
NXP Semiconductors
User’s guide

© 2016 NXP B.V.

Document Number: PEXMC12XSF-MC12XS6PUG
Rev. 1.0, 5/2016

Gen4eXtremeSwitch programming guide

Contents

1 General info . 2
2 Embedded component description . 2

2.1 Component API . 2
2.2 Events. 3
2.3 Methods . 4
2.4 Properties . 7

3 Typical usage. 11
4 User types . 18

1 General Info

Gen4eXtremeSwitch Processor Expert component is a software driver which encapsulates functionality
of MC12XSF and MC12XS6 eXtreme switch families. The component creates a layer between hardware
and user application and enables rapid application development by providing an interface which covers
options for settings of registers, measurement and testing.

The NXP MC12XS6/F/G eXtreme switch products belong to an expanding family that can control and
diagnose various types of loads, such as incandescent bulbs or light emitting diodes (LEDs), with
enhanced precision. 12XS6/F/G families combine flexibility through daisy chainable SPI at 5.0 MHz,
extended digital and analog feedback, which supports safety and robustness. The user can configure the
initial configuration of the device in the component and generates a set of functions for operating the
switch via SPI.

2 Embedded Component Description

2.1 Component API

Gen4eXtremeSwitch component provides API, which can be used for dynamic real-time configuration of
device in user code. Available methods and events are listed under component selection Some of those
methods/events are marked with ticks and other ones with crosses, it distinguishes which
methods/events are supposed to be generated or not. You can change this setting in Processor Expert
Inspector. Note that methods with grey text are always generated because they are needed for proper
functionality. This forced behavior depends on various combinations of settings of component
properties. For summarization of available API methods and events and their descriptions, see Table 1
Gen4eXtremeSwitch Component API

Table 1

Method Description
Init Initializes the device according to the component properties.

This method writes the data gathered from the component
properties into registers via SPI. When auto initialization is en-
abled, this method will be called automatically within PE ini-
tialization function PE low level init().

Deinit Deinitializes the device (puts the device in sleep mode).
GetQuickStatus Returns current status of the device. Reads the quick status

register which provides glance at failure overview. As long as no
failure flag is set (logic 1), no control action by the microcon-
troller is necessary. Meaning of bits in quick status register can
be found in datasheet or header file.

GetChannelStatus Gets the information of the fault for all available channels.
Reads information from CHx status register. Meaning of bits
in CHx status register can be found in datasheet or header file.

GetDeviceStatus Gets information on the status of the device. Reads informa-
tion from device status register. Meaning of bits in device status
register can be found in datasheet or header file.

GetIOStatus Gets information on the I/O of the device. Reads information
from I/O status register. Meaning of bits in I/O status register
can be found in datasheet or header file.

ReadRegister Reads value of the given register via SPI. This method allows
the user to read content from a register of the device(s).

WriteRegister Writes value to the given register via SPI. This method allows
the user to set a custom value to a register of the device.

FeedWatchdog Toggles the watchdog bit in all devices to avoid watchdog time-
out. Watchdog is fed with every SPI write. If there is not SPI
communication it is necessary to feed it before the timeout ex-
pires. The watchdog timeout depends on WD SEL bit in Intial-
ization register 1. The timeout is either 32 ms or 128 ms.

General info

Gen4eXtremeSwitch programming guide, Rev. 1.0

2 NXP Semiconductors

1 General info

2 Embedded component description
2.1 Component API

SetOutputState Turns on/off channels of the device.
SetPWMDuty Sets PWM duty for specified channel. Calling this method

will set PWM output immediately (if PWM is enabled). This
method writes PWM value into CHx register.

SetPWMDutyValues Sets PWM duty for all available channels of the device. Call-
ing this method will set PWM output immediately (if PWM is
enabled), otherwise the setting will not take effect until after
PWM enabling with method SetOutputState.

SetGPWMDuty Sets Global PWM duty cycle value. Calling this method will set
PWM output immediately (if PWM is enabled). This method
writes into global register.

SetPWMControl Sets PWM output to Global or individual PWM control.
IncrementalPWMControl This method sets LSB step according to which the duty cy-

cle will be incremented or decremented with every call of this
method.

SetOCHIOnDemand This method enables the OCHI On Demand (over current high
on demand) feature on corresponding channel. This feature en-
ables higher tolerance of the driver to inrush current occuring
when the load is reconnected after sudden power disconnection.

OLLEDTrig This method triggers the Openload functionality for LED. The
open load detection for LED is useful for detection of small load
currents (e.g. LED) in on state of the switch. This feature im-
plements a special low current detection mode. The OLLED
fault is reported when the output voltage is above VPWR 0.75V
after 2.0ms offtime or at each turnon command in case of off-
time 2.0ms. The OLLED TRIG bit is reset after the detection.

SetOLOFF This method enables the OLOFF (open load detection in off
state) for corresponding channel. When the detection is started,
the corresponding output channel is turned on with a fixed over-
current threshold. When this overcurrent threshold is reached
within the detection timeout tOLOFF, the output is turned
off and the OLOFF EN bit is reset. No error is reported. If the
threshold is not reached within the detection timeout tOLOFF,
the output is turned off after tOLOFF and the OLOFF EN bit
is reset. The open load in off state event is reported.

SetDirectInput Sets target pin INx high/low voltage. The direct input is used
to directly control corresponding channel in Fail mode. During
Normal mode the control of the outputs by the control inputs is
SPI programmable and the output voltage depends on set duty
(global or individual). Direct inputs are only Outputs 1..4.

SetDirectInputValues Sets target pin INx high/low voltage for all channels simultane-
ously. The direct input is used to directly control corresponding
channel in Fail mode. During Normal mode the control of the
outputs by the control inputs is SPI programmable. Direct in-
puts are only Outputs 1..4.

SetExtClockState This method enables/disables external clock timer.
ConfigureMonitoring Configures CSNS pin output. This method sets monitored pa-

rameter and synchronization.
GetSenseValue Configures monitoring of current, voltage or temperature on the

CSNS pin and returns the corresponding value from the ADC.
Waits until measurement is completed.

2.2 Events

OnMeasurementSynchronization - This event is invoked when measurement synchronization trigger
occurs.

