.2.2 Programming a file

1. Click the Flash Programmer button on the IDE toolbar.

The Flash File to Target dialog appears.

2. Choose a connection from the Connection pop-up menu.

NOTE
If a connection is already established with the target, this
control is disabled.

The Flash Configuration File pop-up menu is updated with the supported
configurations for the processor from the launch configuration.

3. Choose a flash configuration from the Flash Configuration File pop-up menu.
4. Select the Unprotect flash memory before erase checkbox to unprotect flash

memory before erasing the flash device.
5. Type the file name in the File textbox. You can use the Workspace, File System, or

Variables buttons to select the desired file.
6. Type the offset location in the Offset textbox.
7. Click the Erase and Program button.

Chapter 10 Working with Hardware Tools

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 293

10.3 Hardware diagnostics

The Hardware Diagnostics utility lets you run a series of diagnostic tests that determine
if the basic hardware is functional.

These tests include:

• Memory read/write: This test only makes a read or write access to the memory to
read or write a byte, word (2 bytes) and long word (4 bytes) to or from the memory.
For this task, the user needs to set the options in the Memory Access group.

• Scope loop: This test makes read and write accesses to memory in a loop at the target
address. The time between accesses is given by the loop speed settings. The loop can
only be stopped by the user, which cancels the test. For this type of test, the user
needs to set the memory access settings and the loop speed.

• Memory tests: This test requires the user to set the access size and target address
from the access settings group and the settings present in the Memory Tests group.

This topic contains the following sub-topics:

• Creating hardware diagnostics task
• Working with Hardware Diagnostic Action editor
• Memory test use cases

10.3.1 Creating hardware diagnostics task

You can create a hardware diagnostic task using the Create New Target Task wizard.

To create a task for hardware diagnostics:

1. Choose Window > Show View > Other from the IDE menu bar.

The Show View dialog appears.

2. Expand the Debug group and select Target Tasks.
3. Click OK.
4. Click the Create a new Target Task button on the Target Tasks view toolbar.

Alternatively, right-click in the Target Tasks view and choose New Task from the
shortcut menu.

The Create a New Target Task wizard appears.

Hardware diagnostics

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

294 Freescale Semiconductor, Inc.

5. Type name for the new task in the Task Name textbox.
6. Choose a launch configuration from the Run Configuration pop-up menu.

NOTE
If the task does not successfully launch the configuration
that you specify, the Execute button on the Target Tasks
view toolbar stays unavailable.

7. Choose Hardware Diagnostic from the Task Type pop-up menu.
8. Click Finish.

A new hardware diagnostic task is created in the Target Tasks view.

NOTE
You can perform various actions on a hardware diagnostic
task, such as renaming, deleting, or executing the task,
using the shortcut menu that appears on right-clicking the
task in the Target tasks view.

10.3.2 Working with Hardware Diagnostic Action editor

The Hardware Diagnostic Action editor is used to configure a hardware diagnostic task.

To open the Hardware Diagnostic Action editor for a particular task, double-click the
task in the Target Tasks view.

The following figure shows the Hardware Diagnostics Action editor.

Chapter 10 Working with Hardware Tools

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 295

Figure 10-8. Hardware Diagnostics Action editor

The Hardware Diagnostics Action editor window includes the following groups:

• Action Type
• Memory Access
• Loop Speed
• Memory Tests

10.3.2.1 Action Type

The Action Type group in the Hardware Diagnostics Action editor window is used for
selecting the action type.

You can choose any one of the following actions:

• Memory read/write - Enables the options in the Memory Access group.

Hardware diagnostics

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

296 Freescale Semiconductor, Inc.

• Scope loop - Enables the options in the Memory Access and the Loop Speed
groups.

• Memory test - Enables the access size and target address from the access settings
group and the settings present in the Memory Tests group.

10.3.2.2 Memory Access

The Memory Access pane configures diagnostic tests for performing memory reads and
writes over the remote connection interface.

The table below lists and describes the items in the pane.

Table 10-1. Memory Access Pane Items

Item Description

Read Select to have the hardware diagnostic tools perform read tests.

Write Select to have the hardware diagnostic tools perform write tests.

1 unit Select to have the hardware diagnostic tools perform one memory unit access size operations.

2 units Select to have the hardware diagnostic tools perform two memory units access size operations.

4 units Select to have the hardware diagnostic tools perform four memory units access size operations.

Target Address Specify the address of an area in RAM that the hardware diagnostic tools should analyze. The
tools must be able to access this starting address through the remote connection (after the
hardware initializes).

Value Specify the value that the hardware diagnostic tools write during testing. Select the Write option
to enable this textbox.

Verify Memory Writes Select the checkbox to verify success of each data write to the memory.

10.3.2.3 Loop Speed

The Loop Speed pane configures diagnostic tests for performing repeated memory reads
and writes over the remote connection interface.

The tests repeat until you stop them. By performing repeated read and write operations,
you can use a scope analyzer or logic analyzer to debug the hardware device. After the
first 1000 operations, the Status shows the estimated time between operations.

NOTE
For all values of Speed, the time between operations depends
heavily on the processing speed of the host computer.

Chapter 10 Working with Hardware Tools

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 297

For Read operations, the Scope Loop test has an additional feature. During the first read
operation, the hardware diagnostic tools store the value read from the hardware. For all
successive read operations, the hardware diagnostic tools compare the read value to the
stored value from the first read operation. If the Scope Loop test determines that the value
read from the hardware is not stable, the diagnostic tools report the number of times that
the read value differs from the first read value. Following table lists and describes the
items in Loop Speed pane.

Table 10-2. Loop Speed Pane Items

Item Description

Set Loop Speed Enter a numeric value between 0 to 1000 in the textbox to adjust the speed. You can
also move the slider to adjust the speed at which the hardware diagnostic tools repeat
successive read and write operations. Lower speeds increase the delay between
successive operations. Higher speeds decrease the delay between successive
operations.

10.3.2.4 Memory Tests

The Memory Tests pane lets you perform three hardware tests, Walking Ones, Bus
Noise, and Address.

You can specify any combination of tests and number of passes to perform. For each
pass, the hardware diagnostic tools performs the tests in turn, until all passes are
complete. The tools compare memory test failures and display them in a log window after
all passes are complete. Errors resulting from memory test failures do not stop the testing
process; however, fatal errors immediately stop the testing process.

The following table explains the items in the Memory Tests pane.

Table 10-3. Memory Tests pane items

Item Explanation

Walking 1's Select the checkbox to have the hardware diagnostic tools perform the Walking Ones test.
Deselect to have the diagnostic tools skip the Walking Ones test.

Address Select to have the hardware diagnostic tools perform the Address test. Deselect to have the
diagnostic tools skip the Address test.

Bus Noise Select to have the hardware diagnostic tools perform the Bus noise test. Deselect to have the
diagnostic tools skip the Bus noise test.

Test Area Size Specify the size of memory to be tested. This setting along with Target Address defines the
memory range being tested.

Number of Passes Enter the number of times that you want to repeat the specified tests.

Table continues on the next page...

Hardware diagnostics

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

298 Freescale Semiconductor, Inc.

Table 10-3. Memory Tests pane items (continued)

Item Explanation

Use Target CPU Select to have the hardware diagnostic tools download the test code to the hardware device.
Deselect to have the hardware diagnostic tools execute the test code through the remote
connection interface. Execution performance improves greatly if you execute the test code on
the hardware CPU, but requires that the hardware has enough stability and robustness to
execute the test code.

NOTE: The option is not applicable for CodeWarrior StarCore devices.

Download Algorithm to
Address

Specify the address where the test driver is downloaded in case the Use target CPU is
selected.

NOTE: The option is not applicable for CodeWarrior StarCore devices.

10.3.2.4.1 Walking Ones

This test detects these memory faults:

• Address Line: The board or chip address lines are shorting or stuck at 0 or 1. Either
condition could result in errors when the hardware reads and writes to the memory
location. Because this error occurs on an address line, the data may end up in the
wrong location on a write operation, or the hardware may access the wrong data on a
read operation.

• Data Line: The board or chip data lines are shorting or stuck at 0 or 1. Either
condition could result in corrupted values as the hardware transfers data to or from
memory.

• Retention: The contents of a memory location change over time. The effect is that the
memory fails to retain its contents over time.

The Walking Ones test includes four sub-tests:

• Walking Ones: This subtest first initializes memory to all zeros. Then the subtest
writes, reads, and verifies bits, with each bit successively set from the least
significant bit (LSB) to the most significant bit (MSB). The subtest configures bits
such that by the time it sets the MSB, all bits are set to a value of 1. This pattern
repeats for each location within the memory range that you specify. For example, the
values for a byte-based Walking Ones subtest occur in this order:

0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F, 0xFF

• Ones Retention: This subtest immediately follows the Walking Ones subtest. The
Walking Ones subtest should leave each memory location with all bits set to 1. The
Ones Retention subtest verifies that each location has all bits set to 1.

• Walking Zeros: This subtest first initializes memory to all ones. Then the subtest
writes, reads, and verifies bits, with each bit successively set from the LSB to the

Chapter 10 Working with Hardware Tools

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 299

MSB. The subtest configures bits such that by the time it sets the MSB, all bits are
set to a value of 0. This pattern repeats for each location within the memory range
that you specify. For example, the values for a byte-based Walking Zeros subtest
occur in this order:

0xFE, 0xFC, 0xF8, 0xF0, 0xE0, 0xC0, 0x80, 0x00

• Zeros Retention: This subtest immediately follows the Walking Zeros subtest. The
Walking Zeros subtest should leave each memory location with all bits set to 0. The
Zeros Retention subtest verifies that each location has all bits set to 0.

10.3.2.4.2 Address

This test detects memory aliasing. Memory aliasing exists when a physical memory block
repeats one or more times in a logical memory space. Without knowing about this
condition, you might conclude that there is much more physical memory than what
actually exists.

The address test uses a simplistic technique to detect memory aliasing. The test writes
sequentially increasing data values (starting at one and increasing by one) to each
successive memory location. The maximum data value is a prime number and its specific
value depends on the addressing mode so as to not overflow the memory location.

The test uses a prime number of elements to avoid coinciding with binary math
boundaries:

• For byte mode, the maximum prime number is 28-5 or 251.
• For word mode, the maximum prime number is 216-15 or 65521.
• For long word mode, the maximum prime number is 232-5 or 4294967291.

If the test reaches the maximum value, the value rolls over to 1 and starts incrementing
again. This sequential pattern repeats throughout the memory under test. Then the test
reads back the resulting memory and verifies it against the written patterns. Any
deviation from the written order could indicate a memory aliasing condition.

10.3.2.4.3 Bus noise

This test stresses the memory system by causing many bits to flip from one memory
access to the next (both addresses and data values). Bus noise occurs when many bits
change consecutively from one memory access to another. This condition can occur on
both address and data lines.

Hardware diagnostics

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

300 Freescale Semiconductor, Inc.

10.3.2.4.4 Address lines

To force bit flips in address lines, the test uses three approaches:

• Sequential- This approach works sequentially through all of the memory under test,
from lowest address to highest address. This sequential approach results in an
average number of bit flips from one access to the next.

