MSL C Reference
Version 10

bt freescalp"

Revised: 23 January 2007~ aaieon ductor

y
A

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. CodeWarrior is a trademark or reg-
istered trademark of Freescale Semiconductor, Inc. in the United States and/or other countries. All other product or ser-
vice names are the property of their respective owners.

Copyright © 20062007 by Freescale Semiconductor, Inc. All rights reserved.

Information in this document is provided solely to enable system and software implementers to use Freescale Semicon-
ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte-
grated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic-
ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental dam-
ages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typ-
icals”, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not de-
signed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semi-
conductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

How to Contact Us

Corporate Headquarters Freescale Semiconductor, Inc.
7700 West Parmer Lane
Austin, TX 78729

U.S.A.

World Wide Web http://www. freescale.com/codewarrior

Technical Support http://www. freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

Table of Contents

1 Introduction 1
Organization of Files. 1

ANSTIC Standardo it e e 3

The ANSI C Library and Apple Macintosh 3

MSL Extras Library 3

POSIX Functionality. 4

Console I/O and the Macintosh. 4

Console /O and Windows.o oottt 5

Using Mac OS X and the Extras Library 5

Compatibility o 5

Intrinsic Functions i e e 5

2 MSL C and Multi-Threading 7
Introduction to Multi-Threading. 7

Definitions.ot 8

Reentrancy Functions i 9

3 Configuring MSL C 11
Configuring Memory Managementoiuineenenon .. 11

Configuring Timeand Clock i, 16

Configuring File /O e 17

Routines. oo 18

Configuring Console I/O. 20

Configuring Threads. e 21

pthread Routines i i 23

4 alloca.h 25
Overview of alloca.h. 25

All0Ca . . o e 25

5 assert.h 27
Overview of assert.h i 27

MSL C Reference Version 10 3

Table of Contents

L) AP 27

6 conio.h 29
Overview of conio.h i 29
CISCr 30
BetCh. L 30
GeIChe. . o o 31
O OXY « et ettt e e e e e e e 31
AIESCT . e e 32

51 010 32
INPA .o e 33
INPW L e e ettt e e e e e e e e 33
KDhit. .. 34
OULD & ettt e e e e e e e e e 34
OULPA .ttt 35
OUEPW & e et et et e e e e e e e e e e e e e e 36
CEBXEALIT .« ottt e e e e e e 36
_textbackground 37
LEBXECOLOT . .« ottt 37
WHETEX . o vttt et e 38
WHeTEY . . .ot 38

7 console.h 4
Overview of console.h. 41
CCOMMANA . . .ottt e 41
ClESCT e 43
BetCh. L 43
InstallConsole 44
KDhit. .. 44
ReadCharsFromConsolet 45
RemoveConsole.ot 45
YDA © oottt e e e 46
WriteCharsToConsoleoo it i e 46

4 MSL C Reference Version 10

Table of Contents

8 crtl.h 49
Overview of crtlLh. o e 49

AT ot 49

ATV . o 50

CDIHTerminateo oo 50

13114 0 () 50

_HandleTable. 51

CCRTStArtUD .« v o e e ettt e e e e e 51

_RunInit. ..o 52

CSCIUPAILES . o ettt 52

9 ctype.h 53
Overview of ctype.h 53

Character Testing and Case Conversionueueeuennn.. 53

Character Sets Supported 54

1SAINUM . .o e 55

1salpha . ..o 57

Isblanko 57

115163 113 58

ISAIgIt. - .t e 58

ISEIAPN . L 59

IS oW . L e 59

ISPIINL. « ottt et e e e 60

ISPUNCE .« v e ittt e et et e e e e e e 60

ISSPACE -« . e ettt et e e e e 61

FE 11] o) O 61

ISXAIZIL. « vttt 62

170) (07 62

LOUPDT. .\ v ottt e ettt e e e 63

10 direct.h 65
Overview of direct.h e 65

_getdeWd . . 65

_getdiskfree. 66

MSL C Reference Version 10 5

Table of Contents

_EOtATIVES. « o ot 66

11 dirent.h 69
Overview of dirent.h 69

OPENAIT. . o o ettt 69

readdir . ..o e 70

readdir_T. ... o e 70

TeWinddiro e 71

CloSEAIr. . .\t 72

12 div_t.h 73
Overview of div_t.h. 73

6 P 73

LdiV . 74

IIAIV . o e 74

13 errno.h 75
Overview of errno.h 75

BITTIO. « . v ot et e et e e e e e e e e e e 75

14 extras.h 79
Overview of extras.h e 79

_chdrive . ..o e 81

CRSIZE . oot 82

filelength 82

flleno . ..o 83

fullpath. ... 84

BVt et 85

_GetATIVE . .o 85

GetHandleot 86

_get_osthandle. e 86

heapmin. 87

L 87

TEOW ettt e e e 88

T P 88

6 MSL C Reference Version 10

Table of Contents

oW et e e 89
makepath 90
_open_osthandle 90
PULEDIV . . 91
_SEATChENV. . . o 92
splitpath.o 92
SITCASECITIP . .« + . vttt et e e e et e e e et e e e e 93
SITCINPI. v vt e e ettt e e e e e e e 94
SIEAAte . . .o 94
SIAUP . .« ottt e e 95
] 15 13 1110 J S 96
SIICOIl . ot e 96
SUIWT . o 97
SUMCASECINP .« + & v v et et e e e e e e e e e et e e e et et e 97
193 11 1010 P 98
SINCOLL. . oo 99
SIMICINP . « v v ettt et e e e e e e e e e e e 100
SMICOIL . .o e 100
SIIMISEL « ot vttt e e e e 101
] 30 1) 2 102
] 1 1 102
SUTSPIID « v vt et e e e e e e e 103
SITUPT .« o ottt et e e e e 104
1751 104
U0, .ttt 105
UIOW .ot e 106
WESAUP. . ottt e 107
WCSICITIP. .« o ot vttt e e et e e e e e e e e e e 108
WCSICOLL . . o 108
WS L ot 109
WESNICOIL. .« o e 110
WESIICOIL . . oo 110
WCSIHCIIIP. & & o e vttt et et e e e e e e e e e e e e 111
WESTISEL & v vt et et e et et e e e e e e e e e 112
WESTEY & o v v et et e e e e et et e e e e e e e 113

MSL C Reference Version 10 7

Table of Contents

B CSS Bt & v vt e e e e e e e e e e e e e 113
WESSPIID & & v ettt et et e et e e e e e e e e 114
WOSUPT &« ¢ ot et et et e et et e e e e et e e e 114
WSHITEY & o et e et e e e e e e e e e e e e 115
WEOL .ottt e e e 115

15 fentl.h 117
Overviewof fentl.ho 117
fentl.h and UNIX Compatibilityot 117
CIEAt, _WCTEALE . . . o v v vttt ettt e e e e e e e e 118
fontl .. 119
OPEI, _WOPETL. &« et ettt ettt et et e e e e e e 121

16 fenv.h 125
Overviewof fenv.h 125
Data Ty PeS . « v vttt e 125
fenV . . 125

(5. Co1<] o A 125
MACTOS . « o vt ettt e e e e e 125
Floating-Point Exception Flagso i, 126
Rounding Directionst 126
Environment. e 127
Pragmas.o 127
FENV_ACC. . . e e e 127
Floating-point €XCEePionsSo v vttt it 127
fecleareXCept . ..ottt 128
fegetexceptflag.o 129
FeraISEEXCOPL .« v v v ettt e 130
fesetexceptflag. i 131
fELESTEXCEPL . o v v ettt e 132
Rounding. 133
fegetround 133
fesetround e 134
Environment 134
fegeteny . ..o 135

8 MSL C Reference Version 10

Table of Contents

feholdexceptot 136

fesSeteny .« . ..o 137

feupdateenv 137

17 float.h 139
Overview of float.h. i 139

Floating Point Number Characteristics. 139

18 FSp_fopen.h 141
Overview of FSp_fopen.h. 141

FSp_fopen. e 141

FSRef fopen 142
FSRefParentAndFilename_fopen 143

19 inttypes.h 145
Overview of inttypes.h 145
Greatest-Width Integer Types oot i 145

IMAXAIV T o o 146

Greatest-Width Format Specifier Macros.co... 146
Greatest-Width Integer Functions. 150

IMAXADS . . ottt e 150

IMAXAIV. . .o 150

SITEOTINAX .« + o v ottt et et e e e e e e e 151

011 T QP 152

WECSTOIMIAK + ¢ v v vt e et et e e et et et e e e e e e et 153

WESTOUIMAX. « ¢ ottt ettt et e e ettt e e et e e e et e e 155

20 io.h 157
Overview of 10.h 157

finddata_t. 157

findclose ... 158

Andfirst ..o 158

AINdneXt . .o e 159

CSBtMOAR . . e e 160

MSL C Reference Version 10 9

Table of Contents

21 is0646.h 161
Overview of iS0646.h 161

22 limits.h 163
Overview of limits.h 163

Integral type limits. ot e 163

23 locale.h 165
Overviewof locale.h. 165

Locale Specification i 165

localecony 166

setlocale. 166

24 malloc.h 169
Overview of malloc.h 169

All0Ca . . o 169

Non Standard <malloc.h> Functions. 170

25 math.h 171
Overview of math.h. 171

Floating Point Mathematics.t 173

NaN Not a NUMDET . ..ottt et e e et 173

Quiet NaN e 174

Signaling NaNo 174

Floating point error teSting.o ve it 174

Inlined Intrinsics Optionttt 174

Floating Point Classification Macroscouvuininennenenn. 174

Enumerated Constants.uuitit ittt 175

fpclassify . ..o 175

ISTINILE ..o 176

3 4 1 o O 177

ISNOTMAl . . .o e 177

SIZNDIL .« .o 178

Floating Point Math Facilities. 178

10

MSL C Reference Version 10

Table of Contents

ACOS & v e et e e e e e e e e 178
ACOST . o 179
ACOSL. ot e 179
ASTIL &ttt e e e 179
ASINE . . o e 180
ASINL . . o e 180
ALATL L ot e e 180
atant. .. 181
atanl. ... e 181
ALAND . L e 181
atan 2l . 183
AtAN L. . L 183
CeIl. .o 183
ceilf . e 184
Celll L e 184
L0 ot et e e e e e e e 184
COSE Lt 185
COSl Lt e 185
COSh L o 186
COShE .o 187
COShl . e 187
14 o 1P 187
BXPL e 188
BXPl 188
10T 188
101 189
101 190
FlOOT . . . 190
floort . .o e 191
floOr] . .o e 191
fMOd ..o 191
fodf. .o e 192
fmodl . .. e 192
XD .+ttt e 193
freXpl . e 194

MSL C Reference Version 10 11

freXpl . oo 194
ISEIRALET .« . v v v v ettt et e e e e e e 194
ISEIEAterless oottt 195
1SS, o ot e 195
islessequal 196
isunordered 196
LdeXD ot e 197
IdeXpr. .o 198
Idexpl. . .o 198
Lo o e 198
logl. e 199
logl. o 199
1010 .o 200
Log 10 . . o 200
LoglOl. .o 200
modf. .. 201
modff 202
modf] . .. e 202
POW ettt 202
POWE . 203
POWL . e 204
] 1 P 204
SIN . e 205
SIN . ot 205
SINN. . oL 205
Sinhf . o 206
SINNL . .o 206
Y0 P 207
STt L 208
SOItL . o 208
10 P 208
tanf . . 209
17200 O 209
tanh .. 209
tanhf. .. 210

12

MSL C Reference Version 10

Table of Contents

tanhl. ..o 210
HUGE_VAL . . . e e e e e 211
CO99 Implementationsuuutinninn e 211
ACOSN L L 211
ASINN . o 212
atanh ... e 213
o] o3 o P 214
COPYSIZN o vttt et et e e e e e e e e e 215
) P 216
3 (P 217
XD e e e 217
EXPIM .o 218
fdim . .. 219
. . 220
FaX. . o 221
AN . e 222
GAMIMA. « . vttt e e et et e e et e e e e e 223
MY POt . .o 224
Ogb. . e 225
lgamma 226
Lol et 227
10 228
LOgb . 229
11 I 230
NEATDYINot e 230
nexXtafter. e 231
TEMAINACT. . ..ot e 232
1] 170 | 0T 233
1 0 N 234
TINEOL . . .o 235
TOUNA . . ot e 236
ToUNdLOLl . . .o 237
SCAlD. . e 237
TTUNC. « .ottt et e e e e e e e e 238

MSL C Reference Version 10 13

Table of Contents

26 Process.h 239
Overview of Process.h 239

_beginthread 239

_beginthreadeX. 240

_endthread 241

_endthreadeX e 242

27 setjmp.h 243
Overview of setimp.h 243

Non-local Jumps and Exception Handling 243

LONgImp . .o e 244

SEUIMIP. « o v vttt et e e e e e 245

28 signal.h 249
Overview of signal.h. 249
Signalhandling 249

SIgNAl . L 251

TAISE . v vttt ettt e e e e 253

29 SIOUX.h 255
Overview of STOUX e e e 255

Using SIOUXo 255

SIOUX for Macintosh. i e 256

Creating a Project with SIOUX i 257

Customizing SIOUX 258

Path2fss .o 265
SIOUXHandleOneEvent 265

SIOUXSetTitle. . .o oottt e et et et e 267

30 stat.h 269
Overview of stat.h e 269

Stat Structure and Definitions i 269

chmod ... e 272

] L 273

14 MSL C Reference Version 10

Table of Contents

MKAIT . .o 275

] 1 PP 276

UMASK .« ot 278

31 stdarg.h 279
Overview of stdarg.h. 279

Variable Arguments for Functions 279

VA_ATZ ettt et e e e e e e e e 280

VA_COPY « + e et ettt e et et e e e e e e e 280

VA_BNA . o .o 281

VA_STAIT © .ottt e e e 282

32 stdbool.h 285
Overview of stdbool.h. 285

33 stddef.h 287
Overview of stddef.h 287

NULL . 287

offsetof.o 287

Prdiff b . .o 288

13 177 S PP 288

Wehar_t ..o 288

34 stdint.h 289
Overviewof stdinth 289

Integer TYPeS . . v v ettt e 289

Limits of Specified-width Integer Types. 291

Macros for Integer Constantsoutievnenininnenenan. 295

Macros for Greatest-width Integer Constants 295

35 stdio.h 297
Overview of stdio.h. L 297

Standard input/output 299

STEAMS . . ottt e 299

File position indicatorttt e 301

MSL C Reference Version 10 15

Table of Contents

End-of-fileand errorsoiiiiit i 301
Wide Character and Byte Character Stream Orientation. 301
Stream Orientation and Standard Input/Output. 302
CleareIT. . ottt e 302
fClOSe . oot 304
fdopen 306
feof. o 307
£S5 0 () 309
IUSh ..o 310
FOtC . ot e 312
FOtPOS - o vt 314
FEetS . 316

fileno . ..o 317
0] 075 o P 317
fprintf. . . 320
UL . o e e 328
IPULS . ot e 330
fread. . ..o e 331
fTEOPeN. . o et 333
fscanf 335
FSCCK. o ot 341
LS OPOS .« v vttt 343
ftell. . 344
TWIde ..o 345
FWIIE . o e 347
GO . & ettt e e 348
GetChar e 349
LS. e it e 351
POITOT « vttt et et et e e e e e e 352
DIt L 353
PULC ettt e 362
putchar. . .. 363
PUES. ¢ ettt e e e e 365
TEIMOVE .« . et vttt ettt et e e e e e e e e e e e e 366
TENAIME . . ot vt ettt e e e et et e e e e e e e e e 367

16

MSL C Reference Version 10

Table of Contents

TEWINA . .o e e 368
SCANT . L 370
SetDUL . . L 375
SetVbUL . . .o e 377
SNPIINtE . .o 379
SPIINE L o 380
SSCANT . L ot e 381
tmpfileo 382
190010) 021 o P 384
UNEELC & v vttt ettt et et e e e e e e e 385
VEprIntE. L e 387
VESCant 389
VPIINE L 391
VSIPTINEE .« o e 393
VSPINEE . .o 395
VSSCANT . L .t e 397
WEODEN. . .o 399
_WETEOPEN . . o .o 399
CWICINIOVE &« ettt et ettt e et et e e e e e e e e e 400
B4 (=5 1 1 0T N 401
B 49 101) 123 o PN 401
36 stdlib.h 403
Overview of stdlib.h 403
String Conversion Functions. 403
Pseudo-random Number Generation Functions 404
Memory Management Functions 404
Environment Communication Functions. 404
Searching And Sorting Functions aa... 404
Multibyte Conversion Functions. oo ..., 405
Integer Arithmetic Functions i, 405
ADOTL. .« oottt 405
ADS L e 406
ALEXAL & o vttt e e e 408
AtOf. L 410
MSL C Reference Version 10 17

110) P 411
ALO] . L 412
Atoll L. e 412
bSearCh. 413
CalloC . . oo 417
AIV L 419
1 L PP 420

EXat. .ot 422
T . et e 422
BOLETIV. & o ottt et e e e e e e e e 423
LabS. e 424
IdiV. o e 425
HIabS . . 425
iV . . 426
MalloC ..o 427
Mblen . . . e 428
TDSTOWES « « o v et ettt et e e e e e e e 428
NDEOWC ittt et e e e e 429
CPULBIIV. .« ot ettt e et e e e e e e 430
0 100 4 PP 431
TANA . . e 432
TANA T, . ottt e 433
realloC . .ot 434
STANA. . . ot 435
] 3707 P 435
SItO . o 437
] 10 70 P 438
SItOld. . oo 441
SItOll . o 442
SIEOUL. .« o\ttt 443
SItOULL . . Lo 444
SYSEBIIL o v vt ettt et e e e 446
vec_Calloc . ..o, 446
VEC _fT@E . o vt 447
vec_mallocC. e 448

18

MSL C Reference Version 10

Table of Contents

vec_realloc
westombs. ...
wetomb

Non Standard <stdlib.h> Functions

37 string.h

Overview of string.h
memchr
MEMCIP -+ eeee et e e e e e
MEMCPY -+« v e voveee e e e e e e ee e
MEMMOVE . ¢ .o vvee et eee e

SUCPY - v v et
SIICSPNL . . oo
SITEITOT . . . ot
SITEITOT_I . .o i e e
strlen ...

SIISPN. . .o
SUSHE. . oo

38 tgmath.h

Overview of tgmath.h

MSL C Reference Version 10

19

Table of Contents

39 time.h 485
Overviewof time.h 485
Dateand timet 485

Type clock_t. ..o 486
Type time_t . ..ot 486
SITUCT TN, .« o e ettt et e e e e e e e e e e e e e 487
EZNAIME . . o ettt e et e e e e 488
ASCHUINIC . .« . v vttt ettt et e e e e e e 488
F Yo 1 10 L 489
CloCK. oot 490
CUIMIE . . ottt ettt e e e e e e e et e e 492
o151 10 L o PP 493
difftime e 494
SMUME. « oottt e e e 495
GMEMC_T . o vttt et ettt et et e e e 496
Jocaltimeot 497
localtime_r. i e 497
MKEME. . ..o e e 498
SUEIME. . . o e 499
HIME .« ottt e e 505
1721 AP 506
Non Standard <time.h>Functions i .. 506

40 timeb.h 507

Overview of timeb.h 507
SITUCTEIMED . o oottt e 507
FtMe. . .o e 508

41 unistd.h 511

Overview of unistd.h. 511
unistd.h and UNIX Compatibility 512
ACCESS e« v v e et e e e e e e 512
Chdir. ... 513
ClOSE . oot e 515

20

MSL C Reference Version 10

Table of Contents

CUSEIId . o et 518
CWALL ottt ettt e e 519
AUP. e 520
dUPZ. o 520
eXeC fUNCHIONSt e 521
BOICWA . o .ot 523
GELlOZIN . . oo 524
CetDId. . o e 525
ISy .« ottt 526
ISEEK. . .t 527
TEAA . o ittt e 528
TAIT .o e e e 529

Sl D, vt e 532
SPawn fUNCHONS.ot e 533
EEYNAIMNEC « . o oot ettt e e 534
UNlinK. . ..o e 535

L 46 17 536
42 unix.h 539
Overview of unix.h.o 539
UNIX Compatibilityt i 539
fereator. . .. 539
Aty Pe. o 540
43 utime.h 543
Overview of utime.h 543
utime.h and UNIX Compatibility 543
UEINE & .ottt ettt e e e e e e e 543
UEINES © ottt et ettt e e e e e e e e 546
44 utsname.h 549
Overview of utsname.h. i 549
utsname.h and UNIX Compatibility 549
UNAINE © o v ov vttt et e e e et et e e e et et e e e e e 549

MSL C Reference Version 10 21

Table of Contents

45 wchar.h 553
Overviewof wcharh. i 553
Multibyte Character Functions 555
Wide Character and Byte Character Stream Orientation. 555
Stream Orientation and Standard Input/Output. 557
Definitions 557
DO .« ottt e 557
FOtWC o 558
F WS, oot e 559
PULWC o 559
PULWS o e 560
fwprintf 561
fwscant. e 562
BOEWC « e vttt e e 563
GeLWChATL. . . o e 563
mMbrlen e 564
MDITOWC . . o . o e 565
MbSINIt. . .. 566
INDSTEOWES &+ o v vt ettt e e e ettt e et e e e 567
PULWC ettt e e e e e e 568
PUtwehar ... 568
SWPIINE L o 569
swscanf 570
viwscanf. ... 571
VSWSCANT . oot e 572
VWSCANE .« .o e 573
viwprintf ... 574
VSWPIINtE . o .o 575
VWDIINEE . .o e 576
Watof ... 576
A 4¢3 4 o) 141 o J SO 577
WESCAL & o ottt et et e e e e 578
WCSChr .« o 579
WOESCITIP .ottt ettt et et e e e e e e e e e e 579
22 MSL C Reference Version 10

Table of Contents

wescoll. ...
WECSCSPIL . & v vt vttt e et e e
WCSCPY -« v ettt et e
wesftime
weslen
wesneat ...
WCSTICITID .« v v vee e e ee e e eeeeeens
WCSTICPY « « v v v vttt e et e e e e
wespbrk. ..o
wesrchr ...
WCSItOmMDbS . ..o
WCSSPIL. « v ettt et et e e
WCSSHT. & v ettt e e e e
westod . .
westof ...
WCStOK . .o
westol L.

westoll . ..o
westoul ...
westoull ...

WIEMCMP . ..o vve e et
WINEIMCPY v voveveeeeee e e
WIEMMOVE . . .o vvvve et

46 wctype.h

Overview of wetypeh. o L.