ANSIC prototype:void OnMeasurementSynchronization(void)

Embedded component description

Gen4eXtremeSwitch programming guide, Rev. 1.0

NXP Semiconductors
3

2.2 Events

2.3 Methods

Init - Initializes the device according to the component properties. This method writes the data
gathered from the component properties into registers via SPI. When auto initialization is enabled, this
method will be called automatically within PE initialization function - PE low level init().

ANSIC prototype: TDeviceDataPtr Init(TUserDataPtr UserDataPtr)

UserDataPtr:TUserDataPtr - User data pointer

Return value:TError - Error code, ERR OK if successful

Deinit - Deinitializes the device (puts the device in sleep mode).

ANSIC prototype: void Deinit(void)

Return value:void

GetQuickStatus - Returns current status of the device. Reads the quick status register which
provides glance at failure overview. As long as no failure flag is set (logic 1), no control action by the
microcontroller is necessary. Meaning of bits in quick status register can be found in datasheet or
header file.

ANSIC prototype: TError GetQuickStatus(TDeviceIdx DeviceIndex,uint16 t *StatusData)

DeviceIndex:TDeviceIdx - Index of device (didxDEV1..4).

StatusData: Pointer to uint16 t - Pointer to variable that will be filled with the status information.

Return value:TError - Error code, ERR OK if successful

GetChannelStatus - Gets the information of the fault for all available channels. Reads information
from CHx status register. Meaning of bits in CHx status register can be found in datasheet or header
file.

ANSIC prototype: TError GetChannelStatus(TDeviceIdx DeviceIndex,uint16 t *StatusData)

DeviceIndex:TDeviceIdx - Index of device (didxDEV1..4).

StatusData: Pointer to uint16 t - Pointer to an array that will be filled with the fault information.

Return value:TError - Error code, ERR OK if successful

GetDeviceStatus - Gets information on the status of the device. Reads information from device
status register. Meaning of bits in device status register can be found in datasheet or header file.

ANSIC prototype: TError GetDeviceStatus(TDeviceIdx DeviceIndex,uint16 t *StatusData)

DeviceIndex:TDeviceIdx - Index of device (didxDEV1..4).

StatusData: Pointer to uint16 t - Pointer to variable that will be filled with the fault information.

Return value:TError - Error code, ERR OK if successful

GetIOStatus - Gets information on the I/O of the device. Reads information from I/O status register.
Meaning of bits in I/O status register can be found in datasheet or header file.

ANSIC prototype: TError GetIOStatus(TDeviceIdx DeviceIndex,uint16 t *StatusData)

DeviceIndex:TDeviceIdx - Index of device (didxDEV1..4).

StatusData: Pointer to uint16 t - Pointer to variable that will be filled with the fault information.

Return value:TError - Error code, ERR OK if successful

ReadRegister - Reads value of the given register via SPI. This method allows the user to read content
from a register of the device(s).

ANSIC prototype: TError ReadRegister(TDeviceIdx DeviceIndex,TSORegister Register,uint16 t
*RegVal)

DeviceIndex:TDeviceIdx - Index of device (didxDEV1..4).

Register:TSORegister - Address of the register.

RegVal: Pointer to uint16 t - Pointer to the variable for resulting data.

Return value:TError - Error code, ERR OK if successful

WriteRegister - Writes value to the given register via SPI. This method allows the user to set a
custom value to a register of the device.

4

Embedded component description

Gen4eXtremeSwitch programming guide, Rev. 1.0

4 NXP Semiconductors

2.3 Methods

ANSIC prototype: TError WriteRegister(TDeviceIdx DeviceIndex,TSIRegister Register,uint16 t
RegVal)

DeviceIndex:TDeviceIdx - Index of device (didxDEV1..4).

Register:TSIRegister - Address of the register.

RegVal:uint16 t - Pointer to the value to be written.

Return value:TError - Error code, ERR OK if successful

FeedWatchdog - Toggles the watchdog bit in all devices to avoid watchdog timeout. Watchdog is fed
with every SPI write. If there is not SPI communication it is necessary to feed it before the timeout
expires. The watchdog timeout depends on WD SEL bit in Intialization register 1. The timeout is
either 32 ms or 128 ms.

ANSIC prototype: TError FeedWatchdog(void)

Return value:TError - Error code, ERR OK if successful

SetOutputState - Turns on/off channels of the device.

ANSIC prototype: TError SetOutputState(TDeviceIdx DeviceIndex,bool *OutputStates)

DeviceIndex:TDeviceIdx - Index of device (didxDEV1..4).

OutputStates: Pointer to bool - Pointer to array containing states of available channels (TRUE =
enabled, FALSE = disabled).

Return value:TError - Error code, ERR OK if successful

SetPWMDuty - Sets PWM duty for specified channel. Calling this method will set PWM output
immediately (if PWM is enabled). This method writes PWM value into CHx register.

ANSIC prototype: TError SetPWMDuty(TDeviceIdx DeviceIndex,uint8 t Channel,uint16 t Duty)

DeviceIndex:TDeviceIdx - Index of device (didxDEV1..4).

Channel:uint8 t - Output channel index.

Duty:uint16 t - PWM duty value for selected channel.

The range of the duty is 0..256, where 0 = OFF and 1 = 0.4% duty and 256 = 100%.

Return value:TError - Error code, ERR OK if successful

SetPWMDutyValues - Sets PWM duty for all available channels of the device. Calling this method
will set PWM output immediately (if PWM is enabled), otherwise the setting will not take effect until
after PWM enabling with method SetOutputState.

ANSIC prototype: TError SetPWMDutyValues(TDeviceIdx DeviceIndex,uint16 t *DutyValues)

DeviceIndex:TDeviceIdx - Index of device (didxDEV1..4).

DutyValues: Pointer to uint16 t - Pointer to an array that contains the PWM duty values.

The range of the duty is 0..256, where 0 = OFF and 1 = 0.4% duty and 256 = 100%.

Return value:TError - Error code, ERR OK if successful

SetGPWMDuty - Sets Global PWM duty cycle value. Calling this method will set PWM output
immediately (if PWM is enabled). This method writes into global register.

ANSIC prototype: TError SetGPWMDuty(TDeviceIdx DeviceIndex,uint16 t Duty)

DeviceIndex:TDeviceIdx - Index of device (didxDEV1..4).