• Full Range Converging- This approach works from the fringes of the memory range
toward the middle of the memory range. Memory access proceeds in this pattern,
where + number and - number indicate the next item location (the specific
increment or decrement depends on byte, word, or long word address mode):

• the lowest address
• the highest address
• (the lowest address) + 1
• (the highest address) - 1
• (the lowest address) + 2
• (the highest address) - 2

• Maximum Invert Convergence- This approach uses calculated end point addresses to
maximize the number of bits flipping from one access to the next. This approach
involves identifying address end points such that the values have the maximum
inverted bits relative to one another. Specifically, the test identifies the lowest
address with all 0x5 values in the least significant nibbles and the highest address
with all 0xA values in the least significant nibbles. After the test identifies these end
points, memory access alternates between low address and high address, working
towards the center of the memory under test. Accessing memory in this manner, the
test achieves the maximum number of bits flips from one access to the next.

10.3.2.4.5 Data lines

To force bit flips in data lines, the test uses two sets of static data, a pseudo-random set
and a fixed-pattern set. Each set contains 31 elements-a prime number. The test uses a
prime number of elements to avoid coinciding with binary math boundaries. The sets are
unique to each addressing mode so as to occupy the full range of bits.

• The test uses the pseudo-random data set to stress the data lines in a repeatable but
pattern-less fashion.

• The test uses the fixed-pattern set to force significant numbers of data bits to flip
from one access to the next.

Chapter 10 Working with Hardware Tools

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 301

The sub-tests execute similarly in that each subtest iterates through static data, writing
values to memory. The test combines the three address line approaches with the two data
sets to produce six unique sub-tests:

• Sequential with Random Data
• Sequential with Fixed Pattern Data
• Full Range Converging with Random Data
• Full Range Converging with Fixed Pattern Data
• Maximum Invert Convergence with Random Data
• Maximum Invert Convergence with Fixed Pattern Data

10.3.3 Memory test use cases

The memory read /write and scope loop tests are host based tests. The host machine
issues read and write action to the memory through the connection protocol. For example
CCS.

Memory tests are the complex tests that can be executed in two modes: Host based and
Target based

depending upon the selection made for the Use Target CPU checkbox.

• Selected: Target Based
• Deselected: Host Based

The Host Based tests are slower than the Target Based tests.

10.3.3.1 Use Case 1: Execute host-based Scope Loop on target

You need to perform the following action to execute the host based scope loop on the
target:

1. Select Scope loop in the Action Type.
2. Set Memory Access settings from the Memory Access section.
3. Set the speed used for the scope loop diagnostic from the Loop Speed section.
4. Save the settings.
5. Press Execute to execute the action.

Hardware diagnostics

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

302 Freescale Semiconductor, Inc.

10.3.3.2 Use Case 2: Execute target-based Memory Tests on target

You need to perform the following action to execute the target based memory test on the
target:

1. Select Memory Test in the Action Type.
2. Specify Target Address and Access Size settings from the Memory Access section.
3. Specify the following settings for Memory Tests section:

• Test Area Size: The tested memory region is computed from Target Address
until Target Address + Test Area Size.

• Tests to Run: Select tests to run on the target.
• Number of passes: Specify number of times a test will be executed.
• Use Target CPU: set the Address to which the test driver (algorithm) is to be

downloaded.
4. Save the settings.
5. Press Execute to execute the action.

10.4 Import/Export/Fill memory

The Import/Export/Fill Memory utility lets you export memory contents to a file and
import data from a file into memory.

The utility also supports filling memory with a user provided data pattern.

10.4.1 Creating task for import/export/fill memory

You can use the Import/Export/Fill Memory utility to perform various tasks on
memory.

The utility can be accessed from the Target Tasks view.

To open the Target Tasks view:

1. Choose Window > Show View > Other from the IDE menu bar.

The Show View dialog appears.

2. Expand the Debug group.
3. Select Target Tasks.

Chapter 10 Working with Hardware Tools

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 303

4. Click OK.

The first time it opens, the Target Tasks view contains no tasks. You must create a task
to use the Import/Export/Fill Memory utility.

To create a task:

1. Click the Create a new Target Task button on the toolbar of the Target Tasks
view. Alternatively, right-click the left-hand list of tasks and choose New Task from
the shortcut menu that appears.

The Create a New Target Task page appears.

Figure 10-9. Create New Target Task Window
2. In the Task Name textbox, enter a name for the new task.
3. Use the Run Configuration pop-up menu to specify the configuration that the task

launches and uses to connect to the target.

NOTE
If the task does not successfully launch the configuration
that you specify, the Execute button of the Target Tasks
view toolbar stays unavailable.

4. Use the Task Type pop-up menu to specify Import/Export/Fill Memory.
5. Click Finish.

Import/Export/Fill memory

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

304 Freescale Semiconductor, Inc.

The Import/Export/Fill Memory target task is created and it appears in the Import/
Export/Fill Memory Action editor.

Figure 10-10. Import/Export Memory Action editor

10.4.2 Importing data into memory

You can import the encoded data from a user specified file, decode it, and copy it into a
user specified memory range.

Select the Import memory option from the Import/Export/Fill Memory Action editor
to import data into memory.

Chapter 10 Working with Hardware Tools

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 305

Figure 10-11. Import/Export Memory Action editor - Importing data into memory

The following table explains the import memory options.

Table 10-4. Controls used for importing data into memory

Item Explanation

Memory space and address Enter the literal address and memory space on which the data transfer is performed.
The Literal address field allows only decimal and hexadecimal values.

Expression Enter the memory address or expression at which the data transfer starts.

Access Size Denotes the number of addressable units of memory that the debugger accesses in
transferring one data element. The default values shown are 1, 2, and 4 units. When
target information is available, this list shall be filtered to display the access sizes that
are supported by the target.

Select file Enter the path to the file that contains the data to be imported. Click the Workspace
button to select a file from the current project workspace. Click the System button to
select a file from the file system the standard File Open dialog. Click the Variables
button to select a build variable.

File Type Defines the format in which the imported data is encoded. By default, the following file
types are supported:

• Signed decimal Text
• Unsigned decimal Text
• Motorola S-Record format
• Hex Text

Table continues on the next page...

Import/Export/Fill memory

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

306 Freescale Semiconductor, Inc.

Table 10-4. Controls used for importing data into memory (continued)

Item Explanation

• Annotated Hex Text
• Raw Binary

Number of Elements Enter the total number of elements to be transferred.

Verify Memory Writes Select the checkbox to verify success of each data write to the memory.

10.4.3 Exporting memory to file

You can read data from a user specified memory range, encode it in a user specified
format, and store this encoded data in a user specified output file.

Select the Export memory option from the Import/Export/Fill Memory Action editor
to export memory to a file.

Figure 10-12. Exporting memory

Chapter 10 Working with Hardware Tools

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 307

The following table explains the export memory options.

Table 10-5. Controls used for exporting data from memory into file

Item Explanation

Memory space and address Enter the literal address and memory space on which the data transfer is performed.
The Literal address field allows only decimal and hexadecimal values.

Expression Enter the memory address or expression at which the data transfer starts.

Access Size Denotes the number of addressable units of memory that the debugger accesses in
transferring one data element. The default values shown are 1, 2, and 4 units. When
target information is available, this list shall be filtered to display the access sizes that
are supported by the target.

Select file Enter the path of the file to write data. Click the Workspace button to select a file from
the current project workspace. Click the System button to select a file from the file
system the standard File Open dialog. Click the Variables button to select a build
variable.

File Type Defines the format in which encoded data is exported. By default, the following file
types are supported:

• Signed decimal Text
• Unsigned decimal Text
• Motorola S-Record format
• Hex Text
• Annotated Hex Text
• Raw Binary

Number of Elements Enter the total number of elements to be transferred.

10.4.4 Fill memory

You can fill a user specified memory range with a user specified data pattern.

Select the Fill memory option from the Import/Export/Fill Memory Action editor
window to fill memory.

Import/Export/Fill memory

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

308 Freescale Semiconductor, Inc.

Figure 10-13. Fill memory

The following table explains the fill memory options.

Table 10-6. Controls used for filling memory with data pattern

Item Explanation

Memory space and address Enter the literal address and memory space on which the fill operation is performed. The
Literal address field allows only decimal and hexadecimal values.

Expression Enter the memory address or expression at which the fill operation starts.

Access Size Denotes the number of addressable units of memory that the debugger accesses in
modifying one data element. The default values shown are 1, 2, and 4 units. When target
information is available, this list shall be filtered to display the access sizes that are supported
by the target.

Fill Pattern Denotes the sequence of bytes, ordered from low to high memory mirrored in the target. The
field accept only hexadecimal values. If the width of the pattern exceeds the access size, an
error message.

Number of Elements Enter the total number of elements to be modified.

Verify Memory Writes Select the checkbox to verify success of each data write to the memory.

Chapter 10 Working with Hardware Tools

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 309

Import/Export/Fill memory

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

310 Freescale Semiconductor, Inc.

Chapter 11
Exception Configurator

This chapter explains how to use the CodeWarrior Exception Configurator tool.

Use the Exceptions Configurator view to quickly determine the cause of an exception
while executing an application.

To view the details of an exception using the Exceptions Configurator view, follow
these steps:

1. Switch the IDE to the Debug perspective and start a debugging session.
2. Select Window > Show View > Other.

The Show View dialog box appears (Figure 11-1).

Figure 11-1. Show View Dialog Box
3. Expand the Debug group.
4. Select Exceptions Configurator.
5. Click OK.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 311

The Exception Configurator view appears (Figure 11-2).

NOTE
A blank window appears if no process is selected from the
debug window.

Figure 11-2. Exceptions Configurator View
6. Check the Catch checkbox to select the exception.

Checking a parent node will automatically check all the children nodes. Clearing a
parent node checkbox clears all the children nodes.

7. If you wish to change the current value of the VBA register, enter a hexadecimal
value, a symbol name or a register name in the Vector Base Address text box.

NOTE
The debugger will try to evaluate the expression provided
in the Vector Base Address text box. If the evaluation fails,
specified text will be highlighted in red.

8. Click the Apply Changes button () to save the changes.

The exceptions configurator is configured to capture the selected exceptions.

9. Retry the steps that caused the exception.

The debugger displays a complete stack crawl. The exceptions captured by the
Exceptions Configurator view are highlighted in red (Figure 11-3).

Figure 11-3. Exceptions

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

312 Freescale Semiconductor, Inc.

NOTE
Exception settings defined for each debug configuration
may not be identical. The state of the captured exceptions is
persistent after restart.

Chapter 11 Exception Configurator

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 313

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

314 Freescale Semiconductor, Inc.

Chapter 12
Memory Management Unit Configurator

This chapter explains how to use the CodeWarrior Memory Management Unit (MMU)
Configurator. The MMU allows different user tasks or programs (usually in the context
of an RTOS) to use the same areas of memory. To use the MMU:

• You set up a mapping for data and instruction addresses
• Enable address translation

The mapping links the virtual addresses to the physical addresses. Translation occurs
before software acts on the addresses.

The MMU Configurator simplifies peripheral-register initialization of the MMU
registers. You can use the tool to generate code that you can insert into a program. The
inserted code initializes an MMU configuration or writes to the registers on-the-fly. Also,
you can use the MMU Configurator to examine the status of the current MMU
configuration.