615

........................ 615

MSL C Reference Version 10

23

4 01 616
ISWalnUM e 616
iswalpha. 616
ISWhlankK.o 617
ISWCITL .o e 618
ISWAIZIE .« ot e 618
ISWEIAPN. . .o 619
ISWIOWET. . .ot e 619
ISWPIINE © . ottt et e e e e e e 620
ISWPUNCL. « o vttt ettt e e e e e e e et 620
ISWSPACE . v vt v ettt e e e e e e 621
ISWUPPCT. -« v ettt e e et e e e e e e e e e e 621
ISWXAIZIL « oot e 622
LOWCITANS .« o v v ettt et ettt et e e e e et e ettt e 623
LOWIOWET . .ot e 623
LOWUPPET .« o o v vt ettt et e et e e e e et e 624
WOLTATIS . « v v v ettt et e e e e e e e et e e e e e 624
47 WinSIOUX.h 627
Overview of WIinSIOUX i 627
Using WinSIOUXo e 627
WinSIOUX for Windowst 628
Creating a Project with WinSIOUX 628
WInSIOUX IC .ot e e e e e e e 629
Customizing WinSIOUX o e 629
ClESCT oo 630
48 MSL Flags 633
Overview of the MSL Switches, Flags and Defines 633
_ANSI_OVERLOAD __ ...ttt e 633
_MSL_C_LOCALE_ONLY . ..o\ttt 634
_MSL_IMP_EXP ... 634
_MSL_INTEGRAL_MATH, 634
_MSL_MALLOC_0_RETURNS_NON_NULL. 635
_MSL_NEEDS_EXTRAS. e 635

24

MSL C Reference Version 10

Table of Contents

_MSL_OS_DIRECT_MALLOC, 635
_MSL_CLASSIC_MALLOC e 635
_MSL_USE_NEW_FILE_APIS., 636
_MSL_USE_OLD_FILE_APIS i, 636

_MSL _POSIX . ..o 636
_MSL_STRERROR_KNOWS_ERROR_NAMES. 637

_ SET_ERRNO __ ... e 637

49 Secure Library Functions 639
Input/OutpuL . . .o o 639

File Operationst e e 639

190010) 021 0 0 PP 639

Formatted input/output functionsot 640

fScant S ... 640

SCANT S, o 641

SSCANT S . o vt 642

vEscant s 642

VSCANT S, o ottt 643

VSSCANE S . o ittt e 643

Character input/output functions. 644

LS S + ettt e e e 644

Index 645
MSL C Reference Version 10 25

Table of Contents

26 MSL C Reference Version 10

g |

Introduction

This reference contains a description of the ANSI library and extended libraries bundled
with Main Standard Library for C.

Organization of Files

The C header files are organized alphabetically. Items within a header file are also listed in
alphabetical order. Whenever possible, sample code has been included to demonstrate the
use of each function.

“Introduction to Multi-Threading” on page 7 covers multi-threading and thread-safeness
of the Main Standard C Library functions.

“Overview of alloca.h” on page 25 covers the non-ANSI alloca () function for
dynamic allocation from the stack.

“Overview of assert.h” on page 27 covers the ANSI C exception handling macro
assert ().

“Overview of conio.h” on page 29 covers the Windows console input and output routines.

“Overview of console.h” on page 41 covers Macintosh console routines.

“Qverview of crtl.h” on page 49.covers Win32 console routines.

“Overview of ctype.h” on page 53 covers the ANSI character facilities.

“Overview of direct.h” on page 65 covers Win32x86 directory facilities.

“Overview of dirent.h” on page 69 covers various POSIX directory functions.

“Overview of div_t.h” on page 73 covers two arrays for math routines.

“Overview of errno.h” on page 75 covers ANSI global error variables.

“Overview of extras.h” on page 79 covers additional non standard functions included with
the MSL library.

3

“Overview of fentl.h” on page 117 covers non-ANSI control of files.

“Overview of fenv.h” on page 125. covers floating-point environment facilities.

3

“Overview of float.h” on page 139 covers ANSI floating point type limits.

“Overview of FSp fopen.h” on page 141 contains Macintosh file opening routines.

“Overview of inttypes.h” on page 145 contains greatest-width integer routines and
macros.

MSL C Reference Version 10 1

3
4

4
A

Introduction
Organization of Files

“Overview of io.h” on page 157, contains common Windows stream input and output
routines.

“Overview of is0646.h” on page 161 contains operator symbol alternative words.

“Overview of limits.h” on page 163 covers ANSI integral type limits.

“Overview of locale.h” on page 165 covers ANSI character sets, numeric and monetary
formats.

“Overview of malloc.h” on page 169, covers the alloca function for Windows.

“Overview of math.h” on page 171 covers ANSI floating point math facilities.

“Overview of Process.h” on page 239, covers Windows thread process routines.

“Overview of setjmp.h” on page 243 covers ANSI means used for saving and restoring a
processor state.

“Overview of signal.h” on page 249 covers ANSI software interrupt specifications.

“Overview of SIOUX” on page 255 covers CodeWarrior™ SIOUX console emulation for
Macintosh.

“Qverview of stat.h” on page 269 covers non-ANSI file statistics and facilities.

“Overview of stdarg.h” on page 279 covers ANSI custom variable argument facilities.

“Overview of stddef.h” on page 287 covers the ANSI Standard Definitions.

“Overview of stdint.h” on page 289 covers the latest integer types macros.
“Overview of stdio.h” on page 297 covers ANSI standard input and output routines.

“Overview of stdlib.h” on page 403 covers common ANSI library facilities.

“Overview of string.h” on page 453 covers ANSI null terminated character array facilities.
“Overview of tgmath.h” on page 483 lists type-generic math macros.

“Qverview of time.h” on page 485 covers ANSI clock, date and time conversion and
formatting facilities.

“Overview of timeb.h” on page 507 allows for programmer allocation of a buffer to store
time information.

“Overview of unistd.h” on page 511 covers many of the common non-ANSI facilities.

“Overview of unix.h”” on page 539 covers some CodeWarrior non-ANSI facilities.

“Overview of utime.h” on page 543 covers non-ANSI file access time facilities.
“Overview of utsname.h” on page 549 covers the non-ANSI equipment naming facilities.

“Overview of wchar.h” on page 553 covers the wide character set for single and array
facilities.

“Overview of wctype.h” on page 615 covers the wide character set type comparison
facilities.

MSL C Reference Version 10

Introduction
ANSI C Standard

“Overview of WinSIOUX” on page 627 covers CodeWarrior SIOUX console emulation
for Windows.

“Overview of the MSL Switches, Flags and Defines” on page 633 covers the various
switches and flags, and defines used to customize the MSL C library.

ANSI C Standard

The ANSI C Standard Library included with Freescale CodeWarrior follows the
specifications in the ANSI: Programming Language C / X3.159.1989 document together
with extensions according to ISO/IEC 9899:1999 (known for some time as “C99”). The
functions, variables and macros available in this library can be used transparently by both
C and C++ programs.

The Main Standard Library implements internal macros, _MSL_C99, that separate those
parts of the C library that were added to the first version of the ANSI Standard for the C
programming language (ANSI/ISO 9899-1990) by the second version (ISO/IEC 9899-
1999(E)). If _MSL_C99 is defined in a prefix file to have the value 0 before building the
MSL C library, only those parts of the library that were defined in ANSI/ISO 9899-1990
are compiled, yielding a smaller library. If _MSL_C99 is defined to have a non-zero value
before building the library the full MSL C library is compiled in accord with ISO/IEC
9899-1999(E).

The ANSI C Library and Apple Macintosh

Some functions in the ANSI C Library are not fully operational on the Macintosh
environment because they are meant to be used in a character-based user interface instead
of the Macintosh computer’s graphical user interface. While these functions are available,
they may not work as you expect them to. Such inconsistencies between the ANSI C
Standard and the MSL C implementation are noted in a function’s description.

Except where noted, ANSI C Library functions use C character strings, not Pascal
character strings.

MSL Extras Library

The MSL Extras Library contains functions macros and types that are not included in the
ANSI/ISO C Standard as well as POSIX functions. These are included for Windows and

UNIX compatibility. See the description of * MSI. NEEDS EXTRAS” on page 635. for
access of these functions when including a C standard header.

MSL C Reference Version 10 3

y
A

Introduction
MSL Extras Library

The functions, procedures and types in the headers listed in Table 1.1 are included in the
MSL Extras Library.

Table 1.1 MSL Extras Library Headers

dirent.h extras.h fentl.h stat.h
unistd.h unix.h utime.h utsname.h
Mac OS Only Console.h

Windows Only conio.h direct.h io.h

Windows Only

On Windows, the MSL extras functions are enabled using the same name with a leading
underscore.

POSIX Functionality

The Main Standard Libraries include some, but not all, POSTIX functions and types.

Console I/0 and the Macintosh

The ANSI Standard Library assumes interactive console I/O (the stdin, stderr, and
stdout streams) is always open. Many of the functions in this library were originally
designed to be used on a character-oriented user interface, not the graphical user interface
of a Macintosh computer. These header files contain functions that help you run character-
oriented programs on a Macintosh:

* console.h declares ccommand (), which displays a dialog that lets you enter
command-line arguments

* STOUX.his part of the SIOUX package, which creates a window that’s much like a
dumb terminal or TTY. Your program uses that window whenever your program
refers to stdin, stdout, stderr, cin, cout, or cerr.

4 MSL C Reference Version 10

Introduction
Compatibility

Console I/0 and Windows

The ANSI Standard Library assumes interactive console I/O (the stdin, stderr, and stdout
streams) is always open. This command line interface is provided by the Windows console
applications. You may want to check the headers io.h, crtl.h and process.h for specific
Windows console routines. In addition, WinSIOUX.h and the WinSIOUX libraries
provide a the Graphical User Interface consisting of a window that is much like a dumb
terminal or TTY but with scrolling and cut and paste facilities.

Using Mac OS X and the Extras Library

On OS X, the functions which would previously have come from MSL_Extras are
available from the System.framework using headers from the {OS X
Volume}:usr:include:access path. Therefore Mach-O on Mac OS X requires access path
settings so as to not use the MSL Extras library.

Do not use an access path to the top level { Compiler}:MSL: directory as that will bring
in files from the new MSL_Extras.

Compatibility

Parts of the Main Standard Library, including both the ISO Standard C library and POSIX
conforming procedures and definitions, as well as MSL library extensions, may not be
implemented on all platforms. Furthermore, information about your target may not appear
in this version of the printed documentation. You should consult the electronic
documentation or release notes for your product to determine whether a particular function
is compatible with your target platform.

Intrinsic Functions

Intrinsic functions generate in-line assembly code to perform the library routine.
Generally these exist to allow direct access to machine functions which are not easily
expressed directly in C. In some cases these map to single assembler instructions.

Some examples of intrinsics are as follows:
long _ labs(long) ;
double _ fabs (double) ;

and

MSL C Reference Version 10 5

A 4
4\

Introduction
Intrinsic Functions

void *__ _memcpy (void *, const void *, size_t);

where ___memcpy () provides access to the block move in the code generator to do the
block move inline.

MSL C Reference Version 10

2
MSL C and Multi-Threading

This reference contains a description of multi-threading and thread safety in the Main C
library.

Introduction to Multi-Threading

In programming, the term thread is used to refer to the smallest amount of processor
context state necessary to encapsulate a computation. A thread consists of a register set
and a stack, together with the address space where data is stored. Some parts of this
address space are private to the thread while other parts may be shared with other threads.
Variables that belong to the storage class auto and that are instantiated by the thread are
private to the thread and cannot be accessed by other threads. This is in contrast to
variables that belong to the storage class static, which may be accessed by other threads in
the same process. All threads also have access to the standard files, stdin, stdout, and
stderr. In addition, a multi-threading implementation may provide for data with the same
kind of lifetime as data in the static storage class but where access is restricted to the
thread that owns it. Such data is known as thread-local data.

Most current operating systems are said to be multi-threaded because they allow the
creation of additional threads within a process beyond the one that begins the execution of
the process. Thus, in a multi-threaded operating system, a process may consist of more
than one thread, all of them executing simultaneously.

Unless there is more than one processor, the threads are not really executing
simultaneously; the operating system is giving the impression of simultaneity by
multiplexing between the threads. The operating system determines which thread is to
have control of the processor at any particular time. There are two models for operating a
multi-threaded process — the cooperative model and the preemptive model. In the
cooperative model, the threads signal their willingness to relinquish their control of the
processor through a system call and the operating system then decides which thread will
gain control. Thus, in this model, the execution of a thread can only be interrupted at
points that are convenient to the algorithm.

In the preemptive model, the operating system switches between the threads at arbitrary
and unpredictable times and points in the code being executed, Such a thread switch may
occur between any two machine instructions and not coincide with a boundary between
two C statements; it may even be part-way through the evaluation of an expression. One
important result of this is that, since switching between threads happens unpredictably, if
more than one thread is changing the value of a shared variable, the results of an execution

MSL C Reference Version 10 7

3
4

y
A

MSL C and Multi-Threading
Introduction to Multi-Threading

are likely to differ from one run to another. This lack of repeatability makes debugging
and validation difficult. In what follows, we shall be assuming a preemptive model of
multi-threading.

Multi-threading calls for mechanisms to protect against such uncertainty. Various
methods exist for protecting segments of code from being executed by two threads at the
same time. A program that is suitably protected against errors in the presence of multi-
threading is said to be thread-safe.

Definitions

Essentially, there are no standards for implementing multi-threading. In particular, neither
the C99 Standard nor the POSIX Standard makes reference to threads. For the MSL C
library, an MSL C Library function is said to be “thread-safe” if a single invocation of the
function can be viewed as a single uninterruptable (i.e., atomic) operation. That is, it is
possible to have two simultaneously executing threads in a single process, both using the
function without danger of mutual interference.

For most functions in the library, the meaning of this is fairly clear. Some functions, such
as rand() or strtok() aredefined in C99 to maintain internal state variables and
would appear, by definition, to be not thread-safe. However, in MSL on Windows,
functions make use of thread-local data to ensure their thread-safety.

Figure 2.1 is a model for a test program that demonstrates the mutual thread safety of two
library functions.

Figure 2.1 Thread Safety Test

(Start two threads)

thread 1 thread 2

S

function 1) (function 2)

— —

MSL C Reference Version 10

MSL C and Multi-Threading
Introduction to Multi-Threading

¢ Function 1 and function 2 can be the same or different library functions.
* Each loop has to iterate many times.

For these two functions are said to be mutually threadsafe, the results produced by thread
1 must be exactly the same as they would be if thread 2 did not exist.

Thread safety problems only arise if the two threads are sharing data, for example, if
function 1 and function 2 are both writing to the same file or if they both use a function
that maintains its own internal state without protecting it in thread-local data, as is done in
strtok() .

The MSL C library functions listed in Table 2.1 have special precautions to make them
thread-safe:

Table 2.1 Functions with Special Thread Precautions

asctime atexit calloc ctime exit fgetc
fgetpos fgets fgetwe fgetws fopen fprintf
fputc fputs fputwe fputws fread free
fscanf fseek fsetpos ftell fwprintf fwrite
fwscanf getc getchar gets getwc getwchar
gmtime localeconv localtime malloc printf putc
putchar puts putwc putwchar raise rand
realloc scanf setbuf setlocale setvbuf signal
srand strtok tmpfile tmpnam ungetc ungetwc
viprintf vfscanf viwprintf vfwscanf vprintf vscanf
vwprintf vwscanf wcrtomb wcsrtombs wctomb wprintf
wscanf

The remaining MSL C functions are intrinsically thread-safe.

Reentrancy Functions

In the most recent versions of MSL C, great pains have been taken to make sure that every
function works properly in a multi-threaded environment. The ANSI C standard makes no
provisions at all for thread safety. Unlike some other library vendors, MSL C takes the

MSL C Reference Version 10 9

A 4
4\

MSL C and Multi-Threading
Introduction to Multi-Threading

standpoint that all functions should be thread safe, providing that the
_MSL_THREADSAFE macro is defined to 1.

When the _"MSL_THREADSAFE macro is 0, many of the MSL C library functions lose
their thread safe attributes. However, it may be useful to leave the _"MSL._THREADSAFE
macro as 0 even on a multi-threaded system for the reasons of speed. The library functions
will be faster if they do not have to wait for thread synchronization. Since many programs
are written using only a single thread, it is often advantageous to provide an efficient
single-threaded library.

GCC and other library vendors provide an assortment of helper functions, all with a _r
suffix, to indicate they are naturally thread safe.

Table 2.2 is a list of enhanced header files and the new “_r” functions they implement:

Table 2.2 Reentrant Functions in Standard Headers

dirent.h stdlib.h string.h time.h

readdir_r rand_r strerror_r asctime_r
ctime_r
gmtime_r
localtime_r

10 MSL C Reference Version 10

Configuring MSL C

This chapter describes how to configure the Main Standard Library for C programming on
your system. The topics are as follows:

3
.

‘Configuring Memory Management” on page 11

o ¢

‘Configuring Time and Clock™ on page 16

3

* “Configuring File I/O” on page 17

o ¢

‘Configuring Console I/O” on page 20

3

* “Configuring Threads” on page 21

Configuring Memory Management

MSL has a flexible memory management system. In most cases, the default configuration
should be sufficient. If the platform operating system has its own memory management,
simply complete the __sys_alloc(),__sys_free(),and
__sys_pointer_size () routines in the pool_alloc_xxx. c file, where xxx
represents the operating system, such as Mac or Win.

The __sys_alloc () routine is called with the size of a desired memory block
whenever MSL needs more memory from the system to satisty malloc(). If the request
succeeds, a pointer is returned to the requested memory. The __sys_free () routine is
called with a pointer to a previously allocated memory block obtained from
__sys_alloc () when MSL no longer needs system memory. The memory should be
returned to the operating system.

The __sys_pointer_size () routine is called with a pointer to a previously allocated
memory block obtained from __sys_alloc () when MSL needs to determine the size
of the memory block (the value of size passed tothe _ sys_alloc () call that
obtained the memory).

If the platform does not have an operating system, or the OS does not support its own
memory management, MSL can still accommodate malloc() by using a block of RAM in
the program heap as a memory pool. The _MSL_0S_ALLOC_SUPPORT macro must be
turned off in the platform prefix file. The _MSL_HEAP_EXTERN_PROTOTYPES,
_MSL_HEAP_START, and _MSIL_HEAP_SIZE macros must also be defined in order for
MSL to find the heap block to use as a memory pool. Generally the pool is provided from
the linker, or it could also be provided in the user program in the form of a large array.

MSL C Reference Version 10 11

y
A

Configuring MSL C
Configuring Memory Management

The macros listed in (Table 3.1) are used to configure the MSL memory management
system:

Table 3.1 MSL Memory Management Macros

Macro Details

_MSL_MALLOC_IS_ALTIVEC_ALIGNED Defined to 1 if MSL returns a 16 byte aligned
memory block for malloc() requests. Defined to 0
if MSL returns less than a 16 byte aligned
memory block for malloc() requests. Having
_MSL_MALLOC_IS_ALTIVEC_ALIGNED may
decrease code side on AltiVec machines
because it does not have to have a separate
implementation of vec_malloc(), but instead the
existing malloc() is sufficient to satisfy all
memory allocations.

_MSL_MALLOC_0_RETURNS_NON_NULL | Defined to 1 if MSL returns a non-NULL value for
zero sized malloc() requests. Defined to 0 if MSL
returns NULL for zero sized malloc() requests.

_MSL_OS_DIRECT_MALLOC Defined to 1 if MSL is to ignore its own memory
pools and make direct OS requests for memory
every time malloc() is called. Defined to 0 if MSL
uses its internal memory pools to satisfy malloc()
requests. Generally it is preferred for MSL to use
its own memory pooling, however using
_MSL_OS_DIRECT_MALLOC can sometimes
provide some help for debugging.
_MSL_0S_ALLOC_SUPPORT must be on in order
for _MSL_0OS_DIRECT_MALLOC to work.

_MSL_CLASSIC_MALLOC(old name: Defined if MSL is to use the Pro 4 memory pool
_MSL_PRO4_MALLOC) scheme. Left undefined if MSL uses its more
modern pooling scheme.

_MSL_ALLOCATE_SIZE Defined to the routine name that returns the size
of an allocated memory block. Default routine
name is __allocate_size

_MSL_ALLOCATE Defined to the internal MSL routine name that
allocates a memory block, used only with the
modern memory pooling scheme. Default routine
name is __allocate

12 MSL C Reference Version 10

Configuring MSL C
Configuring Memory Management

Table 3.1 MSL Memory Management Macros (continued)

Macro Details

_MSL_ALLOCATE_RESIZE Defined to the internal MSL routine name that
changes the size of an allocated memory block,
used only with the modern memory pooling
scheme. Default routine name is
__allocate_resize

_MSL_ALLOCATE_EXPAND Defined to the internal MSL routine name that
tries to expand the size of an allocated memory
block, used only with the modern memory
pooling scheme. Default routine name is
__allocate_resize

_MSL_OS_ALLOC_SUPPORT(old name: Defined to 1 if the MSL platform supports
_No_Alloc_OS_Support) memory allocation. Defined to 0 if the MSL
platform does not support memory allocation.
When defined to 1, the MSL platform must
supply both __sys_alloc(), __sys_free(), and
__sys_pointer_size() functions in its
pool_alloc_xxx.c file. When defined to 0, the
MSL platform must define the
_MSL_HEAP_EXTERN_PROTOTYPES,
_MSL_HEAP_START, and _MSL_HEAP_SIZE
macros, and there must be writable space
provided at link time for MSL to use as a memory
pool.

_MSL_HEAP_EXTERN_PROTOTYPES When _MSI_0S_ALLOC_SUPPORT is off, the
MSL alloc.c file must be able to access external
symbols in order to get access to the start of the
writable memory pool area and determine the
memory pool size. The platform prefix file must
define _MSL_HEAP_EXTERN_PROTOTYPES SO it
expands to appropriate external prototypes.

_MSL_POOL_ALIGNMENT Specifies the alignment requirements of malloc/
free only when using the “Classic” allocator. The
‘alignment' is a mask used to ensure that blocks
allocated always have sizes that are multiples of
a given power-of-two, in this case: four. Other
values are possible, but for internal reasons the
alignment factor must be a multiple of four and
must also be a multiple of sizeof (1long).