Duty:uint16 t - Global PWM duty value for selected device.

The range of the duty is 0..256, where 0 = OFF and 1 = 0.4% duty and 256 = 100%.

Return value:TError - Error code, ERR OK if successful

SetPWMControl - Sets PWM output to Global or individual PWM control.

ANSIC prototype: TError SetPWMControl(TDeviceIdx DeviceIndex,uint8 t
Channel,TChannelControl Control)

DeviceIndex:TDeviceIdx - Index of device (didxDEV1..4).

Channel:uint8 t - Output channel index.

Embedded component description

Gen4eXtremeSwitch programming guide, Rev. 1.0

NXP Semiconductors
5

Control:TChannelControl - Individual state of the PWM type control for each single output.

The value is ccGLOBAL if a channel is supposed to be controlled by global PWM register or
ccINDIVIDUAL if individually.

Return value:TError - Error code, ERR OK if successful

IncrementalPWMControl - This method sets LSB step according to which the duty cycle will be
incremented or decremented with every call of this method.

ANSIC prototype: TError IncrementalPWMControl(TDeviceIdx DeviceIndex,TIDSign
Sign,TLSBStep *LSBStep)

DeviceIndex:TDeviceIdx - Index of device (didxDEV1..4).

Sign:TIDSign - idsPOSITIVE = increment, idsNEGATIVE = decrement.

LSBStep: Pointer to TLSBStep - Array for available channels with step of increment/decrement
(idsNONE, ids4LSB, ids8LSB, ids16LSB).

Return value:TError - Error code, ERR OK if successful

SetOCHIOnDemand - This method enables the OCHI On Demand (over current high on demand)
feature on corresponding channel. This feature enables higher tolerance of the driver to inrush current
occuring when the load is reconnected after sudden power disconnection.

ANSIC prototype: TError SetOCHIOnDemand(TDeviceIdx DeviceIndex,uint8 t Channel)

DeviceIndex:TDeviceIdx - Index of device (didxDEV1..4).

Channel:uint8 t - Index of channel to be more tolerant to inrush current. It can be individual
channel or all at once.

Return value:TError - Error code, ERR OK if successful

OLLEDTrig - This method triggers the Openload functionality for LED. The open load detection for
LED is useful for detection of small load currents (e.g. LED) in on state of the switch. This feature
implements a special low current detection mode. The OLLED fault is reported when the output
voltage is above VPWR - 0.75V after 2.0ms off-time or at each turn-on command in case of off-time
<2.0ms. The OLLED TRIG bit is reset after the detection.

ANSIC prototype: TError OLLEDTrig(TDeviceIdx DeviceIndex)

DeviceIndex:TDeviceIdx - Index of device (didxDEV1..4).

Return value:TError - Error code, ERR OK if successful

SetOLOFF - This method enables the OLOFF (open load detection in off state) for corresponding
channel. When the detection is started, the corresponding output channel is turned on with a fixed
overcurrent threshold. When this overcurrent threshold is reached within the detection timeout
tOLOFF, the output is turned off and the OLOFF EN bit is reset. No error is reported. If the
threshold is not reached within the detection timeout tOLOFF, the output is turned off after tOLOFF
and the OLOFF EN bit is reset. The open load in off state event is reported.

ANSIC prototype: TError SetOLOFF(TDeviceIdx DeviceIndex,uint8 t Channel)

DeviceIndex:TDeviceIdx - Index of device (didxDEV1..4).

Channel:uint8 t - Output channel index.

Return value:TError - Error code, ERR OK if successful

SetDirectInput - Sets target pin INx high/low voltage. The direct input is used to directly control
corresponding channel in Fail mode. During Normal mode the control of the outputs by the control
inputs is SPI programmable and the output voltage depends on set duty (global or individual). Direct
inputs are only Outputs 1..4.

ANSIC prototype: TError SetDirectInput(uint8 t Input,bool Value)

Input:uint8 t - Direct input number (1..4).

Value:bool - Level on INx pin, TRUE/FALSE.

Return value:TError - Error code, ERR OK if successful

SetDirectInputValues - Sets target pin INx high/low voltage for all channels simultaneously. The
direct input is used to directly control corresponding channel in Fail mode. During Normal mode the
control of the outputs by the control inputs is SPI programmable. Direct inputs are only Outputs 1..4.

6

Embedded component description

Gen4eXtremeSwitch programming guide, Rev. 1.0

6 NXP Semiconductors

ANSIC prototype: TError SetDirectInputValues(bool *InputValues)

InputValues: Pointer to bool - Pointer to array with levels on IN1-4 pins (TRUE = high, FALSE =
low).

Return value:TError - Error code, ERR OK if successful

SetExtClockState - This method enables/disables external clock timer.

ANSIC prototype: TError SetExtClockState(TExtClkState ClkState)

ClkState:TExtClkState - ecsENABLED = timer is on, ecsDISABLED = timer is off.

Return value:TError - Error code, ERR OK if successful

ConfigureMonitoring - Configures CSNS pin output. This method sets monitored parameter and
synchronization.

ANSIC prototype: TError ConfigureMonitoring(TDeviceIdx DeviceIndex,TSenseMux
SenseMux,TSenseSyncTrigger Trigger)

DeviceIndex:TDeviceIdx - Index of device (didxDEV1..4).

SenseMux:TSenseMux - Measured value (CSNS pin function).

Trigger:TSenseSyncTrigger - Synchronization trigger.

Return value:TError - Error code, ERR OK if successful

GetSenseValue - Configures monitoring of current, voltage or temperature on the CSNS pin and
returns the corresponding value from the ADC. Waits until measurement is completed.

ANSIC prototype: TError GetSenseValue(uint16 t *Result)

Result: Pointer to uint16 t - Pointer to variable where the measured data will be stored.

Return value:TError - Error code, ERR OK if successful

2.4 Properties

Component Name - Name of the component.

SPI Configuration - Configuration of SPI communication with devices.

There are 2 options:

Parallel SPI: Parallel SPI (common MISO, MOSI, SCLK, separate CS pins) with common RST,
CLK, CSNS and CSNS SYNC pins. For parallel SPI with these pins separated use more instances
of this component.