Use the MMU Configurator to:

• Configure MMU general control registers
• Configure MMU program memory-address-translation properties
• Configure MMU data memory-address-translation properties
• Display the current contents of each register
• Write the displayed contents from the MMU Configurator to the MMU registers
• Save to a file (in a format that you specify) the displayed contents of the MMU

Configurator

This chapter has these sections:

• Creating MMU Configuration
• MMU Configuration File Editor Pages
• MMU Editor Menu
• MMU Editor Toolbar

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 315

• Saving MMU Configuration
• MMU Configurator View

12.1 Creating MMU Configuration

In order to use the MMU Configurator, you need to create an MMU configuration.

Follow these steps to create the configuration:

1. From the CodeWarrior IDE menu bar, select File > New > Other.

The New wizard starts, displaying its Select a wizard page.

2. Expand the Peripheral Configurators tree control and select MMU Configuration
File (Figure 12-1).

Figure 12-1. Select a wizard Page of New Wizard
3. Click Next.

The New wizard closes and the MMU Configurator Wizard starts, displaying its
MMU Configurator File page.

4. In the Container text box, type the path of the directory where you want to store the
MMU configuration, or click Browse to find and select the new file container.

Creating MMU Configuration

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

316 Freescale Semiconductor, Inc.

5. In the File name text box, type the name of the MMU configuration, or leave the
default name intact.

NOTE
If you enter a new name, ensure to preserve the .mmu file
extension.

6. Expand a tree control in the Device Number group.
7. From the expanded list, select the target hardware for which you want to create the

MMU configuration. For example, B4860 (Figure 12-2).

Figure 12-2. MMU Configurator File Page of MMU Configurator Wizard

NOTE
When started in the offline mode, the MMU Configurator
fills in the required defaults for all fields.

8. Click Finish.

Chapter 12 Memory Management Unit Configurator

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 317

The MMU Configurator Wizard closes. CodeWarrior IDE generates the MMU
configuration file in the specified container directory and opens the MMU
Configuration File Editor.

12.2 MMU Configuration File Editor Pages

This section explains each page of the MMU Configuration File Editor.

You use these pages to configure MMU mapping and translation properties. The tabbed
interface of the MMU Configuration File Editor displays pages for configuration options
and for the generated code.

NOTE
When you specify settings in the MMU Configuration File
Editor, configure the tabbed pages in left-to-right order. For
example, configure the General page before configuring the
Translations page. In addition, within a page, configure settings
from the top-left position to the bottom-right position.

Table 12-1 lists the MMU Configuration File Editor pages.

Table 12-1. MMU Configuration File Editor Pages

Page Description

General This page helps you configure the overall MMU configurations (as opposed
to specific properties for each virtual-to-physical map entry).

Translations This page helps you configure the program and data translations (virtual-to-
physical address mappings) for the StarCore 3900FP DSP.

new_file.mmu This page displays the generated MMU state file. MMU Configurator
generates the state file each time you change the MMU configuration.

12.2.1 General

Use this page to configure the overall MMU configurations (as opposed to specific
properties for each virtual-to-physical map entry).

Figure 12-3 shows the General page of the MMU Configuration File Editor.

MMU Configuration File Editor Pages

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

318 Freescale Semiconductor, Inc.

Figure 12-3. MMU Configuration File Editor - General Page

NOTE
If you check the Voluntary Cache Commands Cancel
checkbox, the MMU cancels the cache command for program
and data except for DFLUSH and DSYNC. Similarly, if you
check the Voluntary Cache Commands Error checkbox, the
MMU indicates the core for DFETCH/DFL2C*/DMALLOC/
PFETCH/PFL2C* address errors.

Table 12-2 explains the options available on the General page of the MMU Configuration
File Editor.

Table 12-2. MMU Configuration File Editor - General Page Settings

Option Description

Address Translation Checked - Enables address translation. For example, translation occurs from
a virtual address to a physical address.

Cleared - Disables address translation. For example, translation does not
occur from a virtual address to a physical address.

This option corresponds to the Address Translation Enable (ATE) bit of the
MMU Control Register (M_CR).

Memory Protection Checked - Enables memory protection checking for all enabled segment
descriptors. With this option checked, the system consumes more power.

Table continues on the next page...

Chapter 12 Memory Management Unit Configurator

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 319

Table 12-2. MMU Configuration File Editor - General Page Settings (continued)

Option Description

Cleared - Disables memory protection checking for all enabled segment
descriptors. This option corresponds to the Memory Protection Enable
(MPE) bit of the MMU Control Register (M_CR).

Gather Enable Checked - Enables the gather option.

Cleared - Disables the gather option.

Instruction Cache Enable Checked - Enables the cache in instruction mode.

Cleared - Disables the cache instruction mode.

Data Cache Enable Checked - Enables the data cache mode.

Cleared - Disables the data cache mode.

Stack Overrun Error Checked - Throws error for stack overrun.

Cleared - Does not throw error for stack overrun.

Error Detection Code Exception Checked - Enables the error detection mode for code exceptions.

Cleared - Disables the error detection mode for code exceptions.

Voluntary Cache Commands Cancel Checked - Cancels the voluntary cache commands.

Cleared - Does not cancel the voluntary cache commands.

Voluntary Cache Commands Error Checked - Enables the voluntary cache commands error mode.

Cleared - Disables the voluntary cache commands error.

12.2.2 Translations

Use the Translations page to define and display program and data translations (virtual-
to-physical address mappings) for the StarCore 3900FP DSPs.

The MMU Configuration File Editor generates the appropriate descriptors for the
program and data Memory-Address Translation Table (MATT).

On the Translations page, details of program and/or data translations are shown in the
MATT table on the left side and settings of the entry, currently selected in the MATT
table, are summarized on the right side. By clicking the header of a column in the MATT
table, you can sort the table data based on that column. Modified translations in the
MATT table display in blue color. Similarly, erroneous translations display in red color.

To modify a translation, follow these steps:

1. Select an option from the Select Translations drop-down list within the Type group.
Based on the option selected in the Select Translations drop-down list, the MATT
table displays details of program and/or data translations.

MMU Configuration File Editor Pages

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

320 Freescale Semiconductor, Inc.

2. Select a translation from the MATT table. The options displayed in the Properties
group vary depending on the type of translation selected in the MATT table.

3. Change the Address, Size, and Properties group settings.

Figure 12-4 shows the Translations page of the MMU Configuration File Editor when a
program translation is selected in the MATT table.

Figure 12-4. MMU Configuration File Editor - Translations Page for a Program
Translation

Figure 12-5 shows the Translations page of the MMU Configuration File Editor when a
data translation is selected in the MATT table.

Chapter 12 Memory Management Unit Configurator

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 321

Figure 12-5. MMU Configuration File Editor - Translations Page for a Data Translation

Table 12-3 explains the options available on the Translations page of the MMU
Configuration File Editor.

Table 12-3. MMU Configuration File Editor - Translations Page Settings

Option Explanation

Show Translations Select an option from the drop-down list to specify which translations to display.
• Enabled - Selecting this option displays all enabled translations in the MATT

table. This is the default selection for the configurator mode.
• All - Selecting this option displays all translations in the MATT table. This is

the default selection for the editor mode.
• Program - Selecting this option displays all program translations in the MATT

table.
• Data - Selecting this option displays all data translations in the MATT table.

Virtual Start Specifies the virtual base address of the program or data segment, selected in the
MATT table.

Virtual End Specifies the virtual end base address of the program or data segment.

Physical Start Specifies the most-significant part of the physical address to be used for translation.

Physical End Specifies the end part of the physical address to be used for translation.

Number Specifies the size (without unit) of the program or data segment.

Type Specifies the unit of the size of the program or data segment.
• B - Bytes
• KB - Kilo Bytes
• MB - Mega Bytes
• GB - Giga Bytes

Task ID Specifies the task ID for the program or data segment.

DAPS (for data translations only) Specifies whether to allow supervisor-level read (r-), write (-w), both (rw), or neither
(--) types of data access. This option corresponds to the Data Access Permission in
Supervisor Level (DAPS) bits of the Data Segment Descriptor Registers A
(M_DSDAx).

Table continues on the next page...

MMU Configuration File Editor Pages

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

322 Freescale Semiconductor, Inc.

Table 12-3. MMU Configuration File Editor - Translations Page Settings (continued)

Option Explanation

Prefetch Policy Specifies the prefetch policy for the program or data segment:
• No Prefetch
• Prefetch on miss access
• Prefetch on any access
• Reserved

L2 Partitioning ID Specifies the L2 partitioning ID for the program or data segment.

Peripheral Space (for data translations
only)

Specifies the peripheral space for the data segment:
• Memory
• Peripheral

Write-Through (for data translations
only)

Checked - MMU enables the write through option.

Cleared - MMU disables the write through option.

Cacheable Checked - Enables caching of the segment in the instruction cache.

Cleared - Disables caching of the segment in the instruction cache.

PAPS (for program translations only) Checked - Segment has supervisor-level fetch permission for program accesses. If
you check the PAPU option, you disable program-protection checks for this
segment.

Cleared - Segment does not have supervisor-level fetch permission for program
accesses.

This option corresponds to the Program Access Permission in Supervisor Level
(PAPS) bit of the Program Segment Descriptor Registers A (M_PSDAx).

Bank 0 (for data translations only) Checked - MMU enables the bank 0 option.

Cleared - MMU disables the bank 0 option.

Stack Descriptor (for data translations
only)

Checked - MMU enables the stack descriptor.

Cleared - MMU disables the stack descriptor.

Guarded Segment (for data translations
only)

Checked - MMU enables the guarded segment option.

Cleared - MMU disables the guarded segment option.

Entry Enabled Checked - MMU enables this translation entry.

Cleared - MMU disables this translation entry.

Coherent Checked - MMU enables the coherent entry.

Cleared - MMU disables the coherent entry.

12.2.3 new_file.mmu

The new_file.mmu page contains the generated MMU state file.

The MMU Configuration File Editor generates the state file each time you change the
MMU configuration. The state file contains target-specific register-state information, as
well as Family and Target Device Number state data that you specified in the wizard you
used to create the configuration.

Chapter 12 Memory Management Unit Configurator

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 323

The MMU Configurator uses the state file to re initialize the settings on each page. You
can maintain a collection of state files and load the file that initializes settings for a
particular set of translations.

Figure 12-6 shows the new_file.mmu page of the MMU Configuration File Editor.

Figure 12-6. MMU Configuration File Editor - < filename>.mmu Page

NOTE
The MMU Configuration File Editor regenerates the
new_file.mmu page when you change settings in the MMU
Configuration File Editor pages.

12.3 MMU Editor Menu

The MMU Configuration File Editor has an associated menu, MMU Editor, that displays
in the CodeWarrior IDE menu bar, when MMU Configuration File Editor is active in the
Editor view.

Table 12-4 explains each menu item in the MMU Editor menu.

Table 12-4. MMU Editor Menu Items

Menu Item Icon Description

Save C Saves the generated C code to a
new .c file.

Save ASM Saves the generated assembly code to a
new .asm file.

Table continues on the next page...

MMU Editor Menu

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

324 Freescale Semiconductor, Inc.

Table 12-4. MMU Editor Menu Items (continued)

Menu Item Icon Description

Save TCL Saves the generated TCL script to a
new .tcl file.

Read Target Registers Updates the content of the MMU
Configuration File Editor pages to reflect
the current values of the target hardware
registers.

Write Target Registers Writes the modified content of the MMU
Configuration File Editor pages to the
target hardware registers.