MSL C Reference Version 10 13

y
A

Configuring MSL C
Configuring Memory Management

Table 3.1 MSL Memory Management Macros (continued)

Macro Details

_MSL_USE_FIX_MALLOC_POOLS For tiny allocations, fixed sized pools help
significantly speed allocation/deallocation, used
only with the modern memory pooling scheme.
You can reserve a pool for a small range of
sizes. The use of fixed sized pools can be
disabled by setting
_MSL_USE_FIX_MALLOC_POOLS to 0. The
default value is 1. Use of fixed size pools
requires further configuration. The current
shipping configuration is:

1. Each pool will handle approximately 4000
bytes worth of requests before asking for more
memory.

2. There are 4 pool types. Each type is
responsible for a different range of requests:
a.0- 12 bytes

b. 13 - 20 bytes

c. 21 - 36 bytes

d. 37 - 68 bytes

Requests for greater than 68 bytes go to the
variable size pools. The number of types of pools
is configurable below. The range of requests for
each type is also configurable.

_MSL_HEAP_EXTERN_PROTOTYPES When _MSL_0S_ALLOC_SUPPORT is off, the
MSL alloc.c file must be able to access external
symbols in order to get access to the start of the
writable memory pool area and determine the
memory pool size. The platform prefix file must
define _MSL_HEAP_EXTERN_PROTOTYPES SO it
expands to appropriate external prototypes.

_MSL_HEAP_START When _MSL_0S_ALLOC_SUPPORT is off, the
MSL alloc.c file must be able to find the start of
the writable memory pool area. The
_MSL_HEAP_START macro must be defined in
the platform prefix file to expand to a memory
location signifying the start of the writable
memory pool area.

14 MSL C Reference Version 10

Configuring MSL C
Configuring Memory Management

Table 3.1 MSL Memory Management Macros (continued)

Macro Details

_MSL_HEAP_SIZE When _MSL_0S_ALLOC_SUPPORT is off, the
MSL alloc.c file must be able to determine the
size of the writable memory pool. The
_MSL_HEAP_SIZE macro must be defined in the
platform prefix file to expand to the size of the
writable memory pool.

__CALLOC If __caLLoc is undefined, the name of the MSL
calloc() routine is simply calloc. Otherwise, if
__CALLOC is defined, the MSL calloc() routine is
named whatever the __CALLOC macro is
defined to. This is useful in case a platform has
its own system implementation of calloc and the
MSL implementation conflicts over the same
name.

__FREE If __FREE is undefined, the name of the MSL
free() routine is simply free. Otherwise, if
__FREE is defined, the MSL free() routine is
named whatever the __FREE macro is defined
to. This is useful in case a platform has its own
system implementation of free and the MSL
implementation conflicts over the same name.

__MALLOC If __MALLOC is undefined, the name of the MSL
malloc() routine is simply malloc. Otherwise, if
__MALLOC is defined, the MSL malloc() routine
is named whatever the __MALLOC macro is
defined to. This is useful in case a platform has
its own system implementation of malloc and the
MSL implementation conflicts over the same
name.

__REALLOC If __REALLOC is undefined, the name of the MSL
realloc() routine is simply realloc. Otherwise, if
__REALLOC is defined, the MSL realloc() routine
is named whatever the __REALLOC macro is
defined to. This is useful in case a platform has
its own system implementation of realloc and the
MSL implementation conflicts over the same
name.

MSL C Reference Version 10 15

y
A

Configuring MSL C
Configuring Time and Clock

Configuring Time and Clock

MSL comes configured by default to support a platform having the ability to determine the
time of day and also the ability to return an internal clock tick. The support does not come
for free. Each platform must define four simple functions to provide MSL with low-level
information from the platform hardware or operating system. Time and clock stub
functions are in the time_xxx. c platform file, where xxx is the platform, such as Mac
or Win.

For systems that support an internal clock tick, the __get_clock () function must
obtain the current clock tick and return its value to MSL. If the clock tick information is
not obtainable, return the value -1.

For systems that support the ability to determine the time of day, the __get_time ()
function must obtain the current time of day and return its t ime_ t equivalent value to
MSL. Depending on the value of _MSL_TIME_T_ IS_LOCALTIME, the current time is
either the “local time” time of day, or it is “Universal Time Coordinated” (UTC), which
was formerly called “Greenwich Mean Time” (GMT).

If the current time of day is not obtainable, return the value -1. The __to_gm_time ()
function must take a “local time” time of day t ime_t value and convert it into a “global
mean” time_t value. If the conversion takes place properly, return 1 to MSL. If the
conversion fails, return 0 to MSL.

The __to_local_time () function must take a UTC time of day time_t value and
convert it into a “local time” time_t value. If the conversion takes place properly, return
1 to MSL. If the conversion fails, return O to MSL. The __to_local_time () function
is only used when _MSL_TIME_T_IS_LOCALTIME is off.

Finally, the __isdst () function must try to determine whether or not daylight savings
time is in effect. If daylight savings time is not in effect, return 0. If daylight savings time
is in effect, return 1. If daylight savings time information is not obtainable, return -1.

The macros listed in Table 3.2 are used to configure the time and clock support:

16 MSL C Reference Version 10

Configuring MSL C
Configuring File I/O

Table 3.2 MSL Time and Clock Macros

Macros

Details

_MSL_OS_TIME_SUPPORT

Defined to 1 if the MSL platform supports retrieving
the time. Defined to 0 if the MSL platform does not
support retrieving the time.

_MSL_CLOCK_T_AVAILABLE

Defined to 1 if the MSL platform supports the
clock_t type. Defined to 0O if the MSL platform
does not support the clock_t type. The
_MSL_OS_TIME_SUPPORT macro must be on
before the _MSIL._CLOCK_T_AVAILABLE macro is
recognized.

_MSL_CLOCK_T_DEFINED

Defined to 1 if the MSL platform defined the
clock_t type. Defined to 0 if the MSL platform
does not define the clock_t type.

_MSL_CLOCK_T

Set to the clock_t type. Default value is unsigned
long.

_MSL_TIME_T_AVAILABLE

Defined to 1 if the MSL platform supports the
time_t type. Defined to O if the MSL platform does
not support the time_t type. The
_MSL_OS_TIME_SUPPORT macro must be on
before the _MSL_TIME_T_ AVAILABLE Macro is
recognized.

_MSL_TIME_T_DEFINED

Defined to 1 if the MSL platform defined the time_t
type. Defined to 0 if the MSL platform does not
define the time_t type.

_MSL_TIME_T_IS_LOCALTIME

Defined to 1 if the MSL platform value for time_t
represents local time, preadjusted for any time zone
and offset from UTC (GMT). Defined to O if the MSL
platform value for time_t represents Universal
Time Coordinated. The default value is 1.

_MSL_CLOCKS_PER_SEC

Set to the number of clock ticks per second. The
default value is 60.

Configuring File I/0

Setting up MSL to handle file I/O is a fairly intensive task. It requires many platform-
specific routines to be written. The easiest way to configure file I/O is to simply have MSL
not know about it by defining _MSL_0S_DISK_FILE_SUPPORT to 0. In that mode,

MSL C Reference Version 10

17

3
4

y
A

Configuring MSL C
Configuring File I/O

MSL does not know about any routines requiring file manipulation such as fopen(),
fread(), fwrite(), fclose(), etc.

When _MSL_0S_DISK_FILE_SUPPORT is defined to 1, many low-level file routines
need to be written, and several supporting macros also need to be defined properly. First,
make sure that _MSI,_ FILENAME_MAX properly reflects the maximum size of a
filename. Also, if the default internal MSL file buffer size is not appropriate, choose a new
value for _MSI,_ BUFSIZ. Once all the macros are properly defined, the following
routines in file_io_xxx.c (where xxx represents platform, such as Mac or Win) must
be completed.

Routines

The __open_file routine is perhaps the most complicated of all the low level file I/O
routines. It takes a filename and a bunch of mode flags, opens the file, and returns a handle
to the file. A file handle is a platform-specific identifier uniquely identifying the open file.
The mode flags specify if the file is to be opened in read-only, write-only, or read-write
mode. The flags also specify if the file must previously exist for an open to be successful,
if the file can be opened whether or not it previously existed, or if the file is truncated
(position and end of file marker set to 0) once it is open. If the file is opened successfully,
return __no_io_error. If there was an error opening the file, return __io_error.

The __open_temp_fileroutineinthe file_io_Starter. c file is mostly
platform independent. It may be customized if there are more efficient ways to perform
the task. The __open_temp_file routine is called by tmpfile() to perform the low
level work of creating a new temporary file (which is automatically deleted when closed).

The __read_file routine takes a file handle, a buffer, and the size of the buffer and
should read information from the file described by the file handle into the buffer. The
buffer does not have to be completely filled, but at least one character should be read. The
number of characters successfully read is returned in the * count parameter. If an end of
file is reached after more than one character has been read, simply return the number of
characters read. The subsequent read call should then return zero characters read and a
result code of ___io_EOF. If the read was successful, return __no_io_error. If the
read failed, return __io_error.

The __write_file routine takes a file handle, a buffer, and the size of the buffer. It
should then write information to the file described by the file handle from the buffer. The
number of characters successfully written is returned in the * count parameter. If the
write was successful, return ___no_1io_error. If the write failed, return __io_error.

The __position_file routine takes a file handle, a position displacement, and a
positioning mode and should set the current position in the file described by the file handle
based on the displacement and mode. The displacement value is passed as an unsigned
long due to certain internal constraints of MSL. The value should actually be treated as
signed long. The mode specifies if displacement is an absolute position in the file (treat as
position of 0 + displacement), a change from the current position (treat as current position

18

MSL C Reference Version 10

Configuring MSL C
Configuring File I/O

+ displacement), or an offset from the end of file mark (treat as EOF position +
displacement). If the positioning was successful, return __no_io_error. If the
positioning failed, return __io_error.

The __close_file routine closes the specified file. If the file was created by
__open_temp_file, it should additionally be deleted. If the close was successful,
return __no_io_error. If the close failed, return __io_error.

The __temp_file_name routine creates a new unique filename suitable for a
temporary file. It is called by tmpnam() to perform the low-level work.

The __delete_file routine deletes an existing file, given its filename. If the delete
was successful, return __no_io_error. If the delete failed, return __io_error.

The ___rename_f1ile routine renames an existing file, given its existing filename and a
desired new filename. If the rename was successful, return __no_io_error. If the
rename failed, return __io_error.

Finally, if the platform wants to provide some additional nonstandard file I/O routines that
are common to the Windows operating system, make sure _MSI, WIDE_CHAR is on, then
also define _MSIL,_WFILEIO_AVAILABLE to 1. The following stub routines must also
be completed in the file_io_xxx.c source file. All routines take wchar_t*
parameters instead of char*: ___wopen_file (same function as ___open_file),

_ wtemp_file_name (same function as __temp_file_name),
__wdelete_file (same functionas __delete_file),and __wrename_file
(same function as ___rename_file).

The macros listed in Table 3.3 are used to configure the MSL file I/O system:

Table 3.3 MSL File I/O Macros

Macros Details

_MSL_OS_DISK_FILE_SUPPORT Defined to 1 if the MSL platform supports
disk file 1/0. Defined to 0 if the MSL platform
does not support disk file I/O.

_MSL_FILENAME_MAX Set to the maximum number of characters
allowed in a filename. The default value is
256.

MSL C Reference Version 10 19

'
A

Configuring MSL C
Configuring Console I/O

Table 3.3 MSL File I/O Macros (continued)

Macros Details

_MSL_BUFSIZ Set to the file I/O buffer size in bytes used to
set the BUFSIZ macro. The default value is
4096.

_MSL_WFILEIO_AVAILABLE Defined to 1 if MSL has wchar_t

extensions for file 1/0 calls needing
filenames, such as _wfopen (). Definedto 0
if MSL only has traditional C file I/O calls. It is
an error to have _MSIL_WIDE_CHAR off and
_MSL_WFILEIO_AVAILABLE ON.

Configuring Console I/O

Console I/O for stdin, stdout, and stderr can be configured in many different ways. The
easiest way to configure console I/O is to have it turned off completely. When
_MSL_CONSOLE_SUPPORT is off, MSL does not know about stdin, stdout, or stderr.
Calls such as printf() are not placed in the standard C library.

When _MSL_CONSOLE_SUPPORT is on, there are essentially three ways in which to
provide console access.

» The first way is to have MSL automatically throw away all items read and written to
the console by turning on _MSIL_NULL_CONSOLE_ROUTINES.

* The second way is to have MSL treat all console 1/O as if it were file I/O by turning
on _MSL_FILE_CONSOLE_ROUTINES. Treating the console as file /O requires
configuring the file I/O portion of MSL as described in the previous section. Input
and output go through the __read_file,
bottlenecks instead of __read_console,
__close_console.

write_file, close_file
write_console, and

* The third way to provide console access is to simply turn on
MSI, CONSOLE_SUPPORT and leave the remainder of the
_MSL_CONSOLE_FILE_IS_DISK FILE and
_MSI,_FILE_CONSOLE_ROUTINES flags in their default (off) state. MSL will
then call __read_console when it needs input (for example from scanf()),
__write_console when it wants to send output (for example from printf()), and
__close_console when the console is no longer needed. The three routines
should be provided in the console_io_xxx. c file.

The macros listed in Table 3.4 are used to configure the MSL console 1/O:

20 MSL C Reference Version 10

Configuring MSL C
Configuring Threads

Table 3.4 MSL Console I/0O Macros

Macro

Details

_MSL_CONSOLE_SUPPORT

Defined to 1 if the MSL platform supports
console I/O. Defined to 0 if the MSL platform
does not support console 1/O. Default value
is 1.

_MSL_BUFFERED_CONSOLE

Defined to 1 if the MSL platform console 1/0
is buffered. Defined to 0 if the MSL platform
console I/0 is unbuffered. Default value is 1.

_MSL_CONSOLE_FILE_IS_DISK_FILE

Defined to 1 if the MSL platform has console
1/0, but it is really in a file. Defined to 0 if the
MSL platform has traditional console I/O.
Default value is 0.

_MSL_NULL_CONSOLE_ROUTINES

Defined to 1 if the MSL platform does not
perform console 1/O. Defined to 0 if the MSL
platform performs console I/O. This flag
may be set independently of
_MSIL_CONSOLE_SUPPORT; however, when
_MSIL_CONSOLE_SUPPORT is off,
_MSL_NULL_CONSOLE_ROUTINES must
always be on. When
_MSIL_CONSOLE_SUPPORT is on and
_MSL_NULL_CONSOLE_ROUTINES is also
on, all console I/O is essentially ignored.
Default value is 0.

_MSL_FILE_CONSOLE_ROUTINES

Defined to 1 if the MSL platform uses the file
1/0O read/write/close routines for console I/0
instead of using the special console read/
write/close routines. Define to O if the MSL
platform uses the special console read/
write/close routines. When
_MSL_CONSOLE_FILE_IS_DISK_FILE IS
on, _MSL_FILE_CONSOLE_ROUTINES
must always be on. Default value is 0.

Configuring Threads

MSL is highly adaptive when it comes to multi-threading. The C standard makes no
mention of threading, and it even has points where global data is accessed directly, for
example errno, asctime (), etc. MSL can be configured to know about multithreaded

MSL C Reference Version 10

21

3
4

y
A

Configuring MSL C
Configuring Threads

systems and be completely reentrant. There are essentially three ways to configure the
MSL thread support:

 single thread (not reentrant at all)
* multithreaded with global data (mostly reentrant)
¢ and multithreaded with thread local data (completely reentrant).

With _MSL_THREADSAFE off, MSL is setup to operate in a single thread environment.
There are no critical regions to synchronize operations between threads. It is sometimes
advantageous to configure MSL for a single threaded environment. Operations such as file
1/0 and memory allocations will be quicker, since there is no need to ask for or wait for
critical regions. Many simple programs do not make use of threads, thus there may be no
need for the additional overhead.

With _MSIL,_THREADSAFE on, MSL is setup to synchronize operations between threads
properly by the use of critical regions. Critical regions are supplied either by POSIX
pthread functions or by the use of platform specific calls. If the platform has an underlying
POSIX layer supporting pthreads, simply turning on _MSL_THREADSAFE and

MSI, PTHREADS is enough for MSL to fully operate. No other custom code is
necessary.

With _MSL_THREADSAFE on and _MSIL_PTHREADS off, the platform must provide its
own critical region code. This is generally done by first providing an array of critical
region identifiers in the critical_regions_xxx.c file, and then by completing the
four critical region functions in the critical_regions_xxx.h header file (where
XXX represents operating system, such as Mac or Win). The compiler runtime library must
make acallto___init_critical_regions () before calling main ().

With _MSL_THREADSAFE on, the _MSL_LOCALDATA_AVAILABLE flag controls
whether or not the MSL library is completely reentrant or not. When
_MSL_LOCALDATA_AVATILABLE is off, the MSL library uses global and static
variables, and is therefore not completely reentrant for such items as errno, the random
number seed used by rand(), strtok() state information, etc. When

MSI, LOCALDATA_AVAILABLE is on, the MSL library uses thread local storage to
maintain state information. Each thread has its own copy of some dynamic memory that
gets used.

With _MSL_LOCALDATA_AVAILABLE on and _MSL_PTHREADS on, simply adding
the following line to the platform prefix file is enough to fully support complete
reentrancy:

#define _MSIL_LOCALDATA(_a) _ msl GetThreadLocalData()->_a

With _MSL_LOCALDATA_ AVAILABLE on and _MSL_PTHREADS off, the platform
must completely supply its own routines to maintain and access thread local storage. The
thread_local_data_xxx.hand thread_local_data_xxx.c files are used to
provide the necessary functionality. Also, the common MSL header
(msl_thread_local_data.h) must be modified to include the platform header

22

MSL C Reference Version 10

Configuring MSL C
Configuring Threads

(thread_local_data_xxx.h)based onits _ dest_os value. The

MSI, LOCALDATA macro is used to access items in thread local storage. So, for
example, if the random number seed needs to be obtained, the MSL code will say
_MSL_LOCALDATA (random_next) to get the random number seed. The macro must
expand to an l-value expression.

At times, it may be easier to turn on _MSL_PTHREADS even if the underlying platform
does not have built-in pthread support. Instead of writing custom code to support the MSL
threading model, it may be easier to turn on _MSIL_PTHREADS and then write
comparable pthread routines. When _MSI,_ PTHREADS is on and _MSIL,_THREADSAFE
is on, four pthread routines in the pthread_xxx. c file are used by MSL to implement
critical regions.

pthread Routines

The pthread_mutex_init routine creates a single mutex. MSL will always pass
NULL as the second attr argument, which means to use default mutex attributes. Return
Zero upon success, return an error code upon failure.

The pthread_mutex_destroy routine disposes of a single mutex. Return zero upon
success, return an error code upon failure.

The pthread_mutex_lock routine acquires a lock on a single mutex. If the mutex is
already locked when pthread_mutex_lock is called, the routine blocks execution of
the current thread until the mutex is available. Return zero upon success, return an error
code upon failure.

The pthread_mutex_unlock routine releases a lock on a single mutex. Return zero
upon success, return an error code upon failure.

Additionally, when _MSL_LOCALDATA_AVAILABLE is on, four more pthread routines
in the pthread_xxx. c file are used by MSL to implement thread local data:

* The pthread_key_ create routine creates a new thread local data identifier.
Each thread can then access its own individual data elements through the identifier.
When a thread terminates, the destructor routine is called with the single argument of
pthread_getspecific () to clean up any necessary thread local data. Return
Zero upon success, return an error code upon failure.

* The pthread_key_delete routine disposes of a thread local data identifier.
Return zero upon success, return an error code upon failure.

* The pthread_setspecific routine associates a value to a previously created
thread local data identifier. The value is specific to the currently executing thread.
Return zero upon success, return an error code upon failure.

¢ The pthread_getspecific routine retrieves a value associated with a thread
local data identifier. The value is specific to the currently executing thread. If no

MSL C Reference Version 10 23

'
A

Configuring MSL C
Configuring Threads

value has been associated with the thread local data identifier, return NULL.
Otherwise, return the previously associated value.

The macros listed in Table 3.5 are used to configure and use the MSL threading support:

Table 3.5 MSL Thread Support Macros

Macros Details

_MSL_THREADSAFE Defined to 0 if there is no multi-thread support in
MSL. Defined to 1 if there should be multi-thread
support in MSL. When defined to 1, many internal
aspects of MSL are guarded by critical regions.
Having critical regions inside MSL will slow down
the execution time for the trade-off of working
correctly on a multi-threaded system. Also, many
MSL functions will use thread local storage for
maintaining state information.

_MSL_PTHREADS Defined to 1 if the MSL platform supports the
POSIX threading model. Defined to 0 if the MSL
platform does not support the POSIX threading
model. It is an error to define _MSL_PTHREADS to
1 and _MSL_THREADSAFE to 0. MSL has generic
support for the POSIX thread model, so turning on
_MSL_THREADSAFE and _MSL_THREADS is
enough to properly support a multithreaded
system without the need to write any additional
support code.

_MSL_LOCALDATA Internal MSL flag for accessing thread local data
when _MSL_THREADSAFE is 1. Accesses static
global data when _MSL_THREADSAFE is 0.

_MSL_LOCALDATA_AVAILABLE Defined to 1 if the MSL platform supports thread
local data, accessible using the
_MSL_LOCALDATA macro. Defined to 0 if the MSL
platform does not support thread local data.

24 MSL C Reference Version 10

alloca.h

This header defines one function, alloca, which lets you allocate memory quickly using
the stack.

Overview of alloca.h

The alloca.h header file consists of “alloca”, which allocates memory from the stack.

alloca

Allocates memory quickly on the stack.
#include <alloca.h>

void *alloca(size_t nbytes);

Table 4.1 alloca

nbytes size_t number of bytes of
allocation

Remarks

This function returns a pointer to a block of memory that is nbytes long. The
block is on the function’s stack. This function works quickly since it decrements
the current stack pointer. When your function exits, it automatically releases the
storage.

NOTE The AltiVec version of alloca () allocates memory on a 16 byte alignment.

If youuse alloca () to allocate a lot of storage, be sure to increase the Stack Size
for your project in the Project preferences panel.

If it is successful, alloca () returns a pointer to a block of memory. If it
encounters an error, alloca () returns NULL.

This function may not be implemented on all platforms.

MSL C Reference Version 10 25

A 4
4\

alloca.h
Overview of alloca.h

See Also

“calloc” on page 417, “free” on page 422

“malloc” on page 427, “realloc” on page 434)

26 MSL C Reference Version 10

assert.h

The assert . h header file provides a debugging macro, assert, that outputs a
diagnostic message and stops the program if a test fails.

Overview of assert.h

The assert.h header file provides a debugging macro, “assert”, which outputs a
diagnostic message and stops the program if a test fails.

assert

Abort a program if a test is false.
#include <assert.h>

void assert (int expression);

Table 5.1 assert

expression int A boolean expression
being evaluated

Remarks

If expression is false the assert () macro outputs a diagnostic message to
stderr and calls abort (). The diagnostic message has the form

file: line test -- assertion failed
abort -- terminating

where file is the source file, line is the line number, and test is the failed
expression.