Daisy Chain SPI: Devices connected in daisy chain (the first MISO being connected to the
second MOSI etc., common CS pin) with common RST, CLK, CSNS and CSNS SYNC pins. Daisy
chain SPI with these pins separated is not supported.

Global Configuration - Shared settings for all channels on all devices.

RSTB Link Linked BitIO LDD component.

RSTB Pin This input pin is used to initialize the device configuration and fault registers (when
high), as well as place the device in a low-current Sleep mode (low).

CLK Link Linked PWM LDD component.

External Clock Frequency Reference PWM clock (in Hz) in frequency range 25.6 - 102.4 kHz
which is then divided by 256 in Normal operating mode.

CLK Pin This pin used to apply reference PWM clock which is divided by 256 in Normal
operating mode.

Watchdog Timeout Watchdog is used for SPI communication loss detection. SPI communication
fault is detected if the WD bit is not toggled with each SPI message or WD timeout is reached. If
a SPI communication error occurs, the device is switched into Fail mode.

There are 2 options:

32 ms: Short watchdog timeout.

128 ms: Long watchdog timeout.

Embedded component description

Gen4eXtremeSwitch programming guide, Rev. 1.0

NXP Semiconductors
7

2.4 Properties

Direct Input Control Direct input pins are used to directly control corresponding channel in
Fail mode. During Normal mode the control of the outputs by the control inputs is SPI
programmable and the output voltage depends on set duty (global or individual). Initial state of
direct input pins can be set in corresponding BitIO LDD component (default 0).

There are 2 modes:

Enabled - Feature is enabled. The following items are displayed in this mode:

IN1 Pin - Direct input pin. Set initial state in IN1Pin BitIO LDD component (default 0).

IN1 Pin Link - Linked BitIO LDD component.

IN2 Pin - Direct input pin. Set initial state in IN2Pin BitIO LDD component (default 0).

IN2 Pin Link - Linked BitIO LDD component.

IN3 Pin - Direct input pin. Set initial state in IN3Pin BitIO LDD component (default 0).

IN3 Pin Link - Linked BitIO LDD component.

IN4 Pin - Direct input pin. Set initial state in IN4Pin BitIO LDD component (default 0).

IN4 Pin Link - Linked BitIO LDD component.

Disabled - Feature is disabled. The following items are displayed in this mode:

Current, Voltage and Temperature Sensing The analog feedback circuit is implemented to
provide load and device diagnostics during Normal mode. The feedback monitor provides a current
proportional to the current of selected output, voltage proportional to the battery supply voltage
or output voltage of temperature sensor monitoring avreage control die temperature.

There are 2 modes:

Enabled - Feature is enabled. The following items are displayed in this mode:

CSNS Synchronization - Sensing synchronization is provided to simplify synchronous
sampling of the CSNS signal.
There are 4 options:

Off: CSNS SYNC is inactive (high).

Valid: CSNS SYNC is active (low) when CSNS is valid.

Trigger 0: CSNS SYNC is active (low) when CSNS is valid, then inactive (high) until
the next PWM cycle is started.

Trigger 1/2: Pulses (active low) from the middle of the CSNS pulse to its end are
generated.

CSNS Pin - ADC pin used for measuring analog value reported on feedback pin.

CSNS Function - Initial feedback monitoring selection for device 1 (selection and device
can be changed while application is running by method ConfigureMonitoring).
There are 7 options:

Channel 1: Channel 1 current monitoring.

Channel 2: Channel 2 current monitoring.

Channel 3: Channel 3 current monitoring.

Channel 4: Channel 4 current monitoring.

Channel 5: Channel 5 current monitoring.

Battery voltage: Battery voltage monitoring.

Temperature: Average temperature of the control die monitoring.

ADC Conversion Time - Duration of one ADC conversion.

ADC Link - Linked ADC LDD component.

Disabled - Feature is disabled. The following items are displayed in this mode:

Devices - Number of devices connected to MCU.

Device - Properties for device.

Device Model - Model of eXtreme Switch device (number of displayed outputs depends on this
property).

There are 14 options:

MC07XSF517: Penta High-Side Switch (2 x 17 mOhm, 3 x 7 mOhm RDSon)

MC08XSF421: Quad High-Side Switch (2 x 21 mOhm, 2 x 8 mOhm RDSon)

MC17XSF400: Quad High-Side Switch (4 x 17 mOhm RDSon)

MC17XSF500: Penta High-Side Switch (5 x 17 mOhm RDSon)

Embedded component description

Gen4eXtremeSwitch programming guide, Rev. 1.0

8 NXP Semiconductors

MC40XSF500: Penta High-Side Switch (5 x 40 mOhm RDSon)

MC07XS6517: Penta High-Side Switch (2 x 17 mOhm, 3 x 7 mOhm RDSon)

MC08XS6421: Quad High-Side Switch (2 x 21 mOhm, 2 x 8 mOhm RDSon)

MC10XS6200: Dual High-Side Switch (2 x 10 mOhm RDSon)

MC10XS6225: Dual High-Side Switch (1 x 25 mOhm, 1 x 10 mOhm RDSon)

MC10XS6325: Triple High-Side Switch (1 x 25 mOhm, 2 x 10 mOhm RDSon)

MC17XS6400: Quad High-Side Switch (4 x 17 mOhm RDSon)

MC17XS6500: Penta High-Side Switch (5 x 17 mOhm RDSon)

MC25XS6300: Triple High-Side Switch (3 x 25 mOhm RDSon)

MC40XS6500: Penta High-Side Switch (5 x 40 mOhm RDSon)

SPI Link - Linked SPI Device component.

SOA Mode - Reading mode of the device.

There are 2 options:

Single read: Programmed SO address is used for a single read command. After the reading,
the SO address returns to quick status register.

All reads: Programmed SO address is used for the next and all further read commands until
a new programming.

Overtemperature Warning Threshold - Temperature sensor is located on each power
transistor to protect the transistors and provide SPI status monitoring. When overtemperature
warning threshold is exceeded, the outputs remain in current state, but overtemperature warning is
reported.

There are 2 options:

115 C: Low overtemperature threshold.

135 C: High overtemperature threshold.

HID Selection - Smart overcurrent window control strategy is implemented to turn on an HID
(high-intensity discharge) ballast, even in the case of a long power on reset time.