12.4 MMU Editor Toolbar

The MMU Configuration File Editor has an associated toolbar that displays in the
CodeWarrior IDE toolbar, when MMU Configuration File Editor is active in the Editor
view.

Table 12-5 explains each toolbar button.

Table 12-5. MMU Editor Toolbar Buttons

Toolbar Button Icon Description

Save C Source Saves the generated C code to a new .c file.

Save ASM Source Saves the generated assembly code to a new .asm
file.

Save TCL Source Saves the generated TCL script to a new .tcl file.

Load MMU Configurator state from active
thread

Updates the content of the MMU Configuration File
Editor pages to reflect the current values of the
target hardware registers.

Write active thread registers from MMU
Configurator state

Writes the modified content of the MMU
Configuration File Editor pages to the target
hardware registers.

12.5 Saving MMU Configuration

This section explains how to save the changes you made in the MMU Configurator.

Chapter 12 Memory Management Unit Configurator

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 325

Each time you change the settings in the MMU Configurator File Editor, you create a
pending or unsaved change. In order to commit those pending changes, you need to save
the MMU Configurator settings to a file. If an asterisk (*) appears before the title of the
MMU Configuration File Editor, it implies that the editor still has unsaved changes.

• Saving MMU Configuration File Editor Settings
• Saving Generated C Code
• Saving Generated Assembly Code
• Saving Generated TCL Script

12.5.1 Saving MMU Configuration File Editor Settings

Follow these steps to save the current settings of the MMU Configuration File Editor:

1. Select the MMU Configuration File Editor.
2. From the CodeWarrior IDE menu bar, select File > Save.

The IDE saves the current settings of the MMU Configuration File Editor to the .mmu
file.

12.5.2 Saving Generated C Code

The generated C code is unique for each target. Follow these steps to save the C code
generated by the MMU Configuration File Editor:

1. From the CodeWarrior IDE menu bar, select MMU Editor > Save C to save the
generated C code. Alternatively, click the Save C Source button in the MMU editor
toolbar.

A standard Save dialog box appears.

2. Specify the file name in the File name text box and click Save to save the generated
code as a new file.

NOTE
The MMU Configuration File Editor regenerates the C code
when you change settings in the MMU Configuration File
Editor pages.

Saving MMU Configuration

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

326 Freescale Semiconductor, Inc.

12.5.3 Saving Generated Assembly Code

The generated assembly (ASM) code is unique for each target. Follow these steps to save
the ASM code generated by the MMU Configuration File Editor:

1. From the CodeWarrior IDE menu bar, select MMU Editor > Save ASM to save the
generated assembly code. Alternatively, click the Save ASM Source button in the
MMU editor toolbar.

A standard Save dialog box appears.

2. Specify the file name in the File name text box and click Save to save the generated
code as a new file.

NOTE
The MMU Configuration File Editor regenerates the assembly
code when you change settings in the MMU Configuration File
Editor pages.

12.5.4 Saving Generated TCL Script

The generated TCL script can be executed within the Debugger Shell view, or the
Debugger Shell can execute the generated TCL script as an initialization script for the
target hardware. The generated TCL script is unique for each target.

Follow these steps to save the TCL script generated by the MMU Configuration File
Editor:

1. From the CodeWarrior IDE menu bar, select MMU Editor > Save TCL to save the
generated TCL script. Alternatively, click the Save TCL Source button in the MMU
editor toolbar.

A standard Save dialog box appears.

2. Specify the file name in the File name text box and click Save to save the generated
code as a new file.

Chapter 12 Memory Management Unit Configurator

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 327

NOTE
The MMU Configuration File Editor regenerates the TCL
script when you change settings in the MMU Configuration
File Editor pages.

12.6 MMU Configurator View

Use the MMU Configurator view to examine the current state of a thread's MMU
configuration during the debug session.

You can also detach the MMU Configurator view into its own floating window and
reposition the window within the collection of views.

To open the MMU Configurator view, follow these steps:

1. Start a debugging session.
2. In the Debug view of the Debug perspective, select the process for which you want

to work with MMU.
3. Select Window > Show View > Other.

The Show View dialog box appears.

4. Expand the Debug tree control.
5. Select MMU Configurator (Figure 12-7).

MMU Configurator View

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

328 Freescale Semiconductor, Inc.

Figure 12-7. Show View Dialog Box - MMU Configurator
6. Click OK.

The Show View dialog box closes. The MMU Configurator view appears, attached
to an existing collection of views in the current perspective.

Chapter 12 Memory Management Unit Configurator

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 329

MMU Configurator View

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

330 Freescale Semiconductor, Inc.

Chapter 13
Maple Memory Management Unit Configurator

This chapter explains how to use the Maple Memory Management Unit (MMU)
Configurator. To use the Maple MMU:

• You set up a mapping for data addresses
• Enable address translation

The mapping links the virtual addresses to the physical addresses. Translation occurs
before software acts on the addresses.

The Maple MMU Configurator simplifies peripheral-register initialization of the Maple
MMU registers. You can use the Maple MMU Configurator to examine the status of the
current Maple MMU configuration.

Use the Maple MMU Configurator to:

• Configure Maple MMU general control registers
• Configure Maple MMU memory-address-translation properties
• Display the current contents of each register
• Write the displayed contents from the Maple MMU Configurator to the Maple MMU

registers

This chapter has these sections:

• Maple MMU Configurator View
• Maple MMU Configurator View Pages
• Maple MMU Configurator View Menu

13.1 Maple MMU Configurator View

Use the Maple MMU Configurator view to examine the current state of a thread's
Maple MMU configuration during the debug session.

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 331

You can also detach the Maple MMU Configurator view into its own floating window
and reposition the window within the collection of views.

To open the Maple MMU Configurator view, follow these steps:

1. Start a debugging session.
2. In the Debug view of the Debug perspective, select the process for which you want

to work with Maple MMU.
3. Select Window > Show View > Other.

The Show View dialog box appears.

4. Expand the Debug tree control.
5. Select Maple MMU Configurator (as the following figure shows).

Figure 13-1. Show View Dialog Box - Maple MMU Configurator
6. Click OK.

The Show View dialog box closes. The Maple MMU Configurator view appears,
attached to an existing collection of views in the current perspective.

13.2 Maple MMU Configurator View Pages

This section explains each page of the Maple MMU Configurator view.

Maple MMU Configurator View Pages

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

332 Freescale Semiconductor, Inc.

You use these pages to configure Maple MMU mapping and translation properties. The
tabbed interface of the Maple MMU Configurator view displays pages for the
configuration options.

NOTE
When you specify settings in the Maple MMU Configurator
view, configure the tabbed pages in left-to-right order. For
example, configure the General page before configuring the
Translations page. In addition, within a page, configure
settings from the top-left position to the bottom-right position.

The following table lists the Maple MMU Configurator pages.

Table 13-1. Maple MMU Configurator Pages

Page Description

General This page helps you configure the overall Maple MMU configurations (as
opposed to specific properties for each virtual-to-physical map entry).

Translations This page helps you configure the data translations (virtual-to-physical
address mappings) for maple instances.

13.2.1 General

Use this page to configure the overall Maple MMU configurations (as opposed to specific
properties for each virtual-to-physical map entry).

The following figure shows the General page of the Maple MMU Configurator.

Figure 13-2. Maple MMU Configurator - General Page

Chapter 13 Maple Memory Management Unit Configurator

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 333

The following table describes the options available on the General page of the Maple
MMU Configurator.

Table 13-2. Maple MMU Configurator - General Page Settings

Option Description

Select Maple Instance Use this option to select Lte0, Lte1 and wcdma maple
instances.

NOTE: The availability of the options depends on the target
selected.

• LTE1 is not supported for b4420.
• LTE0, LTE1 and WCDMA are supported for

B4060, B4460 and B4860.
• Maple instances are not supported for G4860

and SC3900 targets.

Address Translation Checked - Enables address translation. For example,
translation occurs from a virtual address to a physical
address.

Cleared - Disables address translation. For example,
translation does not occur from a virtual address to a physical
address.

This option corresponds to the Address Translation Enable
(ATE) bit of the register from the list below, depending on the
Maple instance you selected:

• MAPLE_B3LW0_M_CR
• MAPLE_B3LW1_M_CR
• MAPLE_B3W_M_CR

Memory Protection Checked - Enables memory protection checking for all
enabled segment descriptors. With this option checked, the
system consumes more power.

Cleared - Disables memory protection checking for all
enabled segment descriptors.

This option corresponds to the Memory Protection Enable
(MPE) bit of the register from the list below, depending on the
Maple instance you selected:

• MAPLE_B3LW0_M_CR
• MAPLE_B3LW1_M_CR
• MAPLE_B3W_M_CR

Violation Monitor Displays current violation status.

Clear Violation Use this button to clear the violation data.

13.2.2 Translations

Use the Translations page to define and display data translations (virtual-to-physical
address mappings) for the maple instances.

Maple MMU Configurator View Pages

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

334 Freescale Semiconductor, Inc.

The Maple MMU Configurator generates the appropriate descriptors for the data
Memory-Address Translation Table (MATT).

On the Translations page, details of the data translations are shown in the MATT table
on the left side and settings of the entry, currently selected in the MATT table, are
summarized on the right side. By clicking the header of a column in the MATT table, you
can sort the table data based on that column. Modified translations in the MATT table
display in blue color. Similarly, erroneous translations display in red color.

To modify a translation, follow these steps:

1. Select an option from the Select Translations drop-down list within the Type group.
Based on the option selected in the Select Translations drop-down list, the MATT
table displays details of data translations.

2. Select a translation from the MATT table.
3. Change the Address, Size, and Properties group settings.

The following figure shows the Translations page of the Maple MMU Configurator.

Figure 13-3. Maple MMU Configurator - Translations Page

The following table describes the options available on the Translations page of the Maple
MMU Configurator.

Table 13-3. MMU Configuration File Editor - Translations Page Settings

Option Explanation

Select Translations Select an option from the drop-down list to specify which translations to display.
• Enabled - Selecting this option displays all enabled translations in the MATT

table. This is the default selection for the configurator mode.
• All - Selecting this option displays all translations in the MATT table.

Virtual Start Specifies the virtual base address of the data segment, selected in the MATT table.

Virtual End Specifies the virtual end base address of the data segment.

Physical Start Specifies the most-significant part of the physical address to be used for translation.

Physical End Specifies the end part of the physical address to be used for translation.

Table continues on the next page...

Chapter 13 Maple Memory Management Unit Configurator

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 335

Table 13-3. MMU Configuration File Editor - Translations Page Settings (continued)

Option Explanation

Number Specifies the size (without unit) of the data segment.

Type Specifies the unit of the size of the data segment.
• B - Bytes
• KB - Kilo Bytes
• MB - Mega Bytes
• GB - Giga Bytes

Task ID Specifies the task ID for the data segment.

DAPS Specifies whether to allow supervisor-level read (r-), write (-w), both (rw), or neither
(--) types of data access. This option corresponds to the Data Access Permission in
Supervisor Level (DAPS) bits of the register from the list below, depending on the
Maple instance selected by you:

• MAPLE_B3LW0_M_DSDAx
• MAPLE_B3LW1_M_DSDAx
• MAPLE_B3W_M_DSDAx

L2 Partitioning ID Specifies the L2 partitioning ID for the data segment.