To turn off the assert () macros, placea #define NDEBUG (no debugging)
directive before the #include <assert.h> directive.

This macro may not be implemented on all platforms.

MSL C Reference Version 10 27

4
A

assert.h
Overview of assert.h

See Also

“abort” on page 405

Listing 5.1 Example of assert() Usage

#undef NDEBUG

/* Make sure that assert() is enabled */
#include <assert.h>
#include <stdio.h>

int main(void)

{
int x = 100, y = 5;
printf ("assert test.\n");

/*This assert will output a message and abort the program */
assert(x > 1000);
printf ("This will not execute if NDEBUG is undefined\n");
return O;

Output:

assert test.

foo.c:12 x > 1000 -- assertion failed
abort -- terminating

28 MSL C Reference Version 10

g |

conio.h

The conio.h header file consist of various runtime declarations that pertain to the
Win32 x86 targets for console input and output.

Overview of conio.h

This header file defines the facilities as follows:

13

clrscr’” on page 30 clears the console window.

“getch” on page 30 reads a char from the input screen.

“getche” on page 31 reads a char and echoes to the screen.

“«

gotoxy” on page 31 places the cursor on a console window.
“_initscr” on page 32 sets up a console in a GUI application.
“inp” on page 32 reads a byte from an input port.

“inpd” on page 33 reads a double word from and input port.
“inpw” on page 33 reads a word from an input port.

“kbhit” on page 34 returns true if a key is pressed.

“outp” on page 34 outputs a byte to a port.

“outpd” on page 35outputs a double word to a port.

“outpw” on page 36 outputs a word to a port.

13

textattr” on page 36 sets the text attributes.

“«

textbackground” on page 37 sets the text background color.

13

textcolor” on page 37 sets the text color.

“«

wherex” on page 38 returns the horizontal coordinate.

13

wherey” on page 38 returns the vertical coordinate.

MSL C Reference Version 10 29

y
A

conio.h
Overview of conio.h

_clrser

Clears the standard output screen.
#include <conio.h>

void _clrscr(void);

Remarks
This facility has no parameters.
No value is returned in this implementation.

This function is Windows only when declared from this header.

getch
This function reads a single char from the standard input device and does not echo it to the
output.
#include <conio.h>
int getch(void) ;

int _getch(void);
Remarks

This facility has no parameters.

The function getch returns the char read.

This function is Windows only when declared from this header.
See Also

“getc” on page 348
“getchar” on page 349

30 MSL C Reference Version 10

conio.h
Overview of conio.h

getche

This function reads a single char from the standard input device and echoes it to the output
without the need of pressing the enter key.

#include <conio.h>
int getche(void);

int _getche(void) ;
Remarks

This facility has no parameters.

The function getche returns the char read.

This function is Windows only when declared from this header.
See Also

“getc” on page 348

“getchar” on page 349

_gotoxy

Moves the cursor to the horizontal and vertical coordinates in a standard output device.

#include <conio.h>

void _gotoxy(int x, int vy);

Table 6.1 _gotoxy

X int vertical screen coordinate
y int horizontal screen
coordinate
Remarks

No value is returned in this implementation.

This function is Windows only when declared from this header.

MSL C Reference Version 10 31

y
A

conio.h
Overview of conio.h

See Also

«

wherex” on page 38

«

wherey” on page 38

_initscer

Sets up standard 80x25 console with no scrolling region.
#include <conio.h>

void _initscr (void) ;

Remarks
This facility has no parameters.

There is no need to call _initscr () unless you have a GUI application
(subsystem Windows GUI), where no console is available at runtime.

No value is returned in this implementation.

This function is Windows only when declared from this header.

inp
Reads a byte from the specified port
#include <conio.h>
unsigned char inp(unsigned short port);

unsigned char _inp(unsigned short port);

Table 6.2 inp

port unsigned short a port specified by number

Remarks

The value as a byte read is returned.

This function is Windows only when declared from this header.
See Also

“inpd” on page 33

32 MSL C Reference Version 10

conio.h
Overview of conio.h

“inpw” on page 33

inpd
Reads a double word from the specified port
#include <conio.h>
unsigned long inpd(unsigned short port);
unsigned long _inpd(unsigned short port) ;
Table 6.3 inpd
port unsigned short a port specified by number
Remarks
The value as a 1ong read is returned.
This function is Windows only when declared from this header.
See Also
“inp” on page 32
“inpw” on page 33
inpw
Reads a word from the specified port
#include <conio.h>
unsigned short inpw(unsigned short port);
unsigned short _inpw(unsigned short port);
Table 6.4 inpw
port unsigned short a port specified by number
Remarks

The value as a word read is returned.

MSL C Reference Version 10 33

y
A

conio.h
Overview of conio.h

This function is Windows only when declared from this header.

See Also

«

inp” on page 32
“inpd” on page 33

kbhit
This function is used in a loop to detect an immediate keyboard key press.
#include <conio.h>
int kbhit (void) ;
int _kbhit (void) ;
This facility has no parameters.
Remarks
The kbhit function has the side effect of discarding any non-keyboard input
records in the console input queue
If the keyboard is pressed kbhit () returns a non zero value otherwise it return
Zero.
This function is Windows only when declared from this header.
See Also
“getch” on page 30
“getche” on page 31
outp
Outputs a byte to a specified port.
#include <conio.h>
void outp (unsigned short pt, unsigned char out);
void _outp(unsigned short pt, unsigned char out);
34

MSL C Reference Version 10

conio.h
Overview of conio.h

Table 6.5 outp

pt unsigned short a port specified by number
out unsigned char a byte value sent to the
output
Remarks

No value is returned in this implementation.

This function is Windows only when declared from this header.

See Also
“outpd” on page 35

“outpw” on page 36

outpd

Sends a double word to the output port specified.
#include <conio.h>
void outpd(unsigned short pt, unsigned long out) ;

void _outpd(unsigned short pt, unsigned long out) ;

Table 6.6 outpd

pt unsigned short a port specified by number

out unsigned long a double word value sent
to the output

No value is returned in this implementation.

This function is Windows only when declared from this header.

See Also

3

“outp” on page 34
“outpw” on page 36

MSL C Reference Version 10 35

'
A

conio.h
Overview of conio.h

outpw

Sends a word to the output port specified.
#include <conio.h>
void outpw(unsigned short pt, unsigned short out);

void _outpw(unsigned short pt, unsigned short out);

Table 6.7 outpw

pt unsigned short a port specified by number
out unsigned short a word value sent to the
output
Remarks

No value is returned in this implementation.

This function is Windows only when declared from this header.

See Also

« 3

outp” on page 34
“outpd” on page 35

_textattr

This function sets the attributes of the console text.
#include <conio.h>

void _textattr (int newattr);

Table 6.8 _textattr

newattr int the text attributes to be set

Remarks

The function _textattr allows you to set both the foreground and background
attributes with the variable newattr . The attributes available for this function
are defined in the header file wincon.h.

36 MSL C Reference Version 10

conio.h
Overview of conio.h

No value is returned in this implementation.

This function is Windows only when declared from this header.

See Also

¢ textbackground” on page 37

«

textcolor” on page 37

_textbackground

This function sets the console’s background color.
#include <conio.h>

void _textbackground (int newcolor) ;

Table 6.9 _textbackground

newcolor int the background color to be
set

Remarks
The attributes available for this function are defined in the header file wincon . h.
No value is returned in this implementation.

This function is Windows only when declared from this header.

See Also

¢ textattr” on page 36

«

textcolor” on page 37

_textcolor

This function sets the console’s text color.
#include <conio.h>

void _textcolor (int newcolor) ;

MSL C Reference Version 10 37

A 4
4\

conio.h
Overview of conio.h

Table 6.10 _textcolor

newcolor int the text color to be set

Remarks

The attributes available for this function are defined in the header file wincon.h.

No value is returned in this implementation.

This function is Windows only when declared from this header.

See Also

¢ _textattr” on page 36

*_textbackground” on page 37

_wherex

Determines the horizontal coordinate of the cursor in a console window.

#include <conio.h>

int _wherex(void) ;

Remarks
This facility has no parameters.
Returns the horizontal coordinate.
This function is Windows only when declared from this header.

See Also

«

wherey” on page 38

«

gotoxy” on page 31

_wherey
Determines the vertical coordinate of the cursor in a console window.
#include <conio.h>
int _wherey (void) ;

38

MSL C Reference Version 10

conio.h
Overview of conio.h

Remarks
This facility has no parameters.
Returns the vertical coordinate.

This function is Windows only when declared from this header.

See Also

«

gotoxy” on page 31

«

wherex” on page 38

MSL C Reference Version 10 39

A 4
4\

conio.h
Overview of conio.h

40 MSL C Reference Version 10

console.h

This header file contains procedures and types, which help you port a program that was
written for a command-line/console interface to the Macintosh operating system.

The console.h header file consist of various runtime declarations that pertain to the
Classic and Carbon Macintosh interfaces.

Overview of console.h

This header file defines the facilities as follows:

¢ “ccommand” on page 41 helps you port a program that relies on command-line
arguments.

e “clrscr” on page 43 clears the SIOUX window and flushes the buffer.

e “getch” on page 43 returns the keyboard character pressed when an ascii key is
pressed.

» “InstallConsole” on page 44 installs the Console package.

3

¢ “kbhit” on page 44 returns true if any keyboard key is pressed without retrieving the
key.

¢ “ReadCharsFromConsole” on page 45 reads from the Console into a buffer.

* “RemoveConsole” on page 45 removes the console package.

e _ttyname” on page 46 returns the name of the terminal associated with the file id.
The unix.h function ttyname calls this function.

* “WriteCharsToConsole” on page 46 writes a stream of output to the Console
window.

ccommand

Lets you enter command-line arguments for a SIOUX program.
#include <console.h>

int ccommand (char ***argv) ;

MSL C Reference Version 10 41

y
A

console.h

Overview of console.h

Table 7.1 ccommand

char *** The address of the second
parameter of your
command line

Remarks

The function ccommand() must be the first code generated in your program. It
must directly follow any variable declarations in the main function.

This function displays a dialog that lets you enter arguments and redirect standard
input and output. Please refer to “Overview of SIOUX"” on page 255. for
information on customizing SIOUX, or setting console options.

Only stdin, stdout, cin, and cout are redirected. Standard error
reporting methods stderr, cerr, and clog are not redirected.

The maximum number of arguments that can be entered is determined by the value
of MAX_ARGS defined in ccommand.c and is set to 25. Any arguments in excess
of this number are ignored.

Enter the command-line arguments in the Argument field. Choose where your
program directs standard input and output with the buttons below the field: the
buttons on the left are for standard input and the buttons on the right are for
standard output. If you choose Console, the program reads from or write to a
SIOUX window. If you choose File, ccommand () displays a standard file dialog
which lets you choose a file to read from or write to. After you choose a file, its
name replaces the word File.

The function ccommand () returns an integer and takes one parameter which is a
pointer to an array of strings. It fills the array with the arguments you entered in the
dialog and returns the number of arguments you entered. As in UNIX or DOS, the
first argument, the argument in element 0, is the name of the program. Listing 7.1
has an example of command line usage.

This function returns the number of arguments you entered.

Macintosh only—this function may not be implemented on all Mac OS versions.

See Also

“Customizing SIOUX” on page 258

Listing 7.1 Example of ccommand() Usage

#include <stdio.h>
#include <console.h>

42

MSL C Reference Version 10

console.h
Overview of console.h

int main(int argc, char *argvl[])

{

int 1i;
argc = ccommand (&argv) ;
for (1 = 0; 1 < argc; 1i++)

printf("%d. %s\n", i, argv[i]);
return O;

}

clrscr

Clears the console window and flushes the buffers;

#include <console.h>

void clrscr(void) ;

Remarks

This function is used to select all and clear the screen and buffer by calling

SIOUXclrscr from SIOUX.h.

Macintosh only—this function may not be implemented on all Mac OS versions.

getch

Returns the keyboard character pressed when an ascii key is pressed

#include <console.h>

int getch(void) ;

Remarks

This function is used for console style menu selections for immediate actions.

Returns the keyboard character pressed when an ascii key is pressed.

Macintosh only—this function may not be implemented on all Mac OS versions.

See Also

3

‘kbhit” on page 44

MSL C Reference Version 10

43

y
A

console.h
Overview of console.h

InstallConsole

Installs the Console package.
#include <console.h>

extern short InstallConsole(short £fd);

Table 7.2 InstallConsole

fd short A file descriptor for
standard i/o
Remarks
Installs the Console package, this function will be called right before any read or
write to one of the standard streams.
This function returns any error.
Macintosh only—this function may not be implemented on all Mac OS versions.
See Also

“RemoveConsole” on page 45

kbhit

Returns true if any keyboard key is pressed.

#include <console.h>

int kbhit (void) ;

Remarks

Returns true if any keyboard key is pressed without retrieving the key used for

stopping a loop by pressing any key

This function returns non zero when any keyboard key is pressed.

Macintosh only—this function may not be implemented on all Mac OS versions.

See Also
“getch” on page 43

44

MSL C Reference Version 10

console.h
Overview of console.h

ReadCharsFromConsole

Reads from the Console into a buffer.
#include <console.h>
extern long ReadCharsFromConsole

(char *buffer, long n);

Table 7.3 ReadCharsFromConsole

buffer char * A stream buffer
n long Number of char to read
Remarks

Reads from the Console into a buffer. This function is called by read.
Any errors encountered are returned.

Macintosh only—this function may not be implemented on all Mac OS versions.

See Also

“WriteCharsToConsole” on page 46

RemoveConsole

Removes the console package.
#include <console.h>

extern void RemoveConsole (void) ;

Remarks

Removes the console package. It is called after all other streams are closed and exit
functions (installed by either atexit or __atexit) have been called.

Since there is no way to recover from an error, this function doesn't need to
return any.

Macintosh only—this function may not be implemented on all Mac OS versions.

MSL C Reference Version 10 45

'
A

console.h
Overview of console.h

See Also

“InstallConsole” on page 44

__ttyname

Returns the name of the terminal associated with the file id.
#include <console.h>

extern char *__ ttyname(long fildes);

Table 7.4 _ttyname

fildes long The file descriptor

Remarks

Returns the name of the terminal associated with the file id. The unix.h function
ttyname calls this function (we need to map the int to a long for size of int
variance).

Returns the name of the terminal associated with the file id.
Macintosh only—this function may not be implemented on all Mac OS versions.
See Also

“ttyname” on page 534

WriteCharsToConsole

Writes a stream of output to the Console window.

#include <console.h>

extern long WriteCharsToConsole(char *buffer, long n);

Table 7.5 WriteCharsToConsole

buffer char * A stream buffer

n long Number of char to write

46 MSL C Reference Version 10

console.h
Overview of console.h

Remarks
Writes a stream of output to the Console window. This function is called by write.
Any errors encountered are returned.

Macintosh only—this function may not be implemented on all Mac OS versions.

See Also

“ReadCharsFromConsole” on page 45

MSL C Reference Version 10 47

A 4
4\

console.h
Overview of console.h

48 MSL C Reference Version 10

g |

crtl.h

The crtl.h header file consist of various runtime declarations that pertain to the Win32
x86 targets.

Overview of crtl.h

This header file defines the facilities as follows:

¢ “Argc” on page 49 is the argument list count.

3

e “Argv” on page 50 is the argument list variables.

3

e “ DllTerminate” on page 50 shows when a DLL is running terminate code.

» ‘“environ” on page 50 is the environment pointers.

<

e “ HandleTable” on page 51 is a structure allocated for each ed file handle.

e “ CRTStartup” on page 51 initializes the C Runtime start-up routines.

3

¢ “ Runlnit” on page 52 initializes the runtime, static classes and variables.

e SetupArgs” on page 52 sets up the command line arguments.

Argc
The argument count variable

#include <crtl.h>

extern int argc;

Remarks
Used for command line argument count.

This function may not be implemented on all platforms.

MSL C Reference Version 10 49

y
A

crtl.h

Overview of crtl.h

Argv

The argument command variables.
#include <crtl.h>

extern char **__argv;

Remarks
The command line arguments.

This function may not be implemented on all platforms.

_DIllITerminate

A flag to determine when a DLL is running terminate code.

#include <crtl.h>
extern int _DllTerminate;
Remarks

This flag is set when a DLL is running terminate code.

This function may not be implemented on all platforms.

environ

The environment pointers
#include <crtl.h>

extern char *(*environ);

Remarks
This is a pointer to the environment.

This function may not be implemented on all platforms.

50

MSL C Reference Version 10

crtl.h
Overview of crtl.h

_HandleTable

FileStruct is a structure allocated for each file handle
#include <crtl.h>
typedef struct
{
void *handle;
char translate;
char append;

} FileStruct;

extern FileStruct *_HandleTable[NUM_HANDLES] ;

extern int _HandPtr;

Remarks
The variable _HandPtr is a pointer to a table of handles.
The variable NUM_HANDLES lists the number of possible handles.

This function may not be implemented on all platforms.

_CRTStartup

The function _CRTStartup is the C Runtime start-up routine.
#include <crtl.h>

extern void _CRTStartup/() ;

Remarks

This function may not be implemented on all platforms.

MSL C Reference Version 10 51

http://www.metrowerks.com/docs/MSLCompatibility
http://www.metrowerks.com/docs/MSLCompatibility

y
A

crtl.h

Overview of crtl.h

_Runinit

The function _RunInit initializes the runtime, all static classes and variables.

#include <crtl.h>

extern void _RunInit();

Remarks

This function may not be implemented on all platforms.

_SetupArgs

The function _SetupArgs sets up the command line arguments.

#include <crtl.h>

extern void _SetupArgs() ;

Remarks

This function may not be implemented on all platforms.

52

MSL C Reference Version 10

http://www.metrowerks.com/docs/MSLCompatibility
http://www.metrowerks.com/docs/MSLCompatibility

ctype.h

The ctype . h header file supplies macros and functions for testing and manipulation of
character type.

Overview of ctype.h

Character Testing and Case Conversion

The ctype . h header file supplies macros for testing character type and for converting
alphabetic characters to uppercase or lowercase. The ctype . h macros support ASCII
characters (0x00 to 0x7F), and the EOF value. These macros are not defined for the
Apple Macintosh Extended character set (0x80 to OXFF).

This header file defines the facilities as follows:
* “isalnum” on page 55 tests for alphabetical and numerical characters.
¢ “isalpha” on page 57 tests for alphabetical characters.

* “isblank™ on page 57 tests for a space between words and is dependent upon the
locale usage.

e “iscntr]l” on page 58 tests for control characters.

* “isdigit” on page 58 tests for digit characters.

» ‘“isgraph” on page 59 tests for graphical characters.

¢ “islower” on page 59 tests for lower case characters.

* “isprint” on page 60 tests for printable characters.

* “ispunct” on page 60 tests for punctuation characters.

» ‘“‘isspace” on page 61 tests for white space characters.

* “isupper” on page 61 tests for upper case characters.

* “isxdigit” on page 62 tests for hexadecimal characters.

¢ “tolower” on page 62 changes from uppercase to lowercase.

* “toupper” on page 63 changes from lower case to uppercase.

MSL C Reference Version 10 53

'
A

ctype.h
Overview of ctype.h

Character Sets Supported

A Main Standard Library character tests the ASCII character set. Testing of extended
character sets is undefined and may or may not work for any specific system. See Table
9.1 for return values.

Table 9.1 Character Testing Functions

This function Returns true if c is

isalnum(c) Alphanumeric: [a-z], [A-Z], [0-9]

isalpha(c) Alphabetic: [a-z], [A-Z].

isblank(c) A blankspace between words based on
locale

iscntrl(c) The delete character (0x7F) or an
ordinary control character from 0x00 to
0x1F.

isdigit(c) A numeric character: [0-9].

isgraph(c) A non-space printing character from the

exclamation (0x21) to the tilde (0x7E).

islower(c) A lowercase letter: [a-z].

isprint(c) A printable character from space (0x20) to
tilde (0x7E).

ispunct(c) A punctuation character. A punctuation

character is neither a control nor an
alphanumeric character.

isspace(c) A space, tab, return, new line, vertical tab,
or form feed.

isupper(c) An uppercase letter: [A-Z].
isxdigit(c) A hexadecimal digit [0-9], [A-F], or
[a-f].

54 MSL C Reference Version 10

ctype.h
Overview of ctype.h

isalnum

Determine character type.
#include <ctype.h>

int isalnum(int c);

Table 9.2 isalnum

[¢ int character being evaluated

Remarks

This macro returns nonzero for true, zero for false, depending on the integer value
of c. For example usage, see Listing 9.1.

In the “C” locale, isalnum returns true only for alphabetical or numerical
characters.

Table 9.1 describes what the character testing functions return.

This function may not be implemented on all platforms.

See Also

“tolower” on page 62

“toupper” on page 63

Listing 9.1 Example of Character Testing Functions Usage

#include <stdio.h>
#include <ctype.h>
int main(void)
{
char *test = "Fbé6# 9,";

isalnum(test[0]) ?

printf ("%$c is alpha numberical\n", test[0])

printf ("%$c is not alpha numberical\n", test[0]);
isalpha (test[0]) 2

printf ("%$c is alphabetical\n", test[0])

printf ("%$c is not alphabetical\n", test[0]);
isblank (test[4]) 2

printf("%$c is a blank sapce\n", test[4])

printf("%$c is not a blank space\n", test[4]);
iscntrl (test[0]) ?

MSL C Reference Version 10 55

wr
4\

ctype.h
Overview of ctype.h

printf("%c is a control character\n", test[0])

printf("%$c is not a control character\n", test[0]);
isdigit(test[2]) ?

printf("%c is a digit\n", test[2])

printf("%$c is not a digit\n", test[2]) ;
isgraph(test[0]) ?

printf("%c is graphical \n", test[0])

printf ("%$c is not graphical\n", test[0]);
islower (test[1]) 2

printf("%c is lower case \n", test[1l])

printf ("%c is not lower case\n", test[1l]);
isprint (test[3]) ?

printf("%c is printable\n", test[3])

printf ("%$c is not printable\n", test[3]);
ispunct (test[6]) ?

printf("%c is a punctuation mark\n", test[6])

printf ("%$c is not punctuation mark\n", test[6]);
isspace(test[4]) ?

printf("%c is a space\n", test[4])

printf("%$c is not a space\n", test[4]);
isupper (test[0]) ?

printf("%c is upper case \n", test[1l])

printf ("%c is not upper case\n", test[1l]);
isxdigit(test[5]) ?

printf("%c is a hex digit\n", test[5])

printf("%$c is not a hex digit\n", test[5]);
return O;

Output:

F is alpha numberical

F is alphabetical

is a blank sapce

is not a control character
is a digit

is graphical

is lower case

is printable

, 1s a punctuation mark
is a space

is upper case

is a hex digit

0 9o

o o

56 MSL C Reference Version 10

ctype.h
Overview of ctype.h

isalpha

Determine character type.
#include <ctype.h>

int isalpha (int c);

Table 9.3 isalpha

[¢ int character being evaluated

Remarks

This macro returns nonzero for true, zero for false, depending on the integer value
of c. For example usage, see Listing 9.1.