There are 4 options:

All channels: Smart HID feature is available for all channels.

Channel 3: Smart HID feature is available for channel 3 only.

Channels 3 and 4: Smart HID feature is available for channels 3 and 4 only.

Disabled: Smart HID feature is not available for any channel.

OCHI Type - To minimize the electro-thermal stress inside the device in case of a short-circuit,
the OCHIx levels can be dynamically adjusted in regards to the control die temperature or
evaluated during the OFF-to-ON output transition depending on the output voltage.

There are 4 options:

Default: Output is protected with default OCHI levels.

Thermal: Output is protected with the OCHI level depending on the control die temperature.

Transient: Output is protected with an OCHI levels depending on the output voltage.

Both: Output is protected depending on both temperature and output voltage.

Global PWM Duty Cycle - In addition to the individual PWM register, each channel can be
assigned independently to a global PWM register. When a channel is assigned to global PWM,
global PWM duty cycle is applied, but the switching phase, the prescaler and the pulse skipping
are according to the corresponding output channel setting.

Channels - Number of channels (fixed to 6 to cover different models).

Output - Properties for output channel. Not all features are available for all output
channels.

PWM Output Control - Properties influencing PWM output signal.

Global PWM - In addition to the individual PWM register, each channel can be
assigned independently to a global PWM register. When a channel is assigned to global
PWM, global PWM duty cycle is applied, but the switching phase, the prescaler and the
pulse skipping are according to the corresponding output channel setting.
There are 2 options:

Enabled: Feature is enabled.

Embedded component description

Gen4eXtremeSwitch programming guide, Rev. 1.0

NXP Semiconductors
9

Disabled: Feature is disabled.

Channel Duty Cycle - Duty cycle of PWM when channel is controlled individually.

Phase Selection - Phase assignment of the output channel.
There are 4 options:

0

90

180

180

Pulse Skipping - Due to the output pulse shaping feature and the resulting switching
delay time of the smart switches, duty cycles close to 0 resp. 100 percent can not be
generated by the device. Therefore the pulse skipping feature is integrated to interpolate
this output duty cycle range in Normal mode.
There are 2 options:

Enabled: Feature is enabled.

Disabled: Feature is disabled.

Slew Rate Prescaler - Depending on the programming of the prescaler setting register,
the switching speeds of the outputs are adjusted to the output frequency range of each
channel.
There are 3 options:

1: Fast slew rate in high frequency range.

2: Medium slew rate in medium frequency range.

4: Slow slew rate in low frequency range.

Output Initial State - State of the output after initialization.
There are 2 options:

On: Channel is turned on after initialization.

Off: Channel is turned off after initialization.

Direct Input Control - If enabled, output is assigned to direct input pin control. If you
want to use direct input pin control, enable it in global configuration part of the component
and set up the pins. In Normal mode the output state is controlled by direct input, but the
channel output voltage depends on set duty (global or individual).
There are 2 options:

Enabled: Feature is enabled.

Disabled: Feature is disabled.

Open Load - Open load detection feature.

Open Load LED - For detection of small load currents (e.g. LED) in on state of the
switch a special low current detection mode is implemented.
There are 2 options:

Enabled: Feature is enabled.

Disabled: Feature is disabled.

OLON Deglitch Time - When an open load has been detected, the output remains in
on state. The deglitch time of the open load in on state can be controlled individually for
each output to be compliant with different load types.
There are 2 options:

64 us: Short deglitch time (bulb mode).

2 ms: Long deglitch time (converter mode).

Overcurrent - Overcurrent protection against ultra-low resistive short-circuit conditions due
to a smart overcurrent profile and severe short-circuit protection.

OCLO Threshold - The static overcurrent threshold can be programmed individually for
each output in two levels to adapt low duty cycle dimming and a variety of loads.
There are 2 options:

High: The output is protected with the higher OCLO threshold.

Low: The lower OCLO threshold is applied.

Advanced Current Sensing Mode - An advanced current sense mode (ACM) is
implemented in order to diagnose LED loads in Normal mode and to improve current sense
accuracy for low current loads. In the ACM mode, the offset sign of current sense amplifier

Embedded component description

Gen4eXtremeSwitch programming guide, Rev. 1.0

10 NXP Semiconductors

is toggled on every CSNS SYNCB rising edge. The error amplifier offset contribution to
the CSNS error can be fully eliminated from the measurement result by averaging each two
sequential current sense measurements. ACM mode affects maximum current of the
output.
There are 2 options:

Enabled: Feature is enabled.

Disabled: Feature is disabled.

Short OCHI - The length of the OCHI windows can be shortened by a factor of 2, to
accelerate the availability of the CSNS diagnosis and to reduce the potential stress inside
the switch during an overload condition.
There are 2 options:

Enabled: Feature is enabled.

Disabled: Feature is disabled.

No OCHI - The switch on process of an output can be done without an OCHI window,
to accelerate the availability of the CSNS diagnosis.
There are 2 options:

Enabled: Feature is enabled.

Disabled: Feature is disabled.

Auto Initialization - When auto initialization is enabled, Init method will be called automatically
within PE initialization function - PE low level init().

3 Typical Usage

Examples of typical settings and usage of Gen4eXtremeSwitch component

Initialization of eSwitch.

Getting of eSwitch status information.

Setting channel to use individual PWM.

Setting channel to use global PWM.

Usage of incremental PWM feature.

Usage of open load detection feature.

Usage of over current protection feature.

Channel control with use of direct inputs.

Measurement of output current, battery voltage and die temperature.

Note: All used methods take as parameter either number of specific channel or array of values
regarding used channels. It is important to realize that only enabled and configured channels in
Processor Expert are relevant and unused channels are skipped. In terms of indexing this means that
index passed to various methods or size of array corresponds to those used channels and appropriate
index shift is applied.

Example: Channel 1 and 3 is enabled in component. Channel 1 - index 0, channel 3 - index 1 and so
on.

Initialization of eSwitch.

This example shows how to handle device initialization when auto-initialization feature is disabled.