Write-Through Checked - MMU enables the write-through policy attribute for the segment.

Cleared - MMU disables the write-through policy attribute for the segment.

Guarded Segment Checked - MMU enables the guarded attribute for the segment.

Cleared - MMU disables the guarded attribute for the segment.

Entry Enabled Checked - MMU enables this translation entry.

Cleared - MMU disables this translation entry.

Cacheable Checked - The segment is cacheable in DCache and L2 Cache.

Cleared - The segment is not cacheable in DCache and L2 Cache.

Coherent Checked - MMU enables the memory coherent attribute.

Cleared - MMU disables the memory coherent attribute.

13.3 Maple MMU Configurator View Menu

This section decsribes the Maple MMU Configurator view menu.

The following table describes toolbar menu item:

Table 13-4. Maple MMU Configurator View Menu Items

Menu Item Icon Description

Read Target Registers Loads Maple MMU Configurator state
from the currently selected maple
instance.

Write Target Registers Writes the active thread registers from
Maple MMU Configurator state.

Maple MMU Configurator View Menu

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

336 Freescale Semiconductor, Inc.

Chapter 14
StarCore DSP Utilities

This chapter explains how to use the utility programs included in the CodeWarrior
Development Studio for StarCore 3900FP DSP Architectures product.

This chapter explains:

• Archiver Utility
• Disassembler Utility
• ELF File Dump Utility
• ELF2XX Utility
• Name Utility
• Size Utility

14.1 Archiver Utility

Use the Archiver utility groups to separate object files into a single file for linking or
archival storage.

You can add, extract, delete, and replace files in an existing archive.

To invoke the Archiver utility from the command prompt, type:

 sc100-ar [Options] archive <file...>

NOTE
The sc100-ar utility is in this directory:

<CWinstallDir>\StarCore_Support\compiler\bin

Archiver utility command-line options are case-sensitive.

Parameters

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 337

 option

Table 14-1 defines the purpose and effect of each command-line option.

 archive

Name of the archive file.

 file

Name of the file or files to add, extract, replace, or delete from the specified archive file.
Separate multiple filenames with spaces. The archiver processes files in the order listed
on the command line.

 argument file

Name of a file that contains archiver command-line options. The syntax rules for an
argument file are listed below.

• Begin a comment line with the # character.
• Each line must end with a backslash (\) character.

Table 14-1. Archiver Utility-Command-Line
Options

Option Description

-c Suppresses the default diagnostic message written
to standard error when the archive is created. This
option is valid only with the -r option.

-d Deletes the listed files from the specified archive.

-e Recreates the whole archive. This option is valid
only with the -r option.

-f Forces adding an unknown file format to the library.
This option is valid only with the -r option.

-p Writes the contents of the listed files from the
specified archive to the standard output. If the
command does not include any filenames, the
archiver writes the contents of all files, in their order
in the archive.

-r Replaces the files, appends new files to the specified
archive, or creates a new archive that contains the
listed files.

-s Forces the extraction of .elf files from the specified
archive, addition or replacement the .elf files
instead of the whole archive. This option is valid with
just the -r option.

Table continues on the next page...

Archiver Utility

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

338 Freescale Semiconductor, Inc.

Table 14-1. Archiver Utility-Command-Line Options
(continued)

Option Description

-t Writes the archive table of contents, including the
specified files, to the standard output. If no files are
specified, all files in the archive are included in the
list in the order that they appear in the archive.

-u Updates archive files that have been changed since
the last update. This option is valid only with the -r
option.

-v Produces verbose output:
• -d, -r or -x : Produces a file-by-file

description of archive creation and
maintenance

• -p : Writes the name of a file to the standard
output before writing the file contents to the
standard output

• -t: Includes a long listing of file information
within the archive

-V Displays the current archiver version and exits.

-x Extracts the listed files from the specified archive. If
the command does not include any file names, the
archiver extracts all files of the archive. This option
does not change archive contents.

14.2 Disassembler Utility

Use the Disassembler utility to convert the ELF object files to SC3900fp assembly code.

The object files can be linked (.eld) or non-linked (.eln and .elb).

In the interactive mode, you provide hexadecimal encoding, which the disassembler
converts to assembly code. The disassembler can dump labels, equ directives, and section
information such as type and alignment.

Additional features include:

• Interpretation of relocation information
• Data disassembling
• Label (symbol) address output
• Padding awareness (alignment)
• Statistics display

To invoke the disasmsc100 utility from the command prompt, type:

 disasmsc100 [option ...] <srcfile>

Chapter 14 StarCore DSP Utilities

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 339

Parameters

option

Table 14-2 defines the purpose and effect of each command-line option. All the options
are case-sensitive.

srcfile

Any ELF object file.

NOTE
The disasmsc100 utility is in directory:

<CWinstallDir>\StarCore_Support\compiler\bin

A simple example command line is:

 disasmsc100 -f -m -q -r bin/coder.eld

Which starts disassembly of file bin/coder.eld printing loopstart-loopend instead of
lpmarkka/lpmarkb (-f), displaying intermixed C-source and disassembled code (-m),
suppressing the banner (-q), and rearranging packet instructions (-r).

Table 14-2. disasmsc100 Disassembler-Command-Line Options

Option Description

-arch<tgt> Specifies the architecture for interactive mode. Valid tgt
values are sc3900fp and b4860. Ignored during
disassembly of an ELF object file, which includes the hard
coded architecture version.

-b<label> Specifies the disassembly starting point, the VLES input file at
the specified label.

-c Specifies compact output mode, prints instructions in an
execution-set on a single line.

-e<label> Ends disassembly at the input file at the specified label.

-f Prints loopstart-loopend directives instead of lpmarka/
lpmarkb directives.

-h<addr> Stops disassembly when it reaches the specified hexadecimal
address.

-i{l|b} Specifies interactive mode with little endianness (l) or big
endianness (b). Default target is sc3900fp; to specify a
different target, use the -arch option.

-l<addr> Starts disassembly at the specified hexadecimal address.

-m Specifies mixed view: C source-code lines mixed with
disassembled code lines.

-n Displays unmangled form of C++ names.

-p Suppresses the PC display for VLESes.

-q Suppresses banner display.

Table continues on the next page...

Disassembler Utility

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

340 Freescale Semiconductor, Inc.

Table 14-2. disasmsc100 Disassembler-Command-Line Options (continued)

Option Description

-r{i} Rearranges instructions in packets in the order IFT, IFF, and
IFA.Without the optional i value, places DALU instructions
before AGU instructions. With the optional i value, does not
rearrange AGU instructions, permitting reassembly of the
disassembled dump file.

-s Suppresses display of labels, headers, and global information
(equs, globals, and section information).

-u Ignores relocation information (relevant for .eln and .elb
files).

-v Specifies verbose mode.

-x Displays mixed hexadecimal codification and assembly code.

-z Displays statistics after each section: number of VLESes with
0 - 4 DALU instructions, number of VLESes with 0 - 2 AGU
instructions, not-generated instructions, and so forth.

In the usual disassembler output, the PC address precedes each execution set; the
execution set is in a comment. Another comment at the beginning of each execution set,
specifies the grouping prefix type. The following listing shows a simple output example.

Listing: Simple Disassembler Output Example

;00001f10:
DW58

 [;one word low registerprefix

 ifa

 iadd d2,d1

 ift

 move.l (r3),r1

]

NOTE
The -p option suppresses the PC value in such output.

Another option that affects the output is -z, which specifies statistics. The following
listing shows an example.

Listing: disasmsc100 Disassembler-Output Produced by -z Option

;Global EQUs
X equ $fffd

zl equ $fffffffe

;Local EQUs

lab1 equ $fffffffd

Chapter 14 StarCore DSP Utilities

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 341

lab3 equ $fffffffd

 section .text2

 sectype progbits

 secflags alloc

 secflags execinstr

;00000000:

_f3 type func

F__MemAllocArea_18_00000000

F__MemAllocArea_18

 nop

;00000002:

F__MemAllocArea_18_00000002

 nop

;00000004:

F_f3_end

F__MemAllocArea_18_end

 endsec

 General Statistics:

 No of instruction: 2

 No of packets: 2

 No of 1-word-low-prefixes: 0

 No of 1-word-high-prefixes: 0

 No of 2-word-prefixes: 0

 No of DALU instructions: 0 0%

 No of AGU instructions: 0 0%

 No of prefixes and NOP instructions: 2 100%

 DALU Statistics:

 No of VLESs with 0 DALU: 2 100%

 No of VLESs with 1 DALU: 0 0%

 No of VLESs with 2 DALU: 0 0%

 No of VLESs with 3 DALU: 0 0%

 No of VLESs with 4 DALU: 0 0%

 DALU parallelism: 0.00

Disassembler Utility

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

342 Freescale Semiconductor, Inc.

 AGU Statistics:

 No of VLESs with 0 AGU: 2 100%

 No of VLESs with 1 AGU: 0 0%

 No of VLESs with 2 AGU: 0 0%

 AGU parallelism: 0.00

 DALU/AGU Usage Details:

 0 DALU | 1 DALU | 2 DALU | 3 DALU | 4 DALU

 0 AGU 100% 0% 0% 0% 0%

 1 AGU 0% 0% 0% 0% 0%

 2 AGU 0% 0% 0% 0% 0%

 Used Instructions:

 nop 2

Ensure that you read these additional considerations while using the Disassembler utility:

1. If there is data in the text sections, for example, you wrote assembling code and used
dcbstatements, the disassembler tries to match data with instructions.

2. Disassembly happens incrementally. If no instruction matches the current bytes from
the data stream, the disassembler dumps two bytes as data (dcb directives) and then
tries to match an instruction starting with the next bytes. Code alignment due to the
ALIGN assembler directive can lead to this situation.

3. The disassembler does not consider .bss-like sections (SHT_NOBITS); it also ignores all
symbols defined inside such sections.

4. The disassembler follows this algorithm to generate loopstart-loopend pseudo-
instructions:

a. Traverse source file VLES by VLES, incrementing PC at each step
b. Disassemble input file
c. Memorize label of each dosetup instruction found
d. For each lpmarkx instruction found, use information gathered from doen/ dosetup

instructions to compute loopstart/ loopend index and location

However, as this algorithm is not flow sensitive, it fails in cases like the one
discussed in the following listing.

Listing: Algorithm Failure Example

Chapter 14 StarCore DSP Utilities

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 343

 [...]
 dosetup3 ls3

 bt l1

 doen3 #5

 bt 12

l1:

 doen3 #7

l2:

 loopstart3

 [...]

 loopend3

 [...]

NOTE
The disassembler does not know which doen
corresponds to loopstart3, so ends up with an
unmatched doen instruction and prompts fatal error
message. Disassembly is still possible if you omit the -
f command-line option.

14.3 ELF File Dump Utility

Use the Executable and Linking Format (ELF) file Dump Utility to output the headers of
absolute and linkable object files in a human-readable format.

The information produced by the utility depends on the selected ELF object file type:

• Absolute (executable) -- Default output is ELF header, all program headers, and all
sections headers.

• Linkable (relocatable) -- Default output is ELF header and all section headers.