Table 9.1 describes what the character testing functions return.

This function may not be implemented on all platforms.

isblank

Tests for a blank space or a word separator dependent upon the locale usage.
#include <ctype.h>

int isblank(int c);

Table 9.4 isblank

[¢ int character being evaluated

Remarks

This function determines if a character is a blank space or tab or if the character is
in a locale specific set of characters for which i sspace is true and is used to
separate words in text.

In the “C” locale, 1 sblank returns true only for the space and tab characters.
Table 9.1 describes what the character testing functions return.

This function may not be implemented on all platforms.

MSL C Reference Version 10 57

'
A

ctype.h

Overview of ctype.h

See Also

“isspace” on page 61

iscntrl

Determine character type.

#include <ctype.h>

int iscntrl (int c);

Table 9.5 iscntrl

int character being evaluated

Remarks

This macro returns nonzero for true, zero for false, depending on the integer value
of c. For example usage, see Listing 9.1.

Table 9.1 describes what the character testing functions return.

This function may not be implemented on all platforms.

isdigit

Determine character type.

#include <ctype.h>

int isdigit(int c¢);

Table 9.6 isdigit

Cc

int character being evaluated

Remarks

This macro returns nonzero for true, zero for false, depending on the integer value
of c. For example usage, see Listing 9.1.

Table 9.1 describes what the character testing functions return.

This function may not be implemented on all platforms.

58

MSL C Reference Version 10

ctype.h
Overview of ctype.h

isgraph

Determine character type.
#include <ctype.h>

int isgraph(int c);

Table 9.7 isgraph

[¢ int character being evaluated

Remarks

This macro returns nonzero for true, zero for false, depending on the integer value
of c. For example usage, see Listing 9.1.

Table 9.1 describes what the character testing functions return.

This function may not be implemented on all platforms.

islower

Determine character type.
#include <ctype.h>

int islower (int c);

Table 9.8 islower

[¢ int character being evaluated

Remarks

This macro returns nonzero for true, zero for false, depending on the integer value
of c. For example usage, see Listing 9.1.

Inthe “C” locale, islower returns true only for the lowercase characters.
Table 9.1 describes what the character testing functions return.

This function may not be implemented on all platforms.

MSL C Reference Version 10 59

'
A

ctype.h
Overview of ctype.h

isprint
Determine character type.

#include <ctype.h>

int isprint (int c);

Table 9.9 isprint

[¢ int character being evaluated

Remarks

This macro returns nonzero for true, zero for false, depending on the integer value
of c. For example usage, see Listing 9.1.

Table 9.1 describes what the character testing functions return.

This function may not be implemented on all platforms.

ispunct

Determine character type.
#include <ctype.h>

int ispunct (int c);

Table 9.10 ispunct

[¢ int character being evaluated

Remarks

This macro returns nonzero for true, zero for false, depending on the integer value
of c. For example usage, see Listing 9.1.

In the “C” locale, ispunct returns true for every printing character for which
neither isspace nor isalnum is true.

Table 9.1 describes what the character testing functions return.

This function may not be implemented on all platforms.

60 MSL C Reference Version 10

ctype.h
Overview of ctype.h

isspace

Determine character type.

#incl

int 1

Table 9.11 isspace

ude <ctype.h>

sspace (int c¢);

Cc

int character being evaluated

Remarks

This macro returns nonzero for true, zero for false, depending on the integer value
of c. For example usage, see Listing 9.1.

Inthe “C” locale, isspace returns true only for the standard white-space
characters.

Table 9.1 describes what the character testing functions return.

This function may not be implemented on all platforms.

isupper

Determine character type.

#incl

int 1

Table 9.12 isupper

ude <ctype.h>

supper (int c);

C

int character being evaluated

Remarks

This macro returns nonzero for true, zero for false, depending on the integer value
of c. For example usage, see Listing 9.1.

Inthe “C” locale, isupper returns true only for the uppercase characters.
Table 9.1 describes what the character testing functions return.

This function may not be implemented on all platforms.

MSL C Reference Version 10 61

'
A

ctype.h
Overview of ctype.h

isxdigit
Determine hexidecimal type.

#include <ctype.h>

int isxdigit(int c);

Table 9.13 isxdigit

[¢ int character being evaluated

Remarks

This macro returns nonzero for true, zero for false, depending on the integer value
of c. For example usage, see Listing 9.1.

Table 9.1 describes what the character testing functions return.

This function may not be implemented on all platforms.

tolower

Character conversion macro. For example usage see Listing 9.2.
#include <ctype.h>

int tolower (int c);

Table 9.14 tolower

[¢ int character being evaluated

tolower () returns the lowercase equivalent of uppercase letters and returns all
other characters unchanged.

This function may not be implemented on all platforms.

See Also

“isalpha’ on page 57

“toupper” on page 63.

62 MSL C Reference Version 10

ctype

.h

Overview of ctype.h

Listing 9.2 Example of tolower(), toupper() Usage

#include <ctype.h>
#include <stdio.h>

int main(void)
{

static char s[] =

"** DELICIOUS! lovely? delightful **";

int 1i;

for (i = 0; s[i]; i++)
putchar (tolower (s[i])) ;
putchar('\n');

for (i = 0; s[il; i++)
putchar (toupper (s[i])) ;
putchar('\n"') ;

return 0;

Output:
** delicious! lovely? delightful **
** DELICIOUS! LOVELY? DELIGHTFUL **

toupper

Character conversion macro.
#include <ctype.h>

int toupper (int c);

Table 9.15 toupper

c int

character being evaluated

Remarks

The function toupper () returns the uppercase equivalent of a lowercase
letter and returns all other characters unchanged. For example usage, see Listing

9.1.

MSL C Reference Version 10

63

A 4
4\

ctype.h
Overview of ctype.h

This function may not be implemented on all platforms.
See Also

“isalpha” on page 57

“tolower” on page 62

64 MSL C Reference Version 10

10
direct.h

The direct.h header file consist of various runtime declarations that pertain to the
Win32 x86 targets for reading and manipulation of directories/folders.

Overview of direct.h

This header file defines the facilities as follows:

13

e “ getdewd” on page 65 gets the current working directory.

o “ getdiskfree” on page 66 gets the amount of free disk space.

13

e * getdrives” on page 66 gets drives available.

_getdcwd

Determines the current working directory information.
#include <direct.h>

char * _getdcwd(int drive, char *path, int len);

Table 10.1 _getdcwd

drive int The current drive as a
number
path char * The current working

directory path

len int The buffer size

Remarks
If the full path exceeds the buffers length unexpected results may occur.
The current working directory is returned if successful or NULL if failure occurs.

This function is Windows only when declared from this header.

MSL C Reference Version 10 65

y
A

direct.h
Overview of direct.h

See Also

«

chdrive” on page 81

_getdiskfree

Determines the free disk space.
#include <direct.h>
unsigned _getdiskfree(unsigned int drive, struct _diskfree_t

* dfree) ;

Table 10.2 _getdiskfree

drive unsigned int The current drive as a
number

dfree _diskfree_t* A structure that holds the
disk information

Remarks
The structure _diskfree_t holds the disk attributes.
Zero is returned on success, true value is returned on failure.

This function is Windows only when declared from this header.

See Also

«

getdrive” on page 85

_getdrives

Determines the logical drive information.
#include <direct.h>

unsigned long _getdrives (void) ;

Remarks
There is no parameter for this function.

Returns the logical drives as a long integer value. Bit 0 is drive A, bit 1 is drive B,
bit 2 is drive C and so forth.

66 MSL C Reference Version 10

direct.h
Overview of direct.h

This function is Windows only when declared from this header.

See Also

«

getdrive” on page 85

MSL C Reference Version 10 67

A 4

4\
direct.h
Overview of direct.h
68

MSL C Reference Version 10

11
dirent.h

The header dirent.h defines several file directory functions for reading directories.

Overview of dirent.h

This header file defines the facilities as follows:

* “opendir” on page 69 opens a directory stream.

* ‘“readdir” on page 70 reads a directory stream.

¢ “readdir_r” on page 70 reentrant read a directory stream.
* “rewinddir” on page 71 rewinds a directory stream.

* “closedir” on page 72 closes a directory stream.

NOTE If you’re porting a UNIX or DOS program, you might also need the functions
in other UNIX compatibility headers.

See Also

Table 1.1 for information on POSIX naming conventions.

opendir

This function opens the directory named as an argument and returns a stream pointer of
type DIR.

#include <dirent.h>

DIR * opendir (const char *path);

Table 11.1 opendir

path const char * The path of the directory to
be opened

MSL C Reference Version 10 69

y
A

dirent.h
Overview of dirent.h

Remarks

This function returns NULL if the directory can not be opened. If successful a
directory stream pointer of type DIR * is returned.

This function may not be implemented on all platforms.

See Also

“closedir” on page 72

readdir

This function is used read the next directory entry.
#include <dirent.h>

struct dirent * readdir (DIR *dp);

Table 11.2 readdir

dp DIR * The stream being read

Remarks

The data pointed to by readdir () may be overwritten by another call to
readdir () .

The function readdir returns the next directory entry from the stream dp asa
pointer of struct dirent.

This function may not be implemented on all platforms.
See Also

“rewinddir” on page 71

readdir_r

This function is the reentrant version to read the next directory entry.
#include <dirent.h>
int readdir_r (DIR *ref, struct dirent *entry,

struct dirent ** result);

70 MSL C Reference Version 10

dirent.h

Overview of dirent.h
Table 11.3 readdir_r
dp DIR * The stream being read
entry struct dirent * Storage for the directory
entry
result struct dirent ** The next directory entry

Remarks

The readdir_xr () function provides the same service as “readdir” on
page 70. The difference is that readdir () would return a pointer to the next
directory entry, and that pointer was internal to the library implementation. For
readdir_r (), the caller provides the storage for the dirent struct.

On a successful call to readdir_r (), the function result is zero, the storage
for entry is filled with the next directory entry, and the result pointer contains a
pointer to entry. If the end of the directory is reached, the function result is zero
and the result pointer is NULL . If any error occurs, the function result is an error
code.

This function may require extra library support.

This function may not be implemented on all platforms.

See Also

“rewinddir” on page 71
“readdir” on page 70

rewinddir

This function rewinddir resets the directory stream to the original position.
#include <dirent.h>

void rewinddir (DIR * dp);

Table 11.4 rewinddir

dp DIR * The stream being rewound

Remarks

There is no return.

MSL C Reference Version 10 71

y
A

dirent.h
Overview of dirent.h
This function may not be implemented on all platforms.
See Also
“readdir” on page 70
closedir

The function closedir () ends the directory reading process. It deallocates the
directory stream pointer and frees it for future use.

#include <dirent.h>

int closedir (DIR * dp);

Table 11.5 closedir

dp DIR * The directory stream
pointer to be closed

Remarks

The function closedir () returns zero on success and the value of -1 on
failure.

This function may not be implemented on all platforms.

See Also

“opendir” on page 69

72 MSL C Reference Version 10

g |

12
div_t.h

The div.h.h header defines two structures used for math computations.

Overview of div_t.h

This header file defines the facilities as follows:
e “div_t” on page 73 stores remainder and quotient variables.
e “Idiv_t” on page 74 stores remainder and quotient variables.

e “lldiv_t” on page 74 stores remainder and quotient variables.

div_t

Stores the remainder and quotient from the div function.
#include <div_t.h>

typedef struct {

int quot;

int rem;

} div_t;

Remarks
This function may not be implemented on all platforms.

See Also

3

‘div” on page 419

MSL C Reference Version 10 73

y
A

div_t.h

Overview of div_t.h

Idiv_t

Stores the remainder and quotient from the 1div function.
#include <div_t.h>

typedef struct {

int quot;

int rem;

} ldiv_t;

Remarks

This function may not be implemented on all platforms.

See Also
“Idiv” on page 425

lidiv_t

Stores the remainder and quotient from the 11div function.
#include <div_t.h>

typedef struct {

long long quot;

long long rem;

} 1ldiv_t;

Remarks

This function may not be implemented on all platforms.

See Also
“1div” on page 425

74

MSL C Reference Version 10

13

errno.h

The errno . h header file provides the global error code variable extern errno.

Overview of errno.h

There is one global declared in errno.h: “errno” on page 75

errno

The errno . h header file provides the global error code variable errno.
#include <errno.h>
extern int errno;

The math library used for Mac OS and Windows (when optimized) is not fully compliant
with the 1990 ANSI C standard in that none of the math functions set errno. The MSL
math libraries provide better means of error detection. Using fpclassify (which is C99
portable) provides a better error reporting mechanism. The setting of errno is considered
an obsolete mechanism because it is inefficient as well as uninformative.

Most functions in the standard library return a special value when an error occurs. Often
the programmer needs to know about the nature of the error. Some functions provide
detailed error information by assigning a value to the global variable errno. The errno
variable is declared in the errno . h header file. See Table 13.1

The errno variable is not cleared when a function call is successful; its value is changed
only when a function that uses errno returns its own error value. It is the programmer's
responsibility to assign O to errno before calling a function that uses it. For example:

Table 13.1 lists the error number macros defined in MSL. Not all these values are used in
MSL but are defined in POSIX and other systems and are therefore defined in MSL to
facilitate the compilation of codes being ported from other platforms.

This macro may not be implemented on all platforms.

MSL C Reference Version 10 75

y
A

errno.h

Overview of errno.h

Table 13.1 Error Number Definitions

Error Value Description

E2BIG Argument list too long

EACCES Permission denied

EAGAIN Resource temporarily unavailable
EBUSY Device busy

ECHILD No child processes

EDEADLK Resource deadlock avoided
EDOM Numerical argument out of domain
EEXIST File already exists

EFAULT Bad address

EFBIG File too large

EFPOS File Position Error

EILSEQ Wide character encoding error
EINTR Interrupted system call

EIO Input/output error

EISDIR Is a directory

EMFILE Too many open files

EMLINK Too many links
ENAMETOOLONG File name too long

ENFILE Too many open files in system
ENODEV Operation not supported by device
ENOENT No such file or directory
ENOEXEC Exec format error

ENOLCK No locks available

ENOSPC No space left on device

76

MSL C Reference Version 10

errno.h
Overview of errno.h

Table 13.1 Error Number Definitions (continued)

Error Value Description

E2BIG Argument list too long

ENOSYS Function not implemented

ENOTDIR Not a directory

ENOTEMPTY Directory not empty

ENOTTY Inappropriate ioctl for device

ENXIO Device not configured

ERANGE Range error. The function cannot return a
value

EPERM Operation not permitted

EPIPE Broken pipe

EROFS Read-only file system

ESIGPARM Signal error

ESPIPE llegal seek

ESRCH No such process

EUNKNOWN Unknown error

EXDEV Cross-device link

Platform Assigned

EBADF Win32 assigned only, Bad file descriptor

EINVAL Win32 assigned only, Invalid argument

ENOERR Win32 assigned only, Bad file number

ENOMEM Win32 assigned only, No error detected

EMACOSERR Mac OS assigned only, the value is
assigned to the global variable
__MacOSErrNo

MSL C Reference Version 10 77

4
A

errno.h
Overview of errno.h

Listing 13.1 Example of errno Usage

#include <errno.h>
#include <stdio.h>
#include <extras.h>

int main(void)

{
char *num = "5000000000";
long result;
result = strtol(num, 0, 10);
if (errno == ERANGE)
printf ("Range error!\n");
else
printf ("The string as a long is %1d", result);
return O;
}
Output:

Range error!

78

MSL C Reference Version 10

g |

14

extras.h

The header extras.h defines several CodeWarrior provided non standard console
functions.

Overview of extras.h

The extras.h header file consists of several functions which may be indirectly included by
other headers or included for use directly through extras.h. This header file defines the
facilities as follows:

“«

chdrive” on page 81 changes the working drive.

“chsize” on page 82 changes a file size.

3

‘filelength” on page 82 gets the file length.

‘fileno” on page 83 gets the file number.
* fullpath” on page 84 gets the full pathname.

“gcvt” on page 85 converts a floating point value to a string.

“«

getdrive” on page 85 gets the drive as a number.

3

‘GetHandle” on page 86 (Windows only) gets console handle.
¢ _get_osthandle” on page 86 get an operating system handle.

¢

“heapmin” on page 87 releases unused heap to the system.

“itoa” on page 87 converts int to string.
“itow” on page 88 converts int to wide character string.

¢

“ltoa” on page 88 converts long to string.

3

*_ltow” on page 89 converts long to wide character string.

“makepath” on page 90 creates a path.
“ open_osthandle” on page 90 opens an operating system handle.
“putenv” on page 91 puts an environment variable.

13

searchenv” on page 92 searches the environment variable.

“splitpath” on page 92 splits a path into components.

“strcasecmp” on page 93 converts both strings to lower case before comparing them.

MSL C Reference Version 10 79

3
4

y
A

extras.h

Overview of extras.h

“strcmpi’” on page 94 performs case-insensitive string compare.

“strdate” on page 94 stores a date in a string.

“strdup” on page 95 duplicates a string.

“stricmp” on page 96 performs string comparison ignoring case.

“stricoll” on page 96 performs case-insensitive locale collating string comparison.

“strlwr” on page 97 converts string to lower case.

“strncasecmp” on page 97 converts both strings to lower case before comparing
them.

“strncmpi” on page 98 performs case-insensitive string compare.

“strnicmp” on page 100 performs string comparison ignoring case but specifying the
comparison length.

“strncoll” on page 99 performs length-limited locale collating string comparison.

“strnicoll” on page 100 performs case-insensitive locale collating string comparison
with a length limitation.

“strnset” on page 101 sets a number of characters in a string.

“strrev”” on page 102 reverses characters in a string.

“strset” on page 102 sets characters in a set.

“strspnp” on page 103 finds a string in another string.

“strupr” on page 104 converts string to upper case.

3

‘tell” on page 104 gets the file indicator position.

“ultoa” on page 105 converts unsigned long to string.

“«

ultow” on page 106 converts unsigned long to wide character string.

“wcsdup” on page 107 creates a wide character string duplicate.

“wecsicoll” on page 108 performs case-insensitive string comparison collated by
locale setting.

“wcsicmp” on page 108 performs wide character string comparison ignoring case.

“weslwr” on page 109 converts wide character string to lower case.

“wcsncoll” on page 110 performs length-limited locale collating wide string
comparison.

“wcsnicmp” on page 111 performs wide character string comparison ignoring case
but specifying the comparison length.

“wesnicoll” on page 110 performs length-limited locale collating wide string case
insensitive comparison.

“wcsnset” on page 112 sets a number of characters in a wide character string.

80

MSL C Reference Version 10

extras.h
Overview of extras.h

* “wcsrev” on page 113 reverses a wide character string.

* “wecsset” on page 113 sets characters in a wide character string.

* “wcsspnp” on page 114 finds a wide character string in another wide character string.

* “wstrrev’” on page 115 reverses wide character string.

¢ “wcsupr” on page 114 converts wide string to upper case.

* “wtoi” on page 115 converts wide string to integer.

NOTE If you’re porting a UNIX or DOS program, you might also need the functions
in other UNIX compatibility headers.

See Also

“MSL Extras Library Headers” on page 4 for information on POSIX naming
conventions.

_chdrive

Changes the current drive by number.
#include <extras.h>

_chdrive (int drive);

Table 14.1 _chdrive

drive int The drive as a number

Remarks
The drive is listed as a number, 1 for A, 2 for B, 3 for C, and so forth.
Zero is returned on success and negative one on failure.

This function may not be implemented on all platforms.

See Also

«

getdrive” on page 85

MSL C Reference Version 10 81

'
A

extras.h
Overview of extras.h

chsize

This function is used to change a files size.
#include <extras.h>
int chsize(int handle, long size);

int _chsize(int handle, long size);

Table 14.2 chsize

handle int The handle of the file being
changed
size long The size to change
Remarks

If a file is truncated all data beyond the new end of file is lost.

This function returns zero on success and a negative one if a failure occurs.

See Also

“GetHandle” on page 86

filelength

Retrieves the file length based on a file handle.
#include <extras.h>
int filelength(int fileno);

int _filelength(int fileno) ;

Table 14.3 filelength

fileno int The file as a handle

The filelength as an int value is returned on success. A negative one is returned on
failure.

This function may not be implemented on all platforms.

82 MSL C Reference Version 10

extras.h
Overview of extras.h

See Also
“GetHandle” on page 86

fileno

Obtains the file descriptor associated with a stream.
#include <extras.h>

int fileno (FILE *stream) ;

Table 14.4 fileno

stream FILE * A pointer to a FILE stream

Remarks

This function obtains the file descriptor for the stream. You can use the file
descriptor with other functions in unix.h, such as read () andwrite ().

For the standard I/O streams stdin, stdout, and stderr, fileno () returns
the values listed in Table 14.5.

Table 14.5 Fileno Return Value for Standard Streams

This function call... Returns this file descriptor...
fileno(stdin) 0
fileno(stdout) 1
fileno(stderr) 2

If it is successful, £ileno () returns a file descriptor. If it encounters an error, it
returns -1 and sets errno.

This function may not be implemented on all platforms.

See Also

“fdopen” on page 306

“open. _wopen” on page 121

MSL C Reference Version 10 83

y
A

extras.h
Overview of extras.h

Figure 14.1 Example of fileno() usage.

#include <extras.h>
#include <stdio.h>

int main(void)

{
printf ("The handle for the standard input device is: %d4d",
fileno(stdin));
return 0;
}
Reult
The handle for the standard input device is: 0
_fullpath
Converts a relative path name to a full path name.
#include <extras.h>
char *_fullpath(char * absPath,
const char * relPath, size_t maxLength) ;
Table 14.6 _fullpath
absPath char * The full absolute path
relPath const char * The relative path
maxLength size_t The maximum path length

Remarks

If the maxLength is NULL a path of up to MAX_PATH is used.

A pointer to the absPath is returned on success.On failure NULL is returned.

This function may not be implemented on all platforms.