Required component setup and dependencies:

Properties: Auto initialization: Disabled

Methods: Init

Content of main.c:

Listing 1: Source code

void main (void)
{

G4XS1 TError Error ;

Typical usage

Gen4eXtremeSwitch programming guide, Rev. 1.0

NXP Semiconductors
11

3 Typical usage

u in t 16 t UserData = 1 ;

/∗ Ca l l i ng I n i t method more then once in user code w i l l r e s t o r e i n i t i a l
Proces sor Expert s e t t i n g . ∗/

Error = G4XS1 Init(&UserData) ; /∗ I t i s p o s s i b l e to pass po in t e r to your
own data , which i s then s to r ed in dev i c e data s t r u c tu r e as TUserDataPtr .
∗/

i f (Error != ERR OK) {
/∗ I n i t i a l i z a t i o n was s u c c e s s f u l . ∗/

} e l s e {
/∗ I n i t i a l i z a t i o n was not s u c c e s s f u l . ∗/

}

u in t 16 t ∗MyData = (u in t 16 t ∗) (G4XS1 DeviceDataPtr−>UserDataPtr) ; /∗ You
can ac c e s s your data l a t e r . Exp l i c i t conver s i on i s needed because
UserDataPtr i s j u s t typede f o f (void ∗) . ∗/

}

Getting of eSwitch status information.

This example shows how to get and interpret eSwitch status information. This includes summary quick
status, individual channel status and common device and I/O status.

Required component setup and dependencies:

Properties: None

Methods: GetQuickStatus GetChannelStatus GetDeviceStatus GetIOStatus

Content of main.c:

Listing 2: Source code

void main (void)
{

G4XS1 TError Error ;
u i n t 16 t StatusData ;

/∗ Reads quick s t a tu s r e g i s t e r o f dev i c e 1 . ∗/
Error = G4XS1 GetQuickStatus (0 , &StatusData) ;
i f (Error != ERR OK) {

/∗ Something went wrong . ∗/
}
e l s e { /∗ I n t e r p r e t a t i o n o f s t a tu s data . ∗/

i f (G4XS GET QSFx(StatusData)) { /∗ Quick s t a tu s f l a g f o r channel x (OC
| OTW | OTS | OLON | OLOFF) ∗/

/∗ Take some ac t i on . ∗/
}
i f (G4XS GET CLKF(StatusData)) { /∗ PWM clock f a i l f l a g . ∗/

/∗ Take some ac t i on . ∗/
}
i f (G4XS GET RCF(StatusData)) { /∗ Reg i s t e r c l e a r f l a g . ∗/

/∗ Take some ac t i on . ∗/
}
i f (G4XS GET CPF(StatusData)) { /∗ Charge pump f l a g . ∗/

/∗ Take some ac t i on . ∗/
}

}

/∗ The same procedure can be app l i ed f o r Channel , Device and I /O s ta tu s
in fo rmat ion . See header f i l e f o r other u s e f u l macros . ∗/

}

Typical usage

Gen4eXtremeSwitch programming guide, Rev. 1.0

12 NXP Semiconductors

Setting channel’s output state.

This example shows how to set channel output state. This can be used to change initial channel state
without change to duty value.

Required component setup and dependencies:

Properties: None

Methods: SetOutputState

Content of main.c:

Listing 3: Source code

void main (void)
{

G4XS1 TError Error ;
bool OutputStates [5] = {FALSE, TRUE, FALSE, TRUE, FALSE} ; /∗ Exp l i c i t
s p e c i f i c a t i o n o f output s t a t e s f o r dev i c e with 5 channe l s . ∗/

Error = G4XS1 SetOutputState (0 , OutputStates) ;
i f (Error != ERR OK) {

/∗ Something went wrong . ∗/
}

}

Setting channel to use individual PWM.

This example shows how to set channel to use individual PWM.

Required component setup and dependencies:

Properties: None

Methods: SetPWMControl SetPWMDuty SetPWMDutyValues

Content of main.c:

Listing 4: Source code

void main (void)
{

G4XS1 TError Error ;

/∗ Sets c on t r o l o f s e l e c t e d channe l s to i nd i v i dua l . ∗/
f o r (u i n t 8 t i = 1 ; i < 6 ; i++) {

Error = G4XS1 SetPWMControl (0 , i , ccINDIVIDUAL) ;
i f (Error != ERR OK) {

/∗ Something went wrong . ∗/
}

}

u in t 16 t DutyValues [5] = {256 , 256 , 128 , 128 , 0} ;

/∗ Note that methods a l s o handle channel ’ s output s t a t e . ∗/

. CHANGE DUTY FOR EACH CHANNEL SEPARATELY

/∗ Sets PWM duty value f o r each channel s epa r a t e l y . ∗/
f o r (u i n t 8 t ch = 1 ; ch < 6 ; ch++) {

Error = G4XS1 SetPWMDuty(0 , ch , DutyValues [ch − 1]) ;
i f (Error != ERR OK) {

/∗ Something went wrong . ∗/
}

}

. CHANGE DUTY FOR ALL CHANNELS AT ONCE

Typical usage

Gen4eXtremeSwitch programming guide, Rev. 1.0

NXP Semiconductors
13

/∗ Sets PWM duty va lue s f o r a l l channe l s at once . ∗/
Error = G4XS1 SetPWMDutyValues (0 , DutyValues) ;
i f (Error != ERR OK) {

/∗ Something went wrong . ∗/
}

}

Setting channel to use global PWM.

This example shows how to set channel to use global PWM.

Required component setup and dependencies:

Properties: None

Methods: SetPWMControl SetGPWMDuty

Content of main.c:

Listing 5: Source code

void main (void)
{

G4XS1 TError Error ;

/∗ Sets c on t r o l o f s e l e c t e d channe l s to g l oba l ∗/
f o r (u i n t 8 t i = 1 ; i < 6 ; i++) {

Error = G4XS1 SetPWMControl (0 , i , ccGLOBAL) ;
i f (Error != ERR OK) {

/∗ Something went wrong . ∗/
}

}

u in t 16 t Duty = 128 ;

/∗ Note that method a l s o handles channel ’ s output s t a t e . ∗/

/∗ Sets GPWM duty , t h i s app l i e s f o r a l l channe l s with g l oba l PWM cont r o l .
∗/

Error = G4XS1 SetGPWMDuty(0 , Duty) ;
i f (Error != ERR OK) {

/∗ Something went wrong . ∗/
}

}

Usage of incremental PWM feature.