To invoke the ELF dump utility from the command-line prompt, type:

sc100-elfdump [option ...] <elf-file>

NOTE
The ELF dump utility is in this directory:

<CWinstallDir>\SC\StarCore_Support\compiler\bin

Parameters

ELF File Dump Utility

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

344 Freescale Semiconductor, Inc.

 option

Table 14-3 defines the purpose and effect of each command-line option. Without options,
the utility returns the contents of the ELF Ehdr, Phdr, and Shdr structures and the symbol
table. If you specify command-line options, the utility returns only the information that
you specify on the command line.

NOTE
sc100-elfdump utility command-line options are case-sensitive.

elf-file

one or more filenames, including optional pathnames. The input file should be either
Absolute- or Relocatable ELF object file.

Table 14-3. ELF File Dump Utility-Command-Line Options

Option Description

-A Writes the contents of all program segments

-a Writes the contents of all sections

-b Writes the contents of all SHT_PROGBITS sections

-D Writes the contents of all PT_DYNAMIC segments, does not
apply to the SC3900fp DSP core

-d Writes the contents of all SHT_DYNAMIC sections, does not
apply to the SC3900fp DSP core

-E Writes ELF header information

-e file Writes error messages to the specified file instead of stderr

-g Writes the contents of all debug sections in hex format

-h Writes the contents of all SHT_HASH sections, does not apply
to the SC3900fp DSP core

-I Writes the contents of all PT_INTERP segments, does not
apply to the SC3900fp DSP core

-i Interprets the section contents

-L Writes the contents of all PT_LOAD segments

-N Writes the contents of all PT_NOTE segments, does not apply
to the SC3900fp DSP core

-n Writes the contents of all SHT_NOTE sections

-o Writes the contents of overlay table sections

-P Writes the contents of all PT_PHDR segments

-q Specifies quiet mode, limits header information to the
specified sections and segments

-R file Writes the output to the specified file, instead of to the
standard output

-r Writes the contents of all SHT_REL and SHT_RELA sections

-S Writes the contents of all PT_SHLIB segments, does not
apply to the SC3900fp DSP core

Table continues on the next page...

Chapter 14 StarCore DSP Utilities

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 345

Table 14-3. ELF File Dump Utility-Command-Line Options (continued)

Option Description

-s Writes the contents of all SHT_SHLIB sections, does not
apply to the SC3900fp DSP core

-t Writes the contents of all SHT_STRTAB sections

-U Writes the contents of all unknown-type segments as hex
dumps

-u Writes the contents of all unknown-type sections as hex
dumps

-V Displays the version of the ELF file dump utility

-X Dumps all program-segment contents as hex

-x Dumps contents of all sections as hex

-y Writes the contents of all SHT_SYMTAB sections

-z Writes the contents of all SHT_DYNSYM sections, does not
apply to the SC3900fp DSP core

The following listing shows the output of the ELF file dump utility.

NOTE
The file name is hello.eld.

The ELF header extends from line e_ident through line
e_shstrndx.

The program headers comprise lines Segment 0, Segment 1 and
their subordinate lines.

The section headers comprise the remaining lines.

Listing: ELF File Dump Utility-Output

hello.eld:
 e_ident : 7f 45 4c 46 02 02 01 00 00 00 00 00 00 00 00 00

 (ELF 64-bit LSB Version 1

 e_type : 2 (Executable file)

 e_machine : 58 (StarCore 100)

 e_version : 1

 e_entry : 0x4000c778

 e_phoff : 0

 e_shoff : 0x40

 e_flags : 0x200 (SC3900fp (unknown revision))

 e_ehsize : 64

 e_phentsize : 56

ELF File Dump Utility

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

346 Freescale Semiconductor, Inc.

 e_phnum : 6

 e_shentsize : 64

 e_shnum : 24

 e_shstrndx : 23

 Segment 0:

 p_type : PT_LOAD

 p_offset : 0x190

 p_vaddr : 0x40000000

 p_paddr : 0x40000000

 p_filesz : 12

 p_memsz : 12

 p_flags : 0x6 PF_R PF_W

 p_align : 4

 Segment 1:

 p_type : PT_LOAD

 p_offset : 0x1a0

 p_vaddr : 0x40001000

 p_paddr : 0x40001000

 p_filesz : 200

 p_memsz : 200

 p_flags : 0x4 PF_R

 p_align : 8

 Section 0:

 sh_name :

 sh_type : SHT_NULL

 sh_flags : 0

 sh_addr : 0

 sh_offset : 0

 sh_size : 0

 sh_link : 0

 sh_info : 0

 sh_addralign : 0

 sh_entsize : 0

 Section 1:

 sh_name : ddr_shared_data_nc_wt

Chapter 14 StarCore DSP Utilities

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 347

 sh_type : SHT_STARCORE_OVERLAY

 sh_flags : 0x3 SHF_WRITE SHF_ALLOC

 sh_addr : 0x40000000

 sh_offset : 0x190

 sh_size : 12

 sh_link : 0

 sh_info : 0

 sh_addralign : 4

 sh_entsize : 0

 .

 .

 .

14.4 ELF2XX Utility

Use the ELF2XX utility to write the information within the executable ELF file in user
specific format such as srec, lod, or bin.

To invoke the ELF2XX utility from the command prompt, type:

sc100-elf2xx [option ...] <input-file>

NOTE
The ELF to S-Record utility is in this directory:

<CWinstallDir>\SC\StarCore_Support\compiler\bin

Parameters

 option

Table 14-4 defines the purpose and effect of each command-line option.

input-file

The filename of the ELF object file.

Listing: LOD File-Format

_START Module_ID Version Rev# Device# Asm_Version Comment
_END Entry_point_address

_DATA Memory_space Address Code_or_Data

ELF2XX Utility

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

348 Freescale Semiconductor, Inc.

_BLOCKDATA Memory_space Address Count Value

_SYMBOL Memory_space Symbol_Address ...

_COMMENT Comment

Listing: BIN File-Format

ENDIANNESS_BYTE (1Byte)

<ADDRESS - 8Bytes><SIZE_IN_BYTES - 8Bytes><data_payload>

<ADDRESS - 8Bytes><SIZE_IN_BYTES - 8Bytes><data_payload>

....

<ADDRESS -8Bytes><SIZE_IN_BYTES - 8Bytes><data_payload>
<ADDRESS = 0x00000000C007B010><SIZE = 8><value_of_entrypoint>

NOTE
ENDIANNESS_BYTE has the value 2 for MSB and 1 for LSB. This feature
can be used to dump the executable .elf file into a fast
download format. The file can be parsed and loaded into target's
memory.

Table 14-4. elf2xx Utility-Command-Line Options

Option Description Type

-t <output-type> Sets the output type format <output-
type> is one of: srec, lod , eld, , or
bin

Mandatory

-DumpUninitializedData= Off Inhibits to dump the information about
the Uninitialized Data <BSS sections>

Optional

-DumpUninitializedData= On Enables to dump the information about
the Uninitialized Data <BSS sections>

-DumpNewLine=Off Inhibits dumping new line for the srec
format

Optional

-DumpNewLine=On Enables dumping new line for the srec
format.

-entry_address HEX_VALUE Enables the user to change the default
value of the address, where the entry
point is written, to the specified
HEX_VALUE. The HEX_VALUE must be
written as "0xNUMBER" (for example:
0xC007B010)

NOTE: This option is valid only for the
bin format.

-m <arch> -#<value> <list_eld>
{ #<value> <list_eld> ...}

Enables us to merge one or more
applications. The result of merger can be
specified by the output-type argument
from -t option. <arch> is one of
b4420, b4860 <value> is the index of
core. For example, -#0 means core

Table continues on the next page...

Chapter 14 StarCore DSP Utilities

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 349

Table 14-4. elf2xx Utility-Command-Line Options (continued)

Option Description Type

zero. <list_eld> is the list of
executable ELF file that are delimited by
space.

-merge-with-symbol-
information=On

Enables dumping in merged .eld file
symbol information.

-merge-with-symbol-
information=Off

Disables dumping in merged .eld file
symbol information. This is default
behaviour.

-split <arch> Enables us to split an executable ELD
file into multiple core specific ELD files.
<arch> is one of: b4420, b4860

-o <output-file> Redirects the output to the specified file;
standard output is used in case the file/
output is missing

Optional

-removeAllBss Generates a srec file that does not
contain records for the bss sections.
The tool will read the bss table from the
input .eld file.

-V Displays the current version of the
sc100-elf2xx utility.

-ccsr_address HEX_VAL Defines the CCSR start address of the
first StarCore core. This information will
be used by the tool to generate the .bin
files entries that will be used by the
loader to program the MMU descriptors.
For B4860 the value is 0xffec40000.

Valid only for bin format.

When using the output file, after loading the information into memory, the host has to
write 0xa5a5a5a5 to 0xC007B000 in order to finalize the download process.

NOTE
Even if the user program uses only one core, private data for the
other cores must also be included in the output file for proper
boot operation.

For example, the user program generates the following output files for each of the cores:

• Core 0, project.eld
• Core 1, c1_project.eld
• Core 2, c2_project.eld
• Core 3, c3_project.eld

ELF2XX Utility

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

350 Freescale Semiconductor, Inc.

To create an S-record output called led_output.s from the combined object files, the sc100-
elf2xx utility is called, as the code in the following listing shows. The -t srec selects an S-
record output format. The -o led_output.s specifies the name of the output file. The -m
b4860 selects the device. Finally, all four input .eld files specify the object code to
combine.

Listing: Running ELF2XX Utility for Multiple Input Files

installDir\SC\StarCore_Support\compiler\bin >sc100-elf2xx -t srec -o
led_output.s -m b4860 -#0 project.eld -#1 c1_project.eld
-#2 c2_project.eld -#3 c3_project.eld

To create an S-record output without any .bss section records, the sc100-elf2xx utility is
called as shown in the following listing.

Listing: Running ELF2XX Utility for Multiple Input Files

installDir\SC\StarCore_Support\compiler\bin >sc100-elf2xx -t srec
-DumpUninitializedData=Off -removeAllBss bss_table_file.txt -m b4860 -
#0 project.eld -#1 c1_project.eld -#2 c2_project.eld -#3
c3_project.eld

-removeAllBss bss_table_file.txt option ensures that all the bss sections are eliminated,
no mater where they are placed, based on the information in the bss_table_file.txt file.

This section contains the following topic:
• L1 Defense Support
• Extract core specific images from multicore image

14.4.1 L1 Defense Support

This section describes the L1 defense support in the elf2xx utility for StarCore 3900FP
DSPs.

When reloading a core’s image, the loader must know what it should load without
interfering with the running state of the other cores. In order to be able to do this, the
loader (debugger or boot loader) must know which parts of the image are private and
which are shared. It loads only the private parts or, in case multiple cores are restarted,
also the image parts shared between the restarted and reloaded cores.

Based on the information in the segment header, the sc100-elf2xx tool generates multiple
images for each core: one containing the private code, and some other – one for each
sharing space (cluster, multiple clusters, whole platform). Based on the output name, you
will know to which cores each file corresponds.