84

MSL C Reference Version 10

extras.h
Overview of extras.h

gcvt

This function converts a floating point value to a null terminated char string.
#include <extras.h>
char *gcvt(double value, int digits, char *buffer);

char *_gcvt(double value, int digits, char *buffer);

Table 14.7 gcvt

value double The floating point value to
be converted into a string

digits int The number of significant
digits to converted

buffer char* The string to hold the
converted floating point
value
Remarks

The resultant string includes the decimal point and sign of the original value.
This function returns a pointer to the buffer argument.

This function may not be implemented on all platforms.

See Also

3

‘atof” on page 410

_getdrive

Finds the current drive as a number.
#include <extras.h>

int _getdrive();

This facility has no parameters.

The current drive number is returned.

This function may not be implemented on all platforms.

MSL C Reference Version 10 85

y
A

extras.h

Overview of extras.h

See Also

«

chdrive” on page 81

“GetHandle” on page 86

GetHandle

GetHandle retrieves the current objects handle.

#include <extras.h>

int GetHandle();

This facility has no parameters.

The device handle.is returned on success. A negative one is returned on failure.

This function may not be implemented on all platforms.

See Also

3

‘fileno” on page 83

_get_osfhandle

Retrieve an operating system file handle.
#include <extras.h>

long _get_osfhandle(int filehandle) ;

Table 14.8 _get_osfhandle

filehandle int An operating system file
handle

An operating system file handle as opposed to C file handle is returned if successful
otherwise sets errno and returns NULL.

This function may not be implemented on all platforms.
See Also

“GetHandle” on page 86

*_open_osthandle” on page 90,

86

MSL C Reference Version 10

extras.h
Overview of extras.h

heapmin

This function releases the heap memory back to the system.
#include <extras.h>

int heapmin (void) ;

int _heapmin (void) ;

This facility has no parameters.

Heapmin returns zero if successful otherwise sets errno to ENOSYS and returns -1;

itoa

This function converts an int value to a null terminated char array.
#include <extras.h>
char * itoa(int wval, char *str, int radix);

char * _itoa(int val, char *str, int radix);

Table 14.9 itoa

val int The integer value to
convert
str char* The string to store the

converted value

radix int The numeric base of the
number to be converted

Remarks
The radix is the base of the number in a range of 2 to 36.
A pointer to the converted string is returned.

This function may not be implemented on all platforms.

See Also
“atoi” on page 411

3

‘Itoa” on page 88

MSL C Reference Version 10 87

y
A

extras.h

Overview of extras.h

itow

Table 14.10

This function converts an int value to a null terminated wide char array.
#include <extras.h>
wchar_t* itow(int val, wchar_t *str, int radix);

wchar_t* _itow(int wval, wchar_t *str, int radix);

itow

val int The integer value to
convert

str wchar_t * The string to store the
converted value

radix int The numeric base of the
number to be converted

Remarks
The radix is the base of the number in a range of 2 to 36.
A pointer to the converted wide character string is returned.

This function may not be implemented on all platforms.

See Also
“itoa” on page 87

ltoa

This function converts a long int value to a null terminated char array.
#include <extras.h>
#define ltoa(x, y, z) _itoa(x, v, z);

#define _ltoa(x, vy, z) _itoa(x, vy, z);

Remarks
This function simply redefines _itoa for 32 bit systems.

A pointer to the converted wide character string is returned.

88

MSL C Reference Version 10

extras.h
Overview of extras.h

This function may not be implemented on all platforms.

See Also

“itoa” on page 87
“atol” on page 412

_ltow

This function converts an long value to a null terminated wide char array.
#include <extras.h>

wchar_t *_ltow(unsigned long val, wchar_t *str, int radix);

Table 14.11 _ltow

val unsigned long The long value to convert

val wchar_t * The wide character string
to store the converted
value

radix int The numeric base of the
number to be converted

Remarks
The radix is the base of the number in a range of 2 to 36.
A pointer to the converted wide character string is returned.

This function may not be implemented on all platforms.

See Also
“itow” on page 88,

3

‘Itoa” on page 88,

MSL C Reference Version 10 89

y
A

extras.h
Overview of extras.h

makepath

Makepath is used to create a path.
#include <extras.h>
void makepath (char *path, const char *drive,
const char *dir, const char *fname, const char *ext);
void _makepath (char *path, const char *drive,

const char *dir, const char *fname, const char *ext);

Table 14.12 makepath

path char * String to receive the
created path

drive const char * String containing the drive
component
dir const char * String containing the

directory component

fname const char * String containing the file
name component

ext const char * String containing the file
extension component

There is no return value.

This function may not be implemented on all platforms.

See Also

«

chdrive” on page 81

_open_osfhandle

Opens an operating system handle.
#include <extras.h>

int _open_osfhandle(long ofshandle, int flags);

920 MSL C Reference Version 10

extras.h
Overview of extras.h

Table 14.13 _open_osfhandle

ofshandle long The file as an operating
system handle
flags int file opening flags
Remarks

This function opens an operating system handle as a C file handle.

The file handle value is returned on success. A negative one is returned on failure.

This function may not be implemented on all platforms.

See Also

*_get_osthandle” on page 86.

putenv

Adds a string to the environmental variable.
#include <extras.h>
int putenv(const char * inVarName)

int _putenv(const char * inVarName)

Table 14.14 putenv

inVarName

char *

The string to add to the
environmental variable

Remarks

May also be used to modify or delete an existing string. The string must be a global

value.

The environment is restored at the program termination.

Zero is returned on success or negative one on failure.

This function may not be implemented on all platforms.

MSL C Reference Version 10

91

y
A

extras.h
Overview of extras.h

_searchenv

Searches the environmental path for a file.

#include <extras.h>
void _searchenv(const char *filename,

const char *varname, char *pathname) ;

Table 14.15 _searchenv

filename const char * The file to search for
varname const char * The environmental variable
name
pathname char * The path name of the file
Remarks

The current drive is searched first then a specified environmental variable path is
searched.

There is no return value.

This function may not be implemented on all platforms.

splitpath

This function takes a path and returns pointers to each of the components of the path.
#include <extras.h>
void splitpath(const char *path, char *drive,
char *dir, char *fname, char *ext)
void _splitpath(const char *path, char *drive,

char *dir, char *fname, char *ext)

92 MSL C Reference Version 10

extras.h
Overview of extras.h

Table 14.16 splitpath

path const char * The file path to be split

drive char * The string to receive the
drive component

dir char* The string to receive the
directory component

fname char* The string to receive the
filename component

ext char * The string to receive the
file extension component

Remarks
The programmer must provide arrays large enough to hold the various components

This function may not be implemented on all platforms.

See Also

“chdir” on page 513

strcasecmp

A functioin for ignore case string comparison
#include <extras.h>

int strcasecmp(const char *strl, const char *str2);

Table 14.17 strcasecmp

stri const char * String being compared
str2 const char * Comparison string
Remarks

The function converts both strings to lower case before comparing them.

Strcasecmp returns greater than zero if strl is larger than str2 and less than zero if
str2 is larger than str 1. If they are equal returns zero.

MSL C Reference Version 10 93

y
A

extras.h

Overview of extras.h

This function may not be implemented on all platforms.

See Also

“strncasecmp” on page 97

“stricmp’” on page 96

strempi

A case insensitive string compare.

#include <extras.h>

int strcmpi (const char *sl, const char *s2);

int _strcmpi (const char *sl, const char *s2);

Table 14.18 strcmpi

s

const char * The first string to compare

s2

const char * The comparison string

An integer value of less than zero if the first argument is less than the second in a
case insensitive string comparison. A positive value if the first argument is greater
than the second argument in a case insensitive string comparison. Zero is returned
if both case insensitive strings are the same.

This function may not be implemented on all platforms.

See Also

“strcasecmp’” on page 93

“strnicmp” on page 100

strdate
The strdate function stores a date in a buffer provided.
#include <extras.h>
char * strdate(char *str);
char * _strdate(char *str);
94 MSL C Reference Version 10

extras.h
Overview of extras.h

Table 14.19 strdate

str char * A char string to store the
date

The function returns a pointer to the str argument

Remarks

This function stores a date in the buffer in the string format of mm/dd/yy where the
buffer must be at least 9 characters.

This function may not be implemented on all platforms.

See Also

“strftime” on page 499

strdup

Creates a duplicate string in memory.
#include <extras.h>
char * strdup(const char *str);

char * _strdup(const char *str);

Table 14.20 strdup

str const char * The string to be copied

A pointer to the storage location or NULL if unsuccessful.

This function may not be implemented on all platforms.

See Also

“memcpy’”’ on page 457

MSL C Reference Version 10 95

'
A

extras.h
Overview of extras.h

stricmp

A function for string comparison ignoring case.

#include <extras.h>

int stricmp (const char *sl,const char *s2);

int _stricmp(const char *sl,const char *s2);

Table 14.21 stricmp

s const char * The string being compared
s2 const char * The comparison string
Stricmp returns greater than zero if strl is larger than str2 and less than zero if str2
is larger than str 1. If they are equal returns zero.
This function may not be implemented on all platforms.
See Also

3

‘stremp” on page 461

“strncmp” on page 470

stricoll

A case insensitive locale collating string comparison.

#include <extras.h>

int stricoll (const char *sl1,

int _stricoll (const char *sl,

Table 14.22 stricoll

const char *s2);

const char *s2);

s1

const char *

The string to compare

s2

const char *

A comparison string

96

MSL C Reference Version 10

extras.h
Overview of extras.h

Remarks

The comparison is done according to a collating sequence specified by the
LC_COLLATE component of the current locale.

If the first string is less than the second a negative number is returned. If the first
string is greater than the second then a positive number is returned. If both strings
are equal then zero is returned.

This function may not be implemented on all platforms.

See Also

“strncoll” on page 99

“wesicoll” on page 108

striwr

This function converts a string to lowercase.
#include <extras.h>
char * strlwr(char *str);

char * _strlwr (char *str);

Table 14.23 striwr

str char The string being converted

A pointer to the converted string is returned.

This function may not be implemented on all platforms.

See Also

“strupr” on page 104

“tolower” on page 62

strncasecmp

Ignore case string comparison function with length specified.
#include <string.h>

int strncasecmp (const char *sl, const char *s2, unsigned n);

MSL C Reference Version 10 97

'
A

extras.h
Overview of extras.h

Table 14.24 strncasecmp

stri const char * String being compared

str2 const char * Comparison string

n unsigned int Length of comparison
Remarks

The function converts both strings to lower case before comparing them.

Strncasecmp returns greater than zero if strl is larger than str2 and less than zero if
str2 is larger than str 1. If they are equal returns zero.

This function may not be implemented on all platforms.

See Also

“strcasecmp’ on page 93

“strnicmp” on page 100

strncmpi

A length limited case insensitive comparison of one string to another string.

#include <extras.h>

int strncmpi (const char *sl, const char *s2, size_t n);

int _strncmpi (const char *sl, const char *s2, size_t n);

Table 14.25 strncmpi

s1 const char * A string to compare
s2 const char * A comparison string
n size_t number of characters to
compare
Remarks

Starting at the beginning of the string characters of the strings are compared until a
difference is found or until n characters have been compared.

98 MSL C Reference Version 10

extras.h
Overview of extras.h

If the first argument is less than the second argument in a case insensitive
comparison a negative integer is returned. If the first argument is greater than the
second argument in a case insensitive comparison then a positive integer is
returned. If they are equal then zero is returned.

This function may not be implemented on all platforms.

See Also

“stricmp”” on page 96

“strncasecmp” on page 97

“wesicmp” on page 108

strncoll

A length limited locale collating string comparison.

#include <extras.h>

int strncoll (const char *sl, const char *s2, size_t n);

int _strncoll (const char *sl, const char *s2, size_t sz);

Table 14.26 strncoll

s1 const char * The string to compare
s2 const char * A comparison string
sz size_t Number of characters to
collate
Remarks
The comparison is done according to a collating sequence specified by the
LC_COLLATE component of the current locale.
If the first string is less than the second a negative number is returned. If the first
string is greater than the second then a positive number is returned. If both strings
are equal then zero is returned.
This function may not be implemented on all platforms.
See Also

“strnicoll” on page 100

“wesncoll” on page 110

MSL C Reference Version 10 99

y
A

extras.h
Overview of extras.h

strnicmp

A function for string comparison ignoring case but specifying the comparison length.

#include <extras.h>

iint strnicmp(const char *sl,const char *s2,int n);

nt _strnicmp (const char *sl,const char *s2,int n);

Table 14.27 strnicmp

s1

const char *

The string being compared

s2

const char *

The comparison string

n

int

Maximum comparison
length

The function strnicmp returns greater than zero if s1 is larger than s2 and less than
zero if s2 is larger than s1. If they are equal returns zero.

This function may not be implemented on all platforms.

See Also

“strcmp” on page 461

“strncmp” on page 470

strnicoll

A case insensitive locale collating string comparison with a length limitation.

#include <extras.h>

int strnicoll (const char *sl1,

int _strnicoll (const char *sl,

Table 14.28 strnicoll

const char *s2,size_t sz);

const char *s2, size_t sz);

s

const char *

The string to compare

100

MSL C Reference Version 10

extras.h
Overview of extras.h

Table 14.28 strnicoll (continued)

s1 const char * A comparison string
sz size_t
Remarks

The comparison is done according to a collating sequence specified by the
LC_COLLATE component of the current locale.

If the first string is less than the second a negative number is returned. If the first

string is greater than the second then a positive number is returned. If both strings
are equal then zero is returned.

See Also

“stricoll” on page 96

“wesicoll” on page 108

strnset

This function sets the first n characters of string to a character.
#include <extras.h>
char * strnset(char *str, int ¢, size_t n)

char * _strnset(char *str, int c, size_t n)

Table 14.29 strnset

str char * The string to be modified
c int The char to be set
n size_t The number of characters
of str to be set.to the value
of ¢
Remarks

If the number of characters exceeds the length of the string all characters are set
except for the terminating character.

A pointer to the altered string is returned.

MSL C Reference Version 10 101

'
A

extras.h
Overview of extras.h

This function may not be implemented on all platforms.

See Also

“strset” on page 102

strrev

This function reverses a string.
#include <extras.h>
char * _strrev(char *str);

char * _strrev(char *str);

Table 14.30 _strrev

str char * The string to be reversed

A pointer to the reversed string.

This function may not be implemented on all platforms.

See Also

“strcpy” on page 464

strset

This function sets characters of string to a character
#include <extras.h>
char * strset(char *str, int c)

char * _strset(char *str, int c)

Table 14.31 strset

str char* The string to be modified

[int The char to be set

A pointer to the altered string is returned.

102 MSL C Reference Version 10

extras.h
Overview of extras.h

This function may not be implemented on all platforms.

See Also

“strnset” on page 101

strspnp

This function returns pointer to first character in s1 that isn't in s2
#include <extras.h>
char * strspnp(char *sl, const char *s2)

char * _strspnp(char *sl, const char *s2)

Table 14.32 strspnp

s char* The string being checked
s2 const char * The search string as a char
set.
Remarks

This function determines the position in the string being searched is not one of the
chars in the string set.

A pointer to the first character in sl thatis notin s2 or NULL is returned if all
the characters of sl arein s2.

This function may not be implemented on all platforms.

See Also

“strcspn’ on page 465

“strspn” on page 475

MSL C Reference Version 10 103

'
A

extras.h
Overview of extras.h

strupr

The function strupr converts a string to uppercase.
#include <extras.h>
char * strupr(char *str);

char * _strupr(char *str);

Table 14.33 strupr

str char The string being converted

A pointer to the converted string is returned.

This function may not be implemented on all platforms.

See Also

“toupper” on page 63

“strlwr” on page 97

tell

Returns the current offset for a file.
#include <extras.h>

long tell (int fildes);

Table 14.34 tell

fildes int The file descriptor

Remarks

This function returns the current offset for the file associated with the file
descriptor fildes. The value is the number of bytes from the file’s beginning.

If it is successful, tell () returns the offset. If it encounters an error, tell ()
returns -1L

This function may not be implemented on all platforms.

104 MSL C Reference Version 10

g |

extras.h
Overview of extras.h

See Also

“ftell” on page 344
“Iseek” on page 527

Listing 14.1 Example of tell() Usage

#include <stdio.h>
#include <extras.h>

int main(void)

{
int £4;
long int pos;
fd = open("mytest", O_RDWR | O_CREAT | O_TRUNC) ;
write(fd, "Hello world!\n", 13);
write(fd, "How are you doing?\n", 19);
pos = tell(fd);
printf ("You're at position %1d.", pos);
close (£d) ;
return O;

}

Result

This program prints the following to standard output:
You're at position 32.

ultoa

This function converts an unsigned long value to a null terminated char array.
#include <extras.h>
char * ultoa(unsigned long val,char *str, int radix);

char * _ultoa(unsigned long val, char *str, int radix);

MSL C Reference Version 10

105

'
A

extras.h
Overview of extras.h

Table 14.35 ultoa

val unsigned long The integer value to
convert
str char* The string to store the

converted value

radix int The numeric base of the

number to be converted

Remarks

The radix is the base of the number in a range of 2 to 36. This function is the
converse of strtoul () and uses the number representation described there.

A pointer to the converted string is returned.

This function may not be implemented on all platforms.

See Also

3

‘Itoa” on page 88
“itoa” on page 87

_ultow

This function converts an unsigned long value to a null terminated wide character array.

#include <extras.h>

wchar_t *_ultow(unsigned long val, wchar_t *str, int radix);

Table 14.36 _ultow

val unsigned long The value to be converted

str wchar_t * A buffer large enough to
hold the converted value

radix int The base of the number

being converted

106 MSL C Reference Version 10

extras.h
Overview of extras.h

Remarks

The radix is the base of the number in a range of 2 to 36. This function is the wide
character equivalent of strtoul () and uses the number representation
described there.

A pointer to the converted wide character string is returned.

This function may not be implemented on all platforms.

See Also
“strtoul” on page 443
“itow” on page 88
¢ _ltow” on page 89

wcsdup

Creates a duplicate wide character string in memory.
#include <extras.h>
wchar_t * wcsdup (const wchar_t *str)

wchar_t * _wcsdup(const wchar_t *str)

Table 14.37 wcsdup

str const wchar_t * The string to be copied

A pointer to the storage location is returned upon success or NULL is returned if
unsuccessful.

This function may not be implemented on all platforms.

See Also

“strdup” on page 95

MSL C Reference Version 10 107

'
A

extras.h
Overview of extras.h

wcsicmp

A function for wide character string comparison ignoring case.
#include <extras.h>
int wcsicmp (const wchar_t *sl, const wchar_t *s2)

int _wcsicmp (const wchar_t *sl, const wchar_t *s2)

Table 14.38 wcsicmp

s1 const wchar_t * The string being compared

s2 const wchar_t * The comparison string

The function _wcsicmp returns greater than zero if strl is larger than str2 and less
than zero if str2 is larger than str 1. If they are equal returns zero.

This function may not be implemented on all platforms.

See Also

“strcmp” on page 461

“strncmp” on page 470

wcsicoll

A case insensitive locale collating wide character string comparison.

#include <extras.h>
int wcsicoll (const wchar_t *sl, const wchar_t *s2);

int _wcsicoll (const wchar_t *sl,const wchar_t *s2);

Table 14.39 wcsicoll

s1 const wchar_t * The wide string to compare

s2 const wchar_t * A comparison wide
character string

108 MSL C Reference Version 10

extras.h
Overview of extras.h

Remarks

The comparison is done according to a collating sequence specified by the
LC_COLLATE component of the current locale.

If the first string is less than the second a negative number is returned. If the first
string is greater than the second then a positive number is returned. If both strings
are equal then zero is returned.

This function may not be implemented on all platforms.

See Also

“wcsncoll” on page 110

“stricoll” on page 96

weslwr

This function converts a string to lowercase.
#include <extras.h>
wchar_t *wcslwr (wchar_t *str);

wchar_t *_wcslwr (wchar_t *str);

Table 14.40 wcslwr

str wchar_t The string being converted

A pointer to the converted string is returned.

This function may not be implemented on all platforms.

See Also
“strupr” on page 104

“strlwr”” on page 97

MSL C Reference Version 10 109

y
A

extras.h

Overview of extras.h

wceshncoll

A length limited locale collating wide string comparison.

#include <extras.h>

int wecsncoll (const wchar_t *sl, const wchar_t *s2, size_t sz);

int _wcsncoll (const wchar_t *sl1,

sz);

Table 14.41 wcsncoll

const wchar_t *s2, size_t

s1 const wchar_t * The wide string to compare
s2 const wchar_t * A comparison wide
character string
sz size_t The number of wide
characters to compare
Remarks
The comparison is done according to a collating sequence specified by the
LC_COLLATE component of the current locale.
If the first string is less than the second a negative number is returned. If the first
string is greater than the second then a positive number is returned. If both strings
are equal then zero is returned.
This function may not be implemented on all platforms.
See Also

“stricoll” on page 96

“wcsnicoll” on page 110

wcshicoll

A length limited locale collating wide string case insensitive comparison.

#include <extras.h>

int wcsnicoll (const wchar_t *sl,

const wchar_t *s2, size_t

110

MSL C Reference Version 10

extras.h
Overview of extras.h

sz);

int _wcsnicoll (const wchar_t *sl, const wchar_t *s2, size_t
sz);

Table 14.42 wcsnicoll

s1 const wchar_t * The wide string to compare

s2 const wchar_t * A comparison wide
character string

Sz

Remarks

The comparison is done according to a collating sequence specified by the
LC_COLLATE component of the current locale.

If the first string is less than the second a negative number is returned. If the first
string is greater than the second then a positive number is returned. If both strings
are equal then zero is returned.

This function may not be implemented on all platforms.

See Also

“wcsncoll” on page 110

“strnicoll” on page 100

wcsnhicmp
A function for a wide character string comparison ignoring case but specifying the
comparison length.
#include <extras.h>
iint wcsnicmp (const wchar_t *sl, const wchar_t *s2, size_t n);
iint _wcsnicmp (const wchar_t *sl, const wchar_t *s2, size_t

n);

Table 14.43 wcsnicmp

s1 const wchar_t * The string being compared

MSL C Reference Version 10 111

'
A

extras.h
Overview of extras.h

Table 14.43 wcshicmp (continued)

s2 constwchar_t * The comparison string
n int Maximum comparison
length

The function _wcsnicmp returns greater than zero if strl is larger than str2 and less
than zero if str2 is larger than str 1. If they are equal returns zero.

This function may not be implemented on all platforms.