This example shows how to use incremental PWM feature. It lowers overhead of SPI communication.

Required component setup and dependencies:

Properties: None

Methods: IncrementalPWMControl

Content of main.c:

Listing 6: Source code

void main (void)
{

G4XS1 TError Error ;

/∗ Sets c on t r o l o f s e l e c t e d channe l s to i nd iv idua l , t h i s f e a t u r e does not
work f o r g l oba l PWM con t r o l . ∗/

f o r (u i n t 8 t i = 1 ; i < 6 ; i++) {

Typical usage

Gen4eXtremeSwitch programming guide, Rev. 1.0

14 NXP Semiconductors

Error = G4XS1 SetPWMControl (0 , i , ccINDIVIDUAL) ;
i f (Error != ERR OK) {

/∗ Something went wrong . ∗/
}

}

/∗ Prede f ined s t ep s o f increment /decrement f o r each enabled channel . ∗/
G4XS1 TLSBStep LSBStep [5] = {idsNONE , ids4LSB , ids8LSB , ids16LSB , idsNONE
} ;

wh i l e (1) { /∗ increments to maximum duty ∗/
Error = G4XS1 IncrementalPWMControl (0 , idsPOSITIVE , LSBStep) ;
i f ((Error != ERR OK) && (Error != ERRMAXDUTY)) {

/∗ something went wrong ∗/
}
f o r (u i n t 8 t j = 0 ; j < 10 ; j++) { /∗ waits f o r 200 ms ∗/

WaitMS(20) ;
G4XS1 FeedWatchdog () ; /∗ I t i s nece s sa ry to f e ed watchdog during de lay

. ∗/
}
/∗ Note that ERRMAXDUTY i s returned when any o f channe l s reach t h i s
th r e sho ld . ∗/
i f (Error == ERRMAXDUTY) {

break ;
}

}

whi le (1) { /∗ decrements to minimum duty ∗/
Error = G4XS1 IncrementalPWMControl (0 , idsNEGATIVE , LSBStep) ;
i f ((Error != ERR OK) && (Error != ERR MIN DUTY)) {

/∗ something went wrong ∗/
}
f o r (u i n t 8 t j = 0 ; j < 10 ; j++) { /∗ waits f o r 200 ms ∗/

WaitMS(20) ;
G4XS1 FeedWatchdog () ;

}
/∗ Note that ERR MIN DUTY i s returned when any o f channe l s reach t h i s
th r e sho ld . ∗/
i f (Error == ERR MIN DUTY) {

break ;
}

}
}

Usage of open load detection feature.

This example shows how to use open load detection feature.

Required component setup and dependencies:

Properties: None

Methods: SetOLOFF OLLEDTrig

Content of main.c:

Listing 7: Source code

void main (void)
{

G4XS1 TError Error ;
u i n t 16 t StatusData ;

/∗ Enables open load de t e c t i on in OFF s t a t e . ∗/

Typical usage

Gen4eXtremeSwitch programming guide, Rev. 1.0

NXP Semiconductors
15

f o r (u i n t 8 t i = 1 ; i < 6 ; i++) { /∗ This f e a t u r e can be used a l s o
i n d i v i d u a l l y . ∗/
Error = G4XS1 SetOLOFF(0 , i) ;
i f (Error != ERR OK) {

/∗ Something went wrong . ∗/
}

}

/∗
The de t e c t i on r e s u l t i s r epor ted in :

the cor re spond ing QSFx b i t in the quick s t a tu s r e g i s t e r #1
the g l oba l open load f l a g OLF (r e g i s t e r #1:#7)
the OLOFF b i t o f the cor re spond ing channel s t a tu s r e g i s t e r #2:#6

∗/

f o r (u i n t 8 t i = 1 ; i < 6 ; i++) {
Error = G4XS1 GetChannelStatus (0 , i , &StatusData) ;
i f (G4XS GET OLOFFX(StatusData)) {

/∗ Take some ac t i on . ∗/
}

}

/∗
Tr igge r s open load de t e c t i on in ON s t a t e o f the switch when f o l l ow i n g
cond i t i on i s met .
When a s p e c i a l low cur rent de t e c t i on mode i s used (OLLED) and output i s
in f u l l y ON operat i on (100% PWM) :

the de t e c t i on on a l l outputs i s t r i g g e r e d by s e t t i n g the OLLED
TRIG b i t i n s i d e the LED con t r o l r e g i s t e r #13−2

at the end o f d e t e c t i on time , the cur r ent source (IOLLED) i s
d i s ab l ed 100 s e c (typ .) a f t e r the output r e a c t i v a t i o n .

∗/

Error = G4XS1 OLLEDTrig (0) ;
i f (Error != ERR OK) {

/∗ Something went wrong . ∗/
}

/∗
The de t e c t i on r e s u l t i s r epor ted in :

the cor re spond ing QSFx b i t in the quick s t a tu s r e g i s t e r #1
the g l oba l open load f l a g OLF (r e g i s t e r #1:#7)
the OLON b i t o f the cor re spond ing channel s t a tu s r e g i s t e r #2:#6

∗/

f o r (u i n t 8 t i = 1 ; i < 6 ; i++) {
Error = G4XS1 GetChannelStatus (0 , i , &StatusData) ;
i f (G4XS GET OLONX(StatusData)) {

/∗ Take some ac t i on . ∗/
}

}
}

Usage of over-current protection feature.

This example shows how to use over-current protection feature.

Required component setup and dependencies:

Properties: None

Methods: SetOCHIOnDemand

Typical usage

Gen4eXtremeSwitch programming guide, Rev. 1.0

16 NXP Semiconductors

Content of main.c:

Listing 8: Source code

void main (void)
{

G4XS1 TError Error ;

/∗ In some in s tance s , a lamp might be de−powered when i t s supply i s
i n t e r rup t ed by the opening o f a switch (as in a door) ,
or by d i s connec t i ng the load (as in a t r a i l e r harness) .
In these cases , the d r i v e r should be t o l e r an t o f the inrush cur rent

occu r r ing when the load i s reconnected . ∗/

f o r (u i n t 8 t i = 1 ; i < 6 ; i++) { /∗ This f e a t u r e can be used a l s o
i n d i v i d u a l l y . ∗/
Error = G4XS1 SetOCHIOnDemand(0 , i) ;
i f (Error != ERR OK) {

/∗ Something went wrong . ∗/
}

}
}

Channel control with use of direct inputs.