You can use the following command:

Chapter 14 StarCore DSP Utilities

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 351

sc100-elf2xx -t bin -o binary_image.bin -SeparateBinFiles=On -DumpUninitializedData=Off -m
b4860 -entry_address 0xFFFFFFFFFFFFFFFF -ccsr_address 0xffec40000 -#0 test.eld -#1
c1_test.eld -#2 test.eld -#3 test.eld -#4 c4_test.eld -#5 c5_test.eld

The generated files name appears as:

<visible_cores>_binary_image.bin

Where visible_cores represents the cores that the image is visible on. Syntax is:

<visible_cores> =
 -cX_ if the segment is private
 -cX_c(X+1) if the segment is shared on one cluster

Example,

If one segment is private on core c0, the image will be emitted in file:

c0_binrary_image.bin

if one segment is shared on cluster 0, the image name will be:

c0_c1_binary_image.bin

if the segment is shared on the whole platform, the image name will be:

c0_c1_c2_c3_c4_c5_binary_image.bin

if the segment is shared among cluster 0 and 2, the image name will be:

c0_c1_c4_c5_binary_image.bin

This behavior is available only for the .bin output format.

Each image will contain the necessary information for the loader to program the MMU
descriptors.

14.4.2 Extract core specific images from multicore image

This feature allows you to extract the core specific ELD images from a multicore ELD
image which must be generated by using sc100-elf2xx. The listing below shows how to
create multicore image from the core specific images.

Listing: Creating multicore image from core specific images

installDir\SC\StarCore_Support\compiler\bin >sc100-elf2xx -t eld -m b4860
-#0 project.eld -#1 c1_project.eld -#2 c2_project.eld -#3 c3_project.eld
-#4 c4_project.eld -#5 c5_project.eld -merge-with-symbol-information=On -o project.elf

The core specific images are extracted from the multicore image by using sc100-elf2xx,
as shown by the listing below.

Listing: Extract core specific images

ELF2XX Utility

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

352 Freescale Semiconductor, Inc.

installDir\SC\StarCore_Support\compiler\bin >sc100-elf2xx -t eld -split b4860 project.elf -o
project.eld

An ELD image is created for each core that has private segments in the multicore ELD
image.

The image corresponding to core 0 will have the same name as the one provided to the -o
option (project.eld). The same name is used for the images corresponding the other cores
but prefixed by the core identifier (c1_project.eld for core 1 and so on).

In order for the extracted core specific images to have the same contents (including debug
information) as the original images used to create the multicore image, the multicore
image should include symbol information. This behaviour is enabled by using the -merge-
with-symbol-information=On command line option. Not specifying this option or setting it to
off results in a multicore image that does not include symbol information and
consequently, the core specific images obtained from splitting it will not include symbol
information.

14.5 Name Utility

Use the name utility to display the symbolic information in each object file and library
passed on the command line.

If a file contains no symbolics, the utility reports this fact.

To invoke the name utility from the command prompt, type:

sc100-nm [-option ...] file ...

NOTE
The sc100-nm utility is in this directory:

<CWinstallDir>\StarCore_Support\compiler\bin

Parameters

 option

Table 14-5 defines the purpose and effect of each command-line option.

NOTE
Name utility command-line options are case-sensitive.

file

Chapter 14 StarCore DSP Utilities

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 353

Name of the file to process.

Table 14-5. Name Utility-Command-Line Options

Option Effect

-A Writes the full pathname or library name of an object on each
line.

-g Writes only external (global) symbol information; do not use
this option with the -u option.

-P Writes the information in the POSIX.2 portable output
format.

-s Prints the symbol index for archives.

-t {d | o | x} Writes each numeric value in the specified format: d-decimal
o-octal x-hexadecimal (the default)

-l Displays the original name of static symbols.

-m Displays unmangled names for C++ symbols that have the
format mangle_name{unmangle_name}.

-u Writes only undefined symbols; do not use this option with the
-g option.

-V Displays the version of the name utility.

-v Sorts output by value, instead of by name.

Figure 14-1 the output generated by the name utility.

Figure 14-1. Name Utility-Output

Table 14-6 provides a key to the name utility's output.

Name Utility

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

354 Freescale Semiconductor, Inc.

NOTE
The uppercase letters indicate global symbols, while the
lowercase letters indicate local symbols.

Table 14-6. Name Utility-Output Key

Character Symbol Type

U Undefined reference

A or a Absolute symbol

B or b BSS symbol

T or t Text (code) symbol

D or d Data symbol

R or r Read-only data symbol

N Debug symbol

? Unknown symbol type or binding

14.6 Size Utility

Use the Size utility to output the size (in bytes) of each section of each ELF object file
passed on the command line.

The default output lists totals for all .text, .rodata, .data, and .bss sections.

To invoke Size utility from the command prompt, type:

sc100-size [-option ...] file ...

NOTE
The sc100-size utility is in this directory:

<CWinstallDir>\StarCore_Support\compiler\bin

Parameters

 option

Table 14-7 defines the purpose and effect of each command-line option.

NOTE
Size utility command-line options are case-sensitive.

 file

Chapter 14 StarCore DSP Utilities

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

Freescale Semiconductor, Inc. 355

Name of an ELF file.

Table 14-7. Size Utility-Command-Line Options

Option Description

-l Specifies long listing mode: outputs names and sizes of
individual sections.

-n Outputs the sizes of individual sections that do not get loaded.

-p Outputs the size of all loadable segments (program view).

-V Displays the version of the size utility.

Figure 14-2 shows two examples of size utility output.

• The default output, at the upper left, lists the totals of all text, rodata, data, and bss
sections of the object file. It shows 148 text bytes, 72 data bytes, and 24 bss bytes.

• The lower right output example shows the long-listing format for the same object
file. It shows that the 72 data bytes are in two files of 48 and 24 bytes.

Figure 14-2. Size Utility-Output

Size Utility

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual, Rev. 10.9.0,
11/2015

356 Freescale Semiconductor, Inc.

Index

A

about 222
Accompanying documentation 18
Actions 177
Action Type 296
Add flash device 280
Add Flash Programmer Actions 281
Adding a Register Group 180
Adding Memory Monitor 183
Adding Memory Rendering 185
Additional Arguments 82, 98
Address 300
Address lines 301
Advanced tab 162
alias 222
Archiver Utility 337
Arguments 111
Assembler 20, 71
Attach 107
Auto-Build Mode 45
Automatic Path Mapping 202

B

Bit Fields 175
bp 222
Build (if required) before launching 110
Building Projects 43
Build Properties 47
Build Properties for StarCore 48
Build Settings Page 32
Bus noise 300

C

C/C++ application 109
C/C++ Language 61
C/C++ Options 57
Cache View 188
Cache View Toolbar Menu 190
C Compiler 20
CCSSIM2 ISS 145
CCSSIM2 PACC 146
cd 223
change 224
Changing Bit Fields 176
Changing Build Properties 47
Changing Program Counter Value 191
Checksum actions 284
cls 226
Code and Language Options 84
Code editing 23

CodeWarrior Bareboard Project Wizard 27
CodeWarrior Command-Line Debugging 215
CodeWarrior Connection Server 141
CodeWarrior Development Studio tools 19
CodeWarrior IDE 22
CodeWarrior Profiling and Analysis tools 21
CodeWarrior TAP 154
CodeWarrior TAP - JTAG Connection through
Ethernet 157
CodeWarrior TAP - JTAG Connection through
USB 156
Command-Line Debugging Tasks 220
Common 124
Compiler Front End Messages 68
Compiling 24
config 226
Configuration Files 81
Configure flash programmer target task 280
Configuring CCS 143
Configuring Connections 140
Connect 108
Connection types 144
Contents of this manual 17
Control 63
copy 228
Create a CodeWarrior Bareboard Project Page 28
Create a flash programmer target task 278
Creating a JTAG Initialization File 261
Creating CodeWarrior Bareboard Project 35
Creating hardware diagnostics task 294
Creating MMU Configuration 316
Creating Projects 35
Creating task for import/export/fill memory 303
Custom
Customizing Debug Configurations 129

D

Data lines 301
debug 229
Debug 114
Debug Configurations 103
Debugger 21, 112
Debugger Shell Command List 221
Debugging 24
Debugging a CodeWarrior project 134
Debugging a Project using Target Hardware 137
Debugging Externally Built Executable Files 199
Debugging Multi-Core Projects 262
Debugging Multiple Cores 268
Debugging Project Using Simulator 134
Debug Session Type 105
Debug Target Settings Page 30, 198

Index

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual

Freescale Semiconductor, Inc. 357

Debug the Executable File 209
Deleting Projects 46
Description 178
Diagnostics actions 285
dir 229
disassemble 230
Disassembler Settings 53
Disassembler Utility 339
display 231
Displaying CCS Console 142
Download 108, 115
Dump Flash actions 286
Duplicate action 287

E

Eclipse IDE 19
Editing a Register Group 181
Editing remote system configuration 158
Edit the Launch Configuration 201
ELF2XX Utility 348
ELF File Dump Utility 344
Environment 123
Erase/Blank check actions 282
Erasing flash device 293
Ethernet TAP 147
evaluate 233
Exception Configurator 311
Execute flash programmer target task 288
Execute host-based Scope Loop on target 302
Execute target-based Memory Tests on target 303
Execution of Script Files 218
Exporting memory to file 307

F

Fill Memory 308
finish 234
fl::blankcheck 234
fl::checksum 234
fl::device 235
fl::diagnose 235
fl::disconnect 235
fl::dump 235
fl::erase 236
fl::image 236
fl::protect 236
fl::secure 237
fl::target 237
fl::verify 237
fl::write 238
Flash File to Target 291
Flash programmer 277
Flash Programmer Use Case 289
funcs 238

G

General 318, 333
getIDEpref 239
getpid 239
Gigabit TAP 151
Gigabit TAP + Trace 149
go 239
Go to Address 187

H

Hard resetting 192
Hardware Configuration 64
Hardware diagnostics 294
help 240
history 240
How to use Flash programmer to write uboot
images 289

I

Import/Export/Fill memory 303
Import a CodeWarrior Executable file Page 195
Import a CodeWarrior Executable file Wizard 194
Import an Executable File 199
Import C/C++/Assembler Executable Files Page
196
Importing data into memory 305
Importing Projects 38
Importing SmartDSP OS Project 38
Include Search Paths 73, 88
Initialization tab 159
Introduction 17

J

jtagclock 241

K

kill 241

L

L1 Defense Support 351
launch 242
Libraries 58
Linker 21, 72
Linker Settings 56
Linking 24
Listing Contents 94
Listing File 92
Listing Format 96
loadsym 242
log 242

Index

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual

358 Freescale Semiconductor, Inc.

Loop Speed 297

M

Macros 75
Main 104
Manual-Build Mode 43
Manual Path Mapping 204
Maple Memory Management Unit Configurator 331
Maple MMU Configurator View 331
Maple MMU Configurator View Menu 336
Maple MMU Configurator View Pages 332
mc::config 243
mc::go 243
mc::group 244
mc::kill 244
mc::reset 244
mc::restart 244
mc::stop 245
mc::type 245
mem 245
Memory Access 297
Memory Configuration File 213
Memory Management Unit Configurator 315
Memory tab 160
Memory Tests 298
Memory test use cases 302
MMU Configuration File Editor Pages 318
MMU Configurator View 328
MMU Configurator View Toolbar 325
MMU Editor Menu 324
Multi-Core Commands in CodeWarrior IDE 273
Multi-Core Commands in Debugger Shell 274
Multi-Core Debugging 261
Multi-Core Debugging Commands 272

N

Name Utility 353
new_file.mmu 323
next 247
nexti 248

O

oneframe 248
Optimization 78
OS Awareness 120
Other Executables 117
Output Listing 65