See Also

“stricmp’” on page 96

“strncmp” on page 470

wcsnset

This function sets the first n characters of wide character string to a character.
#include <extras.h>
wchar_t *wcsnset (wchar_t *str, wchar_t wc, size_t n);

wchar_t *_wcsnset (wchar_t *str, wchar_t wc, size_t n);

Table 14.44 wcsnset

str wchar_t * The string to be modified

wc wchar_t The char to be set

n size_t The number of characters
in the string to set.

Remarks

If the number of characters exceeds the length of the string all characters are set
except for the terminating character.

A pointer to the altered string is returned.

This function may not be implemented on all platforms.

112 MSL C Reference Version 10

extras.h
Overview of extras.h

See Also

“strset” on page 102

wcsrev

This function reverses a wide character string.
#include <extras.h>
wchar_t * wcsrev(wchar_t *str);

wchar_t * _wcsrev(wchar_t *str);

Table 14.45 wcsrev

str wchar_t * The string to be reversed

A pointer to the reversed string is returned.

This function may not be implemented on all platforms.

See Also

“wstrrev’”’ on page 115

wcsset

This function sets characters of a wide character string to a wide character.
#include <extras.h>
wchar_t * wcsset (wchar_t *str, wchar_t wc);

wchar_t *_wcsset (wchar_t *str, wchar_t wc) ;

Table 14.46 wcsset

str wchar_t * The string to be modified

c wchar_t The char to be set

A pointer to the altered string is returned.

MSL C Reference Version 10 113

y
A

extras.h
Overview of extras.h

See Also

“strnset” on page 101

wcsspnp

This function returns pointer to first character in s1 that isn't in s2
#include <extras.h>
wchar_t *wcsspnp (const wchar_t *sl, const wchar_t *s2);

wchar_t *_wcsspnp (const wchar_t *sl, const wchar_t *s2);

Table 14.47 wcsspnp

s1 const wchar_t * The string being checked
s2 const wchar_t * The search string as a char
set.
Remarks

This function determines the position in the string being searched is not one of the
chars in the string set.

A pointer to the first character in sl that is not in s2 or NULL if all the characters
of s1 are in s2.

This function may not be implemented on all platforms.

See Also

“strspnp” on page 103

“strspn’’ on page 475

wcsupr

The function _wcsupr converts a wide character string to uppercase.
#include <extras.h>
wchar_t * wcsupr (wchar_t *str);

wchar_t *_wcsupr (wchar_t *str);

114 MSL C Reference Version 10

extras.h
Overview of extras.h

Table 14.48 wcsupr

str wchar_t * The string being converted

A pointer to the converted string is returned.

This function may not be implemented on all platforms.

See Also

“strupr” on page 104

“strlwr”” on page 97

wstrrev

This function reverses a wide character string.
#include <string.h>
wchar_t * _wstrrev(wchar_t * str);

wchar_t * _wstrrev(wchar_t * str);

Table 14.49 _wstrrev

str wchar_t * The string to be reversed

A pointer to the reversed string is returned.

This function may not be implemented on all platforms.

See Also

“strrev”’ on page 102

wtoi

This function converts a null terminated wide char array to an int value.
#include <extras.h>
int wtoi (const wchar_t *str);

int _wtoi(const wchar_t *str);

MSL C Reference Version 10 115

'
A

extras.h
Overview of extras.h

Table 14.50 wtoi

str const wchar_t * The string to be converted
to an int.

Remarks

The _wtoi () function converts the character array pointed to by str to an
integer value.

This function skips leading white space characters.

This function sets the global variable errno to ERANGE if the converted value
cannot be expressed as a value of type int.

The function _wtodi () returns an the converted integer value.
This function may not be implemented on all platforms.
See Also

“atoi” on page 411

116 MSL C Reference Version 10

15
fentl.h

The header file fcnt1 . h contains several file control functions that are useful for porting
a program from UNIX.

Overview of fcntl.h

This header file defines the facilities as follows:

e ‘“‘creat, wecreate” on page 118 creates a file.

* “fcntl” on page 119 manipulates a file descriptor.

* “open. _wopen” on page 121 opens a file and returns its ID.

fcntl.h and UNIX Compatibility

The header file fcntl1.h.h contains several functions that are useful for porting a
program from UNIX. These functions are similar to the functions in many UNIX libraries.
However, since the UNIX and Macintosh operating systems have some fundamental
differences, they cannot be identical. The descriptions of the functions tell you what the
differences are.

Generally, you don’t want to use these functions in new programs. Instead, use their
counterparts in the native APIL.

NOTE If you’re porting a UNIX or DOS program, you might also need the functions
in other UNIX compatibility headers.

See Also

“MSL Extras Library Headers” on page 4 for information on POSIX naming
conventions.

MSL C Reference Version 10 117

y
A

fentl.h
Overview of fentl.h

creat, _wcreate

Create a new file or overwrite an existing file and a wide character variant.
#include <fcntl.h>

int creat (const char *filename, int mode) ;

int _creat (const char *filename, int mode) ;

int _wcreat (const wchar_t *wfilename, int mode) ;

Table 15.1 creat, _wcreate

filename char* The name of the file being
created
wfilename wchar_t * The name of the file being
created
mode int The open mode
Remarks

This function creates a file named £i1lename you can write to. If the file does not
exist, creat () creates it. If the file already exists, creat () overwrites it. The
function ignores the argument mode.

This function call:
creat (path, mode) ;
is equivalent to this function call:
open (path, O_WRONLY|O_CREAT|O_TRUNC, mode) ;

If it’s successful, creat () returns the file description for the created file. If it
encounters an error, it returns - 1.

This function may not be implemented on all platforms.

See Also

“fopen” on page 317

“fdopen” on page 306

“close” on page 515.

118 MSL C Reference Version 10

fentl.h
Overview of fentl.h

Listing 15.1 Example of creat() Usage

#include <stdio.h>
#include <unix.h>

int main(void)

{
int f£d;
fd = creat("Jeff:Documents:mytest", 0);
/* Creates a new file named mytest in the folder
Documents on the volume Akbar.
write(fd, "Hello world!\n", 13);
close (£d) ;
return 0;
}
fentl
Manipulates a file descriptor.
#include <fecntl.h>
int fcntl(int fildes, int cmd, L) ;

int _fentl (int fildes,

Table 15.2 fentl

int cmd,

fildes int The file descriptor
cmd int A command to the file
system
A variable argument list
Remarks

This function performs the command specified in cmd on the file descriptor

fildes.

In the CodeWarrior ANSI library, fcnt1 () can perform only one command,

F_DUPFD. This command returns a duplicate file descriptor for the file that
fildes refers to. You must include a third argument in the function call. The new

MSL C Reference Version 10

119

y
A

fentl.h
Overview of fentl.h

file descriptor is the lowest available file descriptor that is greater than or equal to

the third argument.

Table 15.3 Floating Point Characteristics

Mode

Description

F_DUPFD

Return a duplicate file descriptor.

If it is successful, £cntl () returns a file descriptor. If it encounters an error, fcnt1 ()

returns -1.

This function may not be implemented on all platforms.

See Also

3

‘fileno” on page 83

“open. _wopen” on page 121

“fdopen” on page 306.

Listing 15.2 Example of fcntl() Usage

#include <unix.h>

int main(void)
{
int £d41, £d2;

fdl = open("mytest", O_WRONLY | O_CREAT);

write(fdl, "Hello world!\n", 13);

/* Write to the original file descriptor. */

fd2 = fcntl(£d1l, F_DUPFD, O0);

/* Create a duplicate file descriptor. */
write(fd2, "How are you doing?\n", 19);
/* Write to the duplicate file descriptor. */

close(fd2) ;

return O;

Result After you run this program,

120

MSL C Reference Version 10

fentl.h

Overview of fentl.h
the file mytest contains the following:
Hello world!
How are you doing?
open, _wopen
Opens a file and returns its ID and a wide character variant.
#include <fcntl.h>
int open(const char *path, int oflag);
int _open(const char *path, int oflag);
Table 15.4 open
path char * The file path as a string
oflag int The open mode

Remarks

The function open () opens a file for system level input and output. and is used
with the UNIX style functions read() and write().

Table 15.5 Floating Point Characteristics

Mode Description

O_RDWR Open the file for both read and write.

O_RDONLY Open the file for read only.

O_WRONLY Open the file for write only.

O_APPEND Open the file at the end of file for
appending.

O_CREAT Create the file if it doesn't exist.

O_EXCL Do not create the file if the file already
exists.

O_TRUNC Truncate the file after opening it.

O_NRESOLVE Don't resolve any aliases.

MSL C Reference Version 10 121

y
A

fentl.h
Overview of fentl.h

Table 15.5 Floating Point Characteristics (continued)

Mode Description

O_ALIAS Open alias file (if the file is
an alias).

O_RSRC Open the resource fork.

O_BINARY Open the file in binary mode (default is
text mode).

open () returns the file id as an integer value.

This function may not be implemented on all platforms.

See Also

“close” on page 515

“Iseek’ on page 527

“read” on page 528

“write’” on page 536

Listing 15.3 Example of open() Usage

#include <stdio.h>
#include <stdlib.h>
#include <fentl.h>
#include <string.h>
#include <unistd.h>

#define SIZE FILENAME MAX
#define MAX 1024

char fname[SIZE] = "DonQ.txt";

int main(void)

{

int fdes;

char temp [MAX];

char *Don = "In a certain corner of la Mancha, the name of\n\
which I do not choose to remember,...";

char *Quixote = "there lived\none of those country\

gentlemen, who adorn their\nhalls with rusty lance)\

122 MSL C Reference Version 10

fentl.h
Overview of fentl.h

and worm-eaten targets.";

/* NULL terminate temp array for printf */
memset (temp, '\0', MAX);

/* open a file */
if((fdes = open(fname, O_RDWR | O_CREAT))== -1)
{
perror ("Error ");
printf ("Can not open %s", fname);
exit(EXIT_FAILURE) ;
}

/* write to a file */
if(write(fdes, Don, strlen(Don)) == -1)
{
printf("%$s Write Error\n", fname);
exit(EXIT_FAILURE);
}

/* move back to over write ... characters */
if(lseek(fdes, -3L, SEEK _CUR) == -1L)
{
printf ("Seek Error");
exit (EXIT _FAILURE);
}

/* write to a file */
if(write(fdes, Quixote, strlen(Quixote)) == -1)
{
printf ("Write Error");
exit(EXIT_FAILURE);
}

/* move to beginning of file for read */
if(lseek(fdes, 0L, SEEK_SET) == -1L)
{

printf ("Seek Error");

exit(EXIT_FAILURE);
}

/* read the file */
if(read(fdes, temp, MAX) == 0)
{

printf ("Read Error");

exit (EXIT _FAILURE) ;

MSL C Reference Version 10 123

y
A

fentl.h
Overview of fentl.h

/* close the file */
if(close(fdes))
{
printf ("File Closing Error");
exit(EXIT_FAILURE);

puts (temp) ;

return 0;

In a certain corner of la Mancha, the name of
which I do not choose to remember, there lived
one of those country gentlemen, who adorn their
halls with rusty lance and worm-eaten targets.

124 MSL C Reference Version 10

16

fenv.h

The <fenv.h> header file prototypes and defines C99 data types, macros and functions
that allow interaction with the floating-point environment.

Overview of fenv.h

Using the data types, macros, and functions in fenv . h, programmers are able to test and
change rounding direction as well as test, set, and clear exception flags. Both the rounding
direction and exception flags can be saved and restored as a single entity.

Data Types

There are two data types defined in fenv.h:
o “fenv_t” is the floating point environment type.

o “fexcept t” is the floating point exception type.

fenv_t

This type represents the entire floating-point environment.

fexcept_t

The type represents the floating-point exception flags collectively.

Macros

Each macro correlates to a unique bit position in the floating-point control register and a
bitwise OR of any combination of macros results in distinct values. Macro values are
platform dependent. there are three distinct macro types.

* “Floating-point exceptions” on page 127,

MSL C Reference Version 10 125

'
A

fenv.h
Macros

3

¢ “Rounding Directions” on page 126,
¢ “Environment” on page 127,

Floating-Point Exception Flags

Table 16.1 Floating-Point Exception Flags

Macro Description

FE_DIVBYZERO Divide by zero

FE_INEXACT Inexact value

FE_INVALID Invalid value

FE_OVERFLOW Overflow value

FE_UNDERFLOW Underflow value

FE_ALL_EXCEPT The result of a bitwise OR of all the
floating-point exception macros

Rounding Directions

Table 16.2 Rounding Directions

Macro Description
FE_DOWNWARD Rounded downwards
FE_TONEAREST Rounded to nearest
FE_TOWARDZERO Rounded to zero
FE_UPWARD Rounded upwards

126 MSL C Reference Version 10

fenv.h

Pragmas
Environment
Table 16.3 Environment
Macro Description
FE_DFL_ENV is a pointer to the default floating-point

environment defined at the start of
program execution.

Pragmas

The header fenv.h requires one pragma “FENV_ACC” on page 127, which must be set in
order for floating point flags to be tested.

FENV_ACC

FENV_ACCESS must be set to the on position in order for the floating-point flags to be
tested. Whether this pragma is on or off by default is implementation dependent.

This pragma may not be implemented on all platforms.

#pragma STDC FENV_ACCESS on|off|default

Floating-point exceptions

The header fenv.h includes several floating point exception flags manipulators.

* “feclearexcept” on page 128

o “fegetexceptflag” on page 129

* “feraiseexcept” on page 130

o “fesetexceptflag” on page 131

o “fetestexcept” on page 132

MSL C Reference Version 10 127

y
A

fenv.h
Floating-point exceptions

feclearexcept

The feclearexcept clears one or more floating-point exception flag indicated by its
argument. The argument represents the floating-point exception flags to be cleared.

#include <fenv.h>

void feclearexcept (int excepts);

Table 16.4 feclearexcept

excepts int Determines which floating-
point exception flags to
clear
Remarks

The following example illustrates how programmers might want to “overlook” a
floating-point exception. In this case two division operations are taking place. The
first uses real numbers, the second imaginary. Suppose that even if the first
operation fails we would still like to use the results from the second operation and
act like no exceptions have occurred.

There is no return value.

This function may not be implemented on all platforms.

Listing 16.1 Example or feclearexcept Usage

void ie_feclearexcept (void)

{

float complexl1[2] {0,1};
float complex2[2] = {0,2};
float result[2] = {0,0};
feclearexcept (FE_ALL_EXCEPT) ;

/* CALCULATE */

result[0] = complex1[0] / complex2[0]; /* OOPs 0/0, sets the FE_INVALID
flag */

result[l] = complex1[1l] / complex2[1l]; /* = some # */
/* CHECK IF @ LEAST 1 OPERATION WAS SUCCESS */
if ((result[0] != 0) || (result[l] !'= 0))

feclearexcept (FE_INVALID) ;
/* clear flag */

else
cout << "what ever\n";

128 MSL C Reference Version 10

fenv.h
Floating-point exceptions

cout <<" Rest of code ... \n";

fegetexceptflag

The fegetexceptflag function stores a representation of the states of the floating-point
exception flags in the object pointed to by the argument flag. Which exception flags to
save is indicated by a second argument.

#include <fenv.h>

void fegetexceptflag(fexcept_t *flagp, int excepts);

Table 16.5 fegetexceptflag

flagp fexcept_t Pointer to floating-point
exception flags

excepts int Determines which floating-
point exception flags to
save
Remarks

The purpose of this function is to save specific floating-point exception flags to
memory. In the case of the example below the saved values determine the output
of the program.

Which exception flags to save is indicated by the argument excepts.
There is no return value.

This function may not be implemented on all platforms.

Listing 16.2 Example of fegetexceptflag Usage

void ie_fegetexceptflag()

{

int result = 0;
fexcept_t flag;
feclearexcept (FE_ALL_EXCEPT) ;

/* SOME OPERATION TAKES PLACE */

result = 1+1;

/* NEED TO KNOW IF OPERATION WAS SUCCESSFUL */
fegetexceptflag(&flag, FE_INVALID | FE_OVERFLOW) ;

MSL C Reference Version 10 129

y
A

fenv.h
Floating-point exceptions

/* NOW CHECK OBJECT POINTED 2 BY flag */

if (flag == FE_INVALID)
cout << "The operation was invalid!\n";
if (flag == FE_OVERFLOW)
cout << "The operation overflowed!\n";
if (flag == FE_INVALID | FE_OVERFLOW)
cout << "A failure occured\n";
else

cout << "success!\n";

feraiseexcept

The feraiseexcept function raises the floating-point exceptions represented by its
argument.

#include <fenv.h>

void feraiseexcept (int excepts);

Table 16.6 feraiseexcept

excepts int determines which floating-
point exception flags to
raise
Remarks

The difference between feraiseexcept and fesetexceptflag is what value the
floating-point exception is raised to. feraiseexcept simply raises the exception,
raise meaning setting to a logical one. On the other hand fesetexceptflag looks at
the value of a stored floating-point exception flag and raises the current flag to the
level of the stored value. If the stored exception flag is zero, the current exception
flag is changed to a zero.

There is no return value.

This function may not be implemented on all platforms.

Listing 16.3 Example of feraiseexcept Usage

void ie_feraiseexcept (void)

{
feclearexcept (FE_ALL_EXCEPT); /* all exception flags = 0 */
/* RAISE SPECIFIC FP EXCEPTION FLAGS */

130 MSL C Reference Version 10

fenv.h
Floating-point exceptions

feraiseexcept (FE_INVALID | FE_OVERFLOW) ;

fesetexceptflag

The fesetexceptflag function will set the floating-point exception flags indicated by the
second argument to the states stored in the object pointed to in the first argument.

#include <fenv.h>

void fesetexceptflag(const fexcept_t *flagp, int excepts);

Table 16.7 fesetexceptflag

flag const fexcept_t * Constant pointer to
floating-point exception
flags
excepts int Determines which floating-
point exception flags to
raise
Remarks

The example below illustrates how this function can be used to restore floating-
point exception flags after a function call.

There is no return value.

This function may not be implemented on all platforms.

Listing 16.4 Example of fesetexceptflag Usage

void ie_fesetexceptflag(void)

{

*/

float result = 0;
fexcept_t flag = 0; /* fp exception flags saved here */
feclearexcept (FE_ALL_EXCEPT) ;

fegetexceptflag(&flag, FE_INVALID | FE_OVERFLOW) ; /* save some flags

/* SOME FUNCTION CALL */
result = 0/0; /* OOPS caused an exception */
for (int i = 0; i < 100; i++)

cout << i << endl;

MSL C Reference Version 10 131

y
A

fenv.h
Floating-point exceptions

/* NOW WE'RE BACK & WANT ORIGINAL VALUES OF FLAGS */
fesetexceptflag(&flag, FE_INVALID | FE_OVERFLOW) ; /* restore flags
*/
}

fetestexcept

Use the fetestexceptflag function to find out if a floating-point exception has occurred.
The argument determines which exceptions to check for.

#include <fenv.h>

int fetestexcept (int excepts);

Table 16.8 fetestexcept

excepts int Determines which floating-
point exception flags to
check
Remarks

The example below is similar to the fegetexceptflag example. This time though
fetestexcept provides a direct interface to the exception flags so there is no need to
save and then operate on the exception flag values.

Returns true if floating point exception has occurred.

This function may not be implemented on all platforms.

Listing 16.5 Example of fetestexcept Usage

void ie_fetestexcept (void)
{
int result = 0;
feclearexcept (FE_ALL_EXCEPT) ;

/* SOME OPERATION TAKES PLACE */
result = 1+1;
/* NEED TO KNOW IF OPERATION WAS SUCCESSFUL */
/* but instead of getting flags, check them directly */
if (fetestexcept (FE_INVALID) == 1)
cout << "The operation was invalid!\n";
if (fetestexcept (FE_OVERFLOW) == 1)
cout << "The operation overflowed!\n";

132 MSL C Reference Version 10

fenv.h
Rounding

if (fetestexcept (FE_INVALID | FE_OVERFLOW) == 1)
cout << "A failure occured\n";
else
cout << "success!\n";

Rounding

The header fenv.h includes two functions for determining the rounding direction.

¢ ‘“fegetround” on page 133

* “fesetround” on page 134

fegetround

The fegetround function returns the value of the rounding direction macro representing the
current rounding direction.

#include <fenv.h>
int fegetround(void) ;

This facility has no parameters.

Remarks

The example that follows changes the rounding direction to compute an upper
bound for the expression, then restores the previous rounding direction. This
example illustrates the functionality of all the rounding functions.

The function fegetround returns the current rounding direction as an integer value.

This function may not be implemented on all platforms.

Listing 16.6 Example of fegetround Usage

void ie_fegetround (void)

{

int direction 0

double x up = 0.0, a = 5.0, b =2.0, ¢
d =6.0, £ 2.5, g = 0.5, ubound =
feclearexcept (FE_ALL_EXCEPT) ;

7

3.0,

ol

0;

/* CALCULATE DENOMINATOR */
fesetround (FE_DOWNWARD) ;

MSL C Reference Version 10 133

A 4
4\

fenv.h
Environment

x up = £ + g;

/* calculate denominator */

/* CALCULATE EXPRESSION */
direction = fegetround();

/* save rounding direction */
fesetround (FE_UPWARD) ;

/* change rounding direction */
ubound = (a * b + ¢ * d) / x_up;

/* result should = 9.3333 */
fesetround(direction) ;

/* return original state */
cout << " (a * b+ c *d) / (f + g) =" << ubound << endl;

fesetround

The fesetround function sets the rounding direction specified by its argument, round. If the
value of round does not match any of the rounding macros, the function returns 0 and the
rounding direction is not changed.

#include <fenv.h>

int fesetround(int round) ;

Table 16.9 fesetround

round int Determines the direction
result are rounded.

Remarks

For a function to be reentrant the function must save the rounding direction in a
local variable with fegetround() and restore with fesetround() upon exit.

Zero is returned if and only if the argument is not equal.
This function may not be implemented on all platforms.

For an example of fesetround, see Listing 16.6.

Environment

The header fenv.h includes several functions for determining the floating-point
environment information.

134 MSL C Reference Version 10

fenv.h
Environment

* “fegetenv” on page 135

* “feholdexcept” on page 136,

o “fesetenv” on page 137,
e ‘“feupdateenv” on page 137,

fegetenv

The fegetenv stores the current floating-point environment in the object pointed to by the
argument.

#include <fenv.h>

void fegetenv(fenv_t *envp) ;

Table 16.10 fegetenv

envp fenv_t * Pointer to floating-point
environment

Remarks

This function is used when a programmer wants to save the current floating-point
environment, that is the state of all the floating-point exception flags and rounding
direction. In the example that follows the stored environment is used to hide any
floating-point exceptions raised during an interim calculation.

There is no return value.

This function may not be implemented on all platforms.