This example shows how to control channels with direct inputs. This method can be used to preserve
functionality in fail mode. It can be used also in normal mode when direct input control is enabled, but
channel operates on predefined PWM duty value.

Required component setup and dependencies:

Properties: None

Methods: SetDirectInput SetDirectInputValues

Content of main.c:

Listing 9: Source code

void main (void)
{

G4XS1 TError Error ;
bool InputValues [5] = {TRUE, FALSE, TRUE, FALSE, TRUE} ;

/∗ Sets d i r e c t input value f o r each channel s epa r a t e l y . ∗/
f o r (u i n t 8 t ch = 1 ; ch < 6 ; ch++) {

Error = G4XS1 SetDirectInput (0 , ch , InputValues [ch − 1]) ;
i f (Error != ERR OK) {

/∗ Something went wrong . ∗/
}

}

. OR

/∗ Sets d i r e c t input va lue s f o r a l l channe l s at once . ∗/
Error = G4XS1 SetDirectInputValues (0 , InputValues) ;
i f (Error != ERR OK) {

/∗ Something went wrong . ∗/
}

}

Typical usage

Gen4eXtremeSwitch programming guide, Rev. 1.0

NXP Semiconductors
17

Measurement of output current, battery voltage and die temperature.

This example shows how to measure feedback from eSwitch.

Required component setup and dependencies:

Properties: Current, Voltage and Temperature Sensing: Enabled

Methods: ConfigureMonitoring GetSenseValue

Events: OnMeasurementSynchronization

Content of Events.c:

Listing 10: Source code

void OnMeasurementSynchronization (void)
{

t r i g g e r f l a g = TRUE;
}

Content of main.c:

Listing 11: Source code

void main (void)
{

G4XS1 TError Error ;
u i n t 16 t Result ;

f o r (u i n t 8 t mux = smOUT1 CURRENT; mux <= smCTRL DIE TEMP; mux++) {
Error = G4XS1 ConfigureMonitoring (0 , mux, t r i g g e r) ;
i f (Error != ERR OK) {

/∗ Something went wrong . ∗/
}

/∗ After c on f i gu r i n g o f monitored output sense value has to be measured
in va l i d i n t e r v a l .

This can be achieved by usage o f measurement synchron i za t i on t r i g g e r
or by e x p l i c i t l y s p e c i f i e d de lay . ∗/

. SYNCHRONIZATION TRIGGER

t r i g g e r f l a g = FALSE;
whi l e (! t r i g g e r f l a g) ;

. USER SPECIFIED DELAY

/∗ I t i s up to user to f i nd co r r e c t de lay value to h i t v a l i d measurement
po int . ∗/
WaitMS(?) ;

.

Error = G4XS1 GetSenseValue(&Result) ;
i f (Error != ERR OK) {

/∗ something went wrong ∗/
}

}
}

4 User Types

TDeviceDataPtr = Device data pointer

User types

Gen4eXtremeSwitch programming guide, Rev. 1.0

18 NXP Semiconductors

4 User types

TUserDataPtr = User data pointer

ComponentName TDeviceIdx = enum { didxDEV1, didxDEV2, didxDEV3, didxDEV4} Device
index

ComponentName TSIRegister = enum { sirINIT1, sirINIT2, sirCH1 CTRL, sirCH2 CTRL,
sirCH3 CTRL, sirCH4 CTRL, sirCH5 CTRL, sirCH6 CTRL, sirOUT CTRL, sirGPWM CTRL1,
sirGPWM CTRL2, sirOC CTRL1, sirOC CTRL2, sirIE, sirPRS1, sirPRS2, sirOL CTRL,
sirOLLED CTRL, sirINC DEC} Device serial input registers

ComponentName TSORegister = enum { sorQUICK STATUS, sorCH1 STATUS,
sorCH2 STATUS, sorCH3 STATUS, sorCH4 STATUS, sorCH5 STATUS, sorDEVICE STATUS,
sorIO STATUS, sorDEVICE ID} Device serial output registers

ComponentName TChannelControl = enum { ccINDIVIDUAL, ccGLOBAL} Channel control
types

ComponentName TIDSign = enum { idsPOSITIVE, idsNEGATIVE} Incremental PWM control
sign

ComponentName TLSBStep = enum { idsNONE, ids4LSB, ids8LSB, ids16LSB} Steps for
incremental PWM control

ComponentName TExtClkState = enum { ecsENABLED, ecsDISABLED} External clock states

ComponentName TSenseMux = enum { smOFF, smOUT1 CURRENT, smOUT2 CURRENT,
smOUT3 CURRENT, smOUT4 CURRENT, smOUT5 CURRENT, smVBAT MONITOR,
smCTRL DIE TEMP} Possible outputs for monitoring

ComponentName TSenseSyncTrigger = enum { sstOFF, sstVALID, sstTRIG0, sstTRIG12}
Current sense synchronization values

ComponentName TError = Error codes

User types

Gen4eXtremeSwitch programming guide, Rev. 1.0

NXP Semiconductors
19

Document Number: PEXMC12XSF-MC12XS6PUG
Rev. 1.0

5/2016

Information in this document is provided solely to enable system and software implementers to use NXP products. There

are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on

the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose,

nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims

any and all liability, including without limitation, consequential or incidental damages. "Typical" parameters that may be

provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including "typicals," must be validated for each customer application by the

customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells

products pursuant to standard terms and conditions of sale, which can be found at the following address:

http://www.nxp.com/terms-of-use.html.

NXP, the NXP logo, Freescale, the Freescale logo, Processor Expert and SMARTMOS are trademarks of NXP B.V. All

other product or service names are the property of their respective owners. All rights reserved.

© 2016 NXP B.V.

How to Reach Us:
Home Page:
NXP.com

Web Support:
http://www.nxp.com/support

http://www.nxp.com/
http://www.nxp.com/terms-of-use.html
http://www.nxp.com/support

	Gen4eXtremeSwitch programming guide
	General info
	Embedded component description
	Component API
	Events
	Methods
	Properties

	Typical usage
	User types