P

Per Core Reset 192
Preprocessor 90
Preprocessor Settings 100
Processor 77

Processor Page 29, 197
Program/Verify actions 283
Program MATT 320
Programming file 293
Project files 23
Protect/Unprotect actions 286
protocol 248
pwd 248

Q

quitIDE 249

R

radix 249
redirect 250
refresh 250
reg 250
Registers View Context Menu 178
Release notes 17
Remove action 287
Remove Breakpoints using Breakpoints View 167
Remove Breakpoints using Marker Bar 167
Remove Hardware Breakpoints using Debugger
Shell 169
Remove Hardware Breakpoints using the IDE 168
Removing a Register Group 181
Removing Breakpoints 167
Removing Hardware Breakpoints 168
Removing Memory Rendering 186
Removing Watchpoints 172
reset 250
Resetting to Base Address 186
Resolution of Conflicting Command Names 218
restart 251
restore 251
Restoring Build Properties 48
Reverting Debug Configuration Settings 131
run 251
Running CCS 142

S

save 251
Saving Generated Assembly Code 327
Saving Generated C Code 326
Saving Generated TCL Script 327
Saving MMU Configuration 325
Saving MMU Configuration File Editor Settings
326
sc::getPhysicalAddress 253
sc::setMaxAccessLength 252
sc::setReset 253
setpc 253
setpicloadaddr 253
Setting Breakpoints 163

Index

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual

Freescale Semiconductor, Inc. 359

Setting Hardware Breakpoints 166
Setting Launch Configurations 263
Setting Stack Depth 193
Setting Watchpoints 170
Size Utility 355
SmartDSP OS Page 34
Source 121
Specify target RAM settings 281
Specify the Source Lookup Path 201
stack 254
StarCore 3900 Assembler 83
StarCore 3900 C/C++ Compiler 60
StarCore 3900 C/C++ Linker Application 55
StarCore 3900 Disassembler 52
StarCore 3900 Preprocessor 99
StarCore DSP Utilities 337
StarCore Environment 50
status 254
step 254
stepi 255
stop 255
switchtarget 256
Symbolics 118
system 256

T

Target Initialization File 211
Target settings 111
Tcl Startup Script 219
Tcl Support 218
Trace and Profile 125
Translations 334

U

USB TAP 153
Using Debug Configurations Dialog Box 103
Using Debugger Shell to Set Hardware Breakpoints
166
Using IDE to Set Hardware Breakpoints 166

V

var 257
Viewing Cache 187
Viewing memory 182
Viewing Register Details 174

W

wait 258
Walking Ones 299
Warnings 67
watchpoint 259
Working with Breakpoints 163
Working with Debugger 133

Working with Debugger Shell 215
Working with Hardware Diagnostic Action editor
295
Working with Hardware Tools 277
Working with Projects 27
Working with Register Groups 179
Working with Registers 172
Working with Watchpoints 169

Index

CodeWarrior Development Studio for StarCore 3900FP DSP Architectures Targeting Manual

360 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, QorIQ, StarCore are
trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.
QorIQ Qonverge is a trademark of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective
owners. The Power Architecture and Power.org word marks and the
Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© 2008–2015 Freescale Semiconductor, Inc. All rights reserved.

Document Number CWSCDBGUG
Revision 10.9.0, 11/2015

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Chapter 1​: Introduction
	Release notes
	Contents of this manual
	Accompanying documentation
	CodeWarrior Development Studio tools
	Eclipse IDE
	C Compiler
	Assembler
	Linker
	Debugger
	CodeWarrior Profiling and Analysis tools

	CodeWarrior IDE
	Project files
	Code editing
	Compiling
	Linking
	Debugging

	Chapter 2​: Working with Projects
	CodeWarrior Bareboard Project Wizard
	Create a CodeWarrior Bareboard Project Page
	Processor Page
	Debug Target Settings Page
	Build Settings Page
	SmartDSP OS Page

	Creating projects
	Creating CodeWarrior Bareboard Project

	Importing Projects
	Importing SmartDSP OS Project

	Building projects
	Manual-Build mode
	Auto-Build mode

	Deleting Projects

	Chapter 3​: Build Properties
	Changing Build Properties
	Restoring Build Properties
	Build Properties for StarCore
	StarCore Environment
	StarCore 3900 Disassembler
	Disassembler Settings

	StarCore 3900 C/C++ Linker Application
	Linker Settings
	C/C++ Options
	Libraries

	StarCore 3900 C/C++ Compiler
	C/C++ Language
	Control
	Hardware Configuration
	Output Listing
	Warnings
	Compiler Front End Messages
	Assembler
	Linker

	Include Search Paths
	Macros
	Processor
	Optimization
	Configuration Files
	Additional Arguments

	StarCore 3900 Assembler
	Code and Language Options
	Include Search Paths
	Preprocessor
	Listing File
	Listing Contents
	Listing Format
	Additional Arguments

	StarCore 3900 Preprocessor
	Preprocessor Settings

	Chapter 4​: Debug Configurations
	Using Debug Configurations Dialog Box
	Main
	Debug Session Type
	Attach
	Connect
	Download
	Custom

	C/C++ application
	Build (if required) before launching
	Target settings

	Arguments
	Debugger
	Debug
	Download
	Other Executables
	Symbolics
	OS Awareness

	Source
	Environment
	Common
	Trace and Profile

	Customizing Debug Configurations
	Reverting Debug Configuration Settings

	Chapter 5​: Working with Debugger
	Debugging a CodeWarrior project
	Debugging Project Using Simulator
	Debugging Project using Target Hardware

	Configuring Connections
	CodeWarrior Connection Server
	Running CCS
	Displaying CCS Console
	Configuring CCS

	Connection types
	CCSSIM2 ISS
	CCSSIM2 PACC
	Ethernet TAP
	Gigabit TAP + Trace
	Gigabit TAP
	USB TAP
	CodeWarrior TAP
	CodeWarrior TAP - JTAG Connection through USB
	CodeWarrior TAP - JTAG Connection through Ethernet

	Editing remote system configuration
	Initialization tab
	Memory tab
	I/O Model Tab
	Advanced tab

	Working with Breakpoints
	Setting Breakpoints
	Setting Hardware Breakpoints
	Using IDE to Set Hardware Breakpoints
	Using Debugger Shell to Set Hardware Breakpoints

	Removing Breakpoints
	Remove Breakpoints using Marker Bar
	Remove Breakpoints using Breakpoints View

	Removing Hardware Breakpoints
	Remove Hardware Breakpoints using the IDE
	Remove Hardware Breakpoints using Debugger Shell

	Working with Watchpoints
	Setting Watchpoints
	Removing Watchpoints

	Working with Registers
	Viewing Register Details
	Bit Fields
	Changing Bit Fields
	Actions
	Description

	Registers View Context Menu
	Working with Register Groups
	Adding a Register Group
	Editing a Register Group
	Removing a Register Group

	Viewing memory
	Adding Memory Monitor
	Adding Memory Rendering
	Removing Memory Rendering
	Resetting to Base Address
	Go to Address

	Viewing Cache
	Cache View
	Cache View Toolbar Menu

	Changing Program Counter Value
	Hard resetting
	Per Core Reset
	Setting Stack Depth
	Import a CodeWarrior Executable file Wizard
	Import a CodeWarrior Executable file Page
	Import C/C++/Assembler Executable Files Page
	Processor Page
	Debug Target Settings Page

	Debugging Externally Built Executable Files
	Import an Executable File
	Edit the Launch Configuration
	Specify the Source Lookup Path
	Automatic Path Mapping
	Manual Path Mapping

	Debug Executable File

	Chapter 6​: Target Initialization File
	Chapter 7​: Memory Configuration File
	Chapter 8​: CodeWarrior Command-Line Debugging
	Working with Debugger Shell
	Tcl Support
	Resolution of Conflicting Command Names
	Execution of Script Files
	Tcl Startup Script

	Command-Line Debugging Tasks
	Debugger Shell Command List
	about
	alias
	bp
	cd
	change
	cls
	config
	copy
	debug
	dir
	disassemble
	display
	evaluate
	finish
	fl::blankcheck
	fl::checksum
	fl::device
	fl::diagnose
	fl::disconnect
	fl::dump
	fl::erase
	fl::image
	fl::protect
	fl::secure
	fl::target
	fl::verify
	fl::write
	funcs
	getIDEpref
	getpid
	go
	help
	history
	jtagclock
	kill
	launch
	loadsym
	log
	mc::config
	mc::go
	mc::group
	mc::kill
	mc::reset
	mc::restart
	mc::stop
	mc::type
	mem
	next
	nexti
	oneframe
	protocol
	pwd
	quitIDE
	radix
	redirect
	refresh
	reg
	reset
	restart
	restore
	run
	save
	sc::setMaxAccessLength
	sc::setReset
	sc::getPhysicalAddress
	setpc
	setpicloadaddr
	stack
	status
	step
	stepi
	stop
	switchtarget
	system
	var
	wait
	watchpoint

	Chapter 9​: Multi-Core Debugging
	Creating a JTAG Initialization File
	Debugging Multi-Core Projects
	Setting Launch Configurations
	Debugging Multiple Cores

	Multi-Core Debugging Commands
	Multi-Core Commands in CodeWarrior IDE
	Multi-Core Commands in Debugger Shell

	Chapter 10​: Working with Hardware Tools
	Flash programmer
	Create a flash programmer target task
	Configure flash programmer target task
	Add flash device
	Specify target RAM settings
	Add flash programmer actions
	Erase/Blank check actions
	Program/Verify actions
	Checksum actions
	Diagnostics actions
	Dump Flash actions
	Protect/Unprotect actions
	Duplicate action
	Remove action

	Execute flash programmer target task
	Flash Programmer Use Case
	Using Flash Programmer to Write uboot Image to Target

	Flash File to Target
	Erasing flash device
	Programming a file

	Hardware diagnostics
	Creating hardware diagnostics task
	Working with Hardware Diagnostic Action editor
	Action Type
	Memory Access
	Loop Speed
	Memory Tests
	Walking Ones
	Address
	Bus noise
	Address lines
	Data lines

	Memory test use cases
	Use Case 1: Execute host-based Scope Loop on target
	Use Case 2: Execute target-based Memory Tests on target

	Import/Export/Fill memory
	Creating task for import/export/fill memory
	Importing data into memory
	Exporting memory to file
	Fill memory

	Chapter 11​: Exception Configurator
	Chapter 12​: Memory Management Unit Configurator
	Creating MMU Configuration
	MMU Configuration File Editor Pages
	General
	Translations
	new_file.mmu

	MMU Editor Menu
	MMU Editor Toolbar
	Saving MMU Configuration
	Saving MMU Configuration File Editor Settings
	Saving Generated C Code
	Saving Generated Assembly Code
	Saving Generated TCL Script

	MMU Configurator View

	Chapter 13​: Maple Memory Management Unit Configurator
	Maple MMU Configurator View
	Maple MMU Configurator View Pages
	General
	Translations

	Maple MMU Configurator View Menu

	Chapter 14​: StarCore DSP Utilities
	Archiver Utility
	Disassembler Utility
	ELF File Dump Utility
	ELF2XX Utility
	L1 Defense Support
	Extract core specific images from multicore image

	Name Utility
	Size Utility

	Index