Listing 16.7 Example of fegetenv Usage

long double ie_fegetenv(void)

{

float x=0, y=0;
fenv_t envl =0, env2 = 0;
feclearexcept (FE_ALL_EXCEPT) ;

fesetenv (FE_DFL_ENV); /* set 2 default */
X = x +y; /* fp op, may raise exception */
fegetenv (&envl) ;
y =y * x;/* fp op, may raise exception */
fegetenv (&env2) ;

MSL C Reference Version 10 135

y
A

fenv.h
Environment

feholdexcept

Saves the current floating-point environment and then clears all exception flags. This
function does not affect the rounding direction and is the same as calling:

fegetenv (envp) ;
feclearexcept (FE_ALL_EXCEPT) ;
#include <fenv.h>

int feholdexcept (fenv_t *envp)

Table 16.11 feholdexcept

envp fenv_t Pointer to floating-point
environment

There is no return value.

This function may not be implemented on all platforms.

Listing 16.8 Example of feholdexcept Usage

void ie_feholdexcept (void)

{ /* This function signals underflow if its result is
denormalized, overerflow if its result is infinity,
and inexact always, but hides spurious exceptions
occurring from internal computations. */

fenv_t local_env;
int c;
/* can be FP_NAN, FP_INFINITE , FP_ZERO,
FP_NORMAL, or FP_SUBNORMAL */
long double A=4, B=3, result=0;
feclearexcept (FE_ALL_EXCEPT) ;

feholdexcept (&local_env) ;
/* save fp environment */
/* INTERNAL COMPUTATION */
result = pow (A, B);
c = fpclassify(result);
/* inquire about result */
feclearexcept (FE_ALL_EXCEPT) ;
/* hides spurious exceptions */
feraiseexcept (FE_INEXACT) ;
/* always raise */

136 MSL C Reference Version 10

fenv.h
Environment

if (c==FP_INFINITE)

feraiseexcept (FE_OVERFLOW) ;
else if (c==FP_SUBNORMAL)

feraiseexcept (FE_UNDERFLOW) ;
/* RESTORE LOCAL ENV W/ CHNGS */
feupdateenv (&local_env) ;

fesetenv

The fesetenv function establishes the floating-point environment represented by the object
pointed to by envp. This object will have been set by a previous call to the functions
fegetenv, feholdexcept or can use FE_DEFAULT_ENV.

#include <fenv.h>

void fesetenv(constfenv_t *envp) ;

Table 16.12 fesetenv

envp const fenv_t Pointer to floating-point
environment

There is no return value.
This function may not be implemented on all platforms.

For an example of fesetenv, see Listing 16.7.

feupdateenv

This is a multi-step function that takes a saved floating-point environment and does the
following:

1. Save the current floating-point environment into temporary storage. This value will be
used as a mask to determine which signals to raise.

2. Restore the floating-point environment pointed to by the argument envp.

3. Raise signals in newly restored floating-point environment using values saved in step
one.

#include <fenv.h>

void feupdateenv(const fenv_t *envp) ;

MSL C Reference Version 10 137

'
A

fenv.h
Environment

Table 16.13 feupdateenv

envp

const fenv_t

Constant pointer to
floating-point environment

This function may not be implemented on all platforms.

There is no return value.

For an example of feupdateenv, see Listing 16.8.

138

MSL C Reference Version 10

float.h

17

The £1loat .h header file macros specify the

<

“Floating Point Number Characteristics” on

page 139 for float, double, and long double types.

Overview of float.h

The float .h header file consists of macros that specify the characteristics of floating
point number representation for f1oat, double, and long double types.

Floating Point Number Characteristics

These macros are listed in Table 17.1. Macros beginning with FLT apply to the float
type; DBL, the double type; and LDBL, the long double type.

The FLT_RADIX macro specifies the radix of exponent representation.

The FLT_ROUNDS specifies the rounding mode. CodeWarrior C rounds to nearest.

Table 17.1 Floating Point Number Characteristics

Macro

Description

FLT_MANT_DIG, DBL_MANT_DIG,
LDBL_MANT_DIG

The number of base FLT_RADIX digits in
the significant.

FLT_DIG, The decimal digit precision.

DBL_DIG,

LDBL_DIG

FLT_MIN_EXP, The smallest negative integer exponent
DBL_MIN_EXP, that FLT_RADIX can be raised to and still
LDBL_MIN_EXP be expressible.

FLT_MIN_10_EXP,
DBL_MIN_10_EXP,
LDBL_MIN_10_EXP

The smallest negative integer exponent
that 10 can be raised to and still be
expressible.

FLT_MAX_EXP,
DBL_MAX_EXP,
LDBL_MAX_EXP

The largest positive integer exponent that
FLT_RADIX can be raised to and still be
expressible.

MSL C Reference Version 10

139

'
A

float.h
Overview of float.h

Table 17.1 Floating Point Number Characteristics (continued)

Macro Description

FLT_MAX_10_EXP, The largest positive integer exponent that
DBL_MAX_10_EXP, 10 can be raised to and still be
LDBL_MAX_10_EXP expressible.

FLT_MIN, The smallest positive floating point value.
DBL_MIN,

LDBL_MIN

FLT_MAX, The largest floating point value.
DBL_MAX,

LDBL_MAX

FLT_EPSILON, The smallest fraction expressible.
DBL_EPSILON,

LDBL_EPSILON

140 MSL C Reference Version 10

18
FSp_fopen.h

The FSp_fopen.h header defines functions to open a file based on the Macintosh file
system.

Overview of FSp_fopen.h

This header file defines the facilities as follows:

* “FSp_fopen” on page 141 opens a Macintosh file for fopen.

» “FSRef fopen” on page 142 opens a Macintosh file for fopen when files exist.

* “FSRefParentAndFilename fopen” on page 143 opens Macintosh files for existing
and non-existing files that can be created.

FSp_fopen
The function FSp_fopen opens a file with the Macintosh Toolbox FSpec function and
returns a FILE pointer.
#include <Fsp_fopen.h>

FILE * FSp_fopen(ConstFSSpecPtr spec, const char *
open_mode) ;

Table 18.1 FSp_fopen

spec ConstFSSpecPtr A toolbox file pointer
open_mode char * The open mode
Remarks

This function requires the programmer to include the associated FSp_fopen.c
source file in their project. It is not included in the MSL C library.

The FSp_fopen facility opens a file with the Macintosh Toolbox FSRefPtr
function and return a FILE pointer.

Macintosh only—this function may not be implemented on all Mac OS versions.

MSL C Reference Version 10 141

y
A

FSp_fopen.h
Overview of FSp_fopen.h

See Also

“fopen” on page 317

FSRef_fopen

Opens an existing file with FSRef and returns a FILE pointer.
#include <Fsp_fopen.h>

FILE * FSRef_fopen (FSRefPtr spec, const char * open_mode) ;

Table 18.2 FSRef_fopen

spec FSRefPtr An FSRef pointer for an
existing file.
open_mode char * The open mode
Remarks

This function requires the programmer to include the associated FSp_fopen.c source file
in their project as it is not included in the MSL C library. Also, there are three libraries that
may need to be weak linked in a non-Carbon target in order to build when you use the new
file system APIs.

¢ TextCommon
* UnicodeConverter
e UTCUtils
The FSRefPtr facility returns a FILE pointer

Macintosh only—this function may not be implemented on all Mac OS versions.

See Also

“fopen” on page 317

3

‘FSRefParentAndFilename fopen” on page 143

142 MSL C Reference Version 10

FSp_fopen.h
Overview of FSp_fopen.h

FSRefParentAndFilename_fopen

FSRefParentAndFilename_fopen works on both files that already exist as well as
nonexistent files that can be created by the call.

#include <Fsp_fopen.h>

FILE * FSRefParentAndFilename_fopen (
const FSRefPtr theParentRef,
ConstHFSUniStr255Param theName,

const char *open_mode) ;

Table 18.3 FSRefParentAndFilename_fopen

theParentRef FSRefPtr A Carbon file pointer to the
existing parent FSRef
theName ConstHFSUniStr255Param | The unicode name for the
file to open
open_mode char* The open mode
Remarks

This function requires the programmer to include the associated FSp_fopen.c source file
in their project as it is not included in the MSL C library. Also, there are three libraries that
may need to be weak linked in a non-Carbon target in order to build when you use the new
file system APIs.

* TextCommon
¢ UnicodeConverter
e UTCUtils
The FSRefParentAndFilename_fopen facility returns a FILE pointer

Macintosh only—this function may not be implemented on all Mac OS versions.

See Also
“fopen” on page 317

“FSRef fopen” on page 142

MSL C Reference Version 10 143

A 4
4\

FSp_fopen.h
Overview of FSp_fopen.h

144 MSL C Reference Version 10

1
inttypes.h

The header inttypes.h defines integer type equivalent symbols and keywords.

Overview of inttypes.h

The inttypes.h header file consists of functions for manipulation of greatest-width
integers and for converting numeric character string to greatest-width integers. It includes
various types and macros to support these manipulations. It also includes formatting
symbols for formatted input and output functions.

* “Greatest-Width Integer Types” on page 145. a type used for long long division

* “Greatest-Width Format Specifier Macros” on page 146. formatting specifiers for
printf and scanf family functions.

* “Greatest-Width Integer Functions” on page 150, functions for manipulation and
conversion

The header inttype.h includes several functions for greatest-width integer
manipulation and conversions.

* “imaxabs” on page 150 computes the absolute value of a greatest-width integer.

* “imaxdiv” on page 150 computes the quotient and remainder.

¢ “strtoimax” on page 151 converts string to greatest-width integer.

* “strtoumax” on page 152 converts string to greatest-width unsigned integer.

* “wcstoimax” on page 153 converts wide character string to greatest-width integer.

* “wcstoumax” on page 155 converts wide character string to greatest-width unsigned
integer.

Greatest-Width Integer Types

One type is defined for greatest-width integer types used for long long division
manipulation.

MSL C Reference Version 10 145

'
A

inttypes.h
Greatest-Width Format Specifier Macros

imaxdiv_t

A structure type that can store the value returned by the imaxdiv function as described in
Table 19.1.

Table 19.1 imaxdiv_t Structure Elements

quot Defined for the appropriate int, long or
long long type

rem Defined for the appropriate int, long or
long long type

Greatest-Width Format Specifier Macros

The inttypes.h header includes object-like macros that expand to a conversion
specifier suitable for use with formatted input and output functions.

Table 19.2 shows output formatting macros

Table 19.3 shows input formatting macros.

Table 19.2 Fprintf Greatest-Width Format Specifiers

Macro Specifier | Macro Specifier | Macro Specifier

Substituti Substituti Substituti

on on on

PRId8 d PRId16 hd PRId32 Id

PRId64 lid PRIALEAS d PRIALEAS hd
T8 T16

PRIALEAS Id PRIALEAS ld PRIJFAST d

T32 T64 8

PRIJFAST hd PRIJFAST Id PRIJFAST Id

16 32 64

PRIAMAX Id PRIAPTR Id PRIi8 i

PRIi16 hi PRIi32 li PRIi64 i

PRIILEAST i PRIILEAST hi PRIILEAST li

8 16 32

146 MSL C Reference Version 10

inttypes.h

Greatest-Width Format Specifier Macros

Table 19.2 Fprintf Greatest-Width Format Specifiers (continued)

Macro Specifier | Macro Specifier | Macro Specifier

Substituti Substituti Substituti

on on on

PRIILEAST i PRIIFAST8 i PRIIFAST1 hi

64 6

PRIIFAST3 li PRIIFAST6 lli PRIIMAX i

2 4

PRIIPTR li PRIo8 o PRIlo16 ho

PRIl032 lo PRlo64 llo PRIOLEAS o]

T8

PRIOLEAS ho PRIOLEAS lo PRIOLEAS llo

T16 T32 T64

PRIOFAST o] PRIOFAST ho PRIOFAST lo

8 16 32

PRIOFAST llo PRIoMAX llo PRIOPTR lo

64

PRIu8 u PRIu16 hu PRIu32 lu

PRIu64 llu PRIULEAS u PRIULEAS hu
T8 T16

PRIULEAS lu PRIULEAS llu PRIUFAST u

T32 T64 8

PRIUFAST hu PRIUFAST lu PRIUFAST llu

16 32 64

PRIUMAX llu PRIUPTR lu PRIx8 X

PRIx16 hx PRIx32 Ix PRIx64 14

PRIXLEAS X PRIXLEAS hx PRIXLEAS Ix

T8 T16 T32

PRIXLEAS lIx PRIXFAST X PRIXFAST hx

T64 8 16

PRIXFAST Ix PRIXFAST lIx PRIXMAX lIx

32 64

PRIXPTR Ix PRIX8 X PRIX16 hX

MSL C Reference Version 10 147

'
A

inttypes.h

Greatest-Width Format Specifier Macros

Table 19.2 Fprintf Greatest-Width Format Specifiers (continued)

Table 19.3 Fscanf Greatest-Width Format Specifiers

Macro Specifier | Macro Specifier | Macro Specifier

Substituti Substituti Substituti

on on on

PRIX32 IX PRIX64 X PRIXLEAS X
T8

PRIXLEAS hX PRIXLEAS IX PRIXLEAS 11X

T16 T32 T64

PRIXFAST X PRIXFAST hX PRIXFAST IX

8 16 32

PRIXFAST 11X PRIXMAX 11X PRIXPTR IX

64

NOTE

Separate macros are used with input and output functions because different

format specifiers are generally required for the fprintf and fscanf

family of functions.

Macro Specifier | Macro Specifier | Macro Specifier

Substituti Substituti Substituti

on on on

SCNd8 hhd SCNd16 hd SCNd32 Id

SCNd64 lid SCNdLEAS | hhd SCNdLEAS | hd
T8 T16

SCNdLEAS | Id SCNdLEAS | Iid SCNdFAST | hhd

T32 T64 8

SCNdFAST | hd SCNdFAST | Id SCNdFAST | lid

16 32 64

SCNdMAX e} SCNdPTR Id SCNi8 hhi

SCNi16 hi SCNi32 li SCNi64 lli

SCNILEAS hhi SCNILEAS hi SCNILEAS li

T8 T16 T32

148

MSL C Reference Version 10

inttypes.h
Greatest-Width Format Specifier Macros

Table 19.3 Fscanf Greatest-Width Format Specifiers (continued)

Macro Specifier | Macro Specifier | Macro Specifier

Substituti Substituti Substituti

on on on

SCNILEAS i SCNIFAST hhi SCNIFAST hi

T64 8 16

SCNIFAST li SCNIFAST i SCNIMAX i

32 64

SCNiPTR li SCNo8 hho SCNo16 ho

SCNo32 lo SCNo64 llo SCNoLEAS | hho

T8

SCNoLEAS | ho SCNoLEAS | lo SCNoLEAS | llo

T16 T32 T64

SCNoFAST | hho SCNoFAST | ho SCNoFAST | lo

8 16 32

SCNoFAST | llo SCNoMAX llo SCNoPTR lo

64

SCNu8 hhu SCNu16 hu SCNu32 lu

SCNu64 llu SCNuLEAS | hhu SCNuULEAS | hu
T8 T16

SCNuLEAS | lu SCNuLEAS | llu SCNuFAST | hhu

T32 T64 8

SCNuFAST | hu SCNuFAST | lu SCNuFAST | llu

16 32 64

SCNuMAX llu SCNuPTR lu SCNx8 hhx

SCNx16 hx SCNx32 Ix SCNx64 lIx

SCNxLEAS | hhx SCNxLEAS | hx SCNxLEAS | Ix

T8 T16 T32

SCNxLEAS | lix SCNxFAST | hhx SCNxFAST | hx

T64 8 16

SCNxFAST | Ix SCNxFAST | lix SCNxMAX lIx

32 64

SCNxPTR Ix

MSL C Reference Version 10 149

'
A

inttypes.h
Greatest-Width Integer Functions

Greatest-Width Integer Functions

The header inttype.h includes several functions for greatest-width integer

manipulation and conversions.

imaxabs

Computes the absolute value of a greatest-width integer.
#include <inttypes.h>

intmax_t imaxabs (intmax_t j);

Table 19.4 imaxabs

j intmax_t

The value being computed

Remarks

The behavior is undefined if the result can not be represented.

The imaxabs function returns the absolute value.

This function may not be implemented on all platforms.

See Also

“abs” on page 406

3

‘labs” on page 424

imaxdiv

Compute the greatest-width integer quotient and remainder.

#include <inttypes.h>

imaxdiv_t imaxdiv (intmax_t numer,

Table 19.5 imaxdiv

intmax_t denom) ;

numer intmax_t

The numerator

denom intmax_t

The denominator

150

MSL C Reference Version 10

inttypes.h
Greatest-Width Integer Functions

Remarks

The result is undefined behavior when either part of the result cannot be
represented.

The imaxdiv function returns a structure of type “imaxdiv_t” on page 146 storing
both the quotient and the remainder values.

This function may not be implemented on all platforms.

See Also

3

‘div” on page 419
“Idiv” on page 425

strtoimax

Character array conversion to a greatest-width integral value.
#include <inttypes.h>
intmax_t strtoimax(const char * restrict nptr,

char ** restrict endptr, int base);

Table 19.6 strtoimax

nptr const char * A character array to
convert

endptr char ** A pointer to a position in
nptr that is not
convertible.

base int A numeric base between 2
and 36

Remarks

The strtoimax () function converts a character array, pointed to by nptr,
that is expected to represent an integer expressed with the radix base to an integer
value of type UINTMAX_MIN, or UINTMAX_ MAX. A plus or minus sign (+ or -
) prefixing the number string is optional.

The base argumentin strtoimax () specifies the base used for conversion. It
must have a value between 2 and 36, or 0. The letters a (or A) through z (or Z) are
used for the values 10 through 35; only letters and digits representing values less
than base are permitted. If base is O, then a strtol family function

MSL C Reference Version 10 151

y
A

inttypes.h

Greatest-Width Integer Functions

converts the character array based on its format. Character arrays beginning with'0’
are assumed to be octal, number strings beginning with'0x' or'0X' are assumed to
be hexadecimal. All other number strings are assumed to be decimal.

If the endptr argument is not a null pointer, it is assigned a pointer to a position
within the character array pointed to by nptr. This position marks the first
character that is not convertible to a long int value.

This function skips leading white space.

The converted value is return upon success. If a failure occurs zero is returned. If
the value is outside of a representable range, the appropriate INTMAX_MAX, or
INTMAX_ MIN value is returned and ERANGE is storedin errno.

This function may not be implemented on all platforms.

See Also

“strtoumax” on page 152

“strtol” on page 438

“strtoll” on page 442

strtoumax

Table 19.7 strtoumax

Character array conversion to a greatest-width integer value.

#include <inttypes.h>

uintmax_t strtoumax(const char * restrict nptr,

char ** restrict endptr, int

base) ;

nptr

const char *

A character array to
convert

endptr

char **

A pointer to a position in
nptr that is not
convertible.

base

int

A numeric base between 2
and 36

152

MSL C Reference Version 10

inttypes.h
Greatest-Width Integer Functions

Remarks

The strtoumax () function converts a character array, pointed to by nptr, to
an integer value of type UINTMAX_ MIN, or UINTMAX MAX,inbase. A plus
or minus sign prefix is ignored.

The base argumentin strtoumax () specifies the base used for conversion. It
must have a value between 2 and 36, or 0.The letters a (or A) through z (or Z) are
used for the values 10 through 35; only letters and digits representing values less
than base are permitted. If base is 0, then a strtoul family function
converts the character array based on its format. Character arrays beginning

with' 0 ' are assumed to be octal, number strings beginning with' 0x' or' 0X"' are
assumed to be hexadecimal. All other number strings are assumed to be decimal.

If the endptr argument is not a null pointer, it is assigned a pointer to a position
within the character array pointed to by nptr. This position marks the first
character that is not convertible to the functions' respective types.

This function skips leading white space.

The converted value is return upon success. If a failure occurs zero is returned. If
the value is outside of a representable range, the appropriate INTMAX_MIN, or
UINTMAX_ MAX value is returned and ERANGE isstored in errno.

This function may not be implemented on all platforms.

See Also

“strtoimax” on page 151
“strtoul” on page 443

“strtoull” on page 444

wcestoimax

Wide character array conversion to a greatest-width integral value.
#include <inttypes.h>
intmax_t wcstoimax(const wchar_t * restrict nptr,

wchar_t ** restrict endptr, int base);

MSL C Reference Version 10 153

y
A

inttypes.h

Greatest-Width Integer Functions

Table 19.8 wcstoimax

const wechar_t * A wide character array to
convert

endptr wchar_t ** A pointer to a position in

nptr that is not
convertible.

int A numeric base between 2
and 36

Remarks

The wcstoimax () function converts a wide character array, pointed to by
nptr, expected to represent an integer expressed in radix base to an integer
value of type INTMAX MIN, or INTMAX_MAX. A plus or minus sign (+ or -)
prefixing the number string is optional.

The base argument in wcstoimax () specifies the base used for conversion. It
must have a value between 2 and 36, or 0. The letters a (or A) through z (or Z) are
used for the values 10 through 35; only letters and digits representing values less
than base are permitted. If base is 0, then a wcstoll family function
converts the wide character array based on its format. Numerical strings beginning
with'0'" are assumed to be octal, numerical strings beginning with'0x' or'0X' are
assumed to be hexadecimal. All other numerical strings are assumed to be decimal.

Ifthe endptr argument is not a null pointer, it is assigned a pointer to a position
within the wide character array pointed to by nptr. This position marks the
first wide character that is not convertible to a long int value.

This function skips leading white space.

The converted value is return upon success. If a failure occurs zero is returned. If
the value is outside of a representable range, the appropriate INTMAX MAX, or
INTMAX_ MIN value is returned and ERANGE is storedin errno.

This function may not be implemented on all platforms.

See Also

“wcstoumax” on page 155

154

MSL C Reference Version 10

inttypes.h

Greatest-Width Integer Functions

wcstoumax

Wide character array conversion to a greatest-width integer value.

#include <inttypes.h>

uintmax_t wcstoumax (const wchar_t * restrict nptr, wchar_t **

restrict endptr,

Table 19.9 wcstoumax

int base);

nptr

const wchar_t *

A wide character array to
convert

endptr

wchar_t **

A pointer to a position in

nptr that is not
convertible.

int A numeric base between 2
and 36

Remarks

The wcstoumax () function converts a wide character array, pointed to by
nptr, to an integer value of type UINTMAX_MIN, or UINTMAX MAX, in
base. A plus or minus sign prefix is ignored.

The base argument in wecstoumax () specifies the base used for conversion. It
must have a value between 2 and 36, or 0.The letters a (or A) through z (or Z) are
used for the values 10 through 35; only letters and digits representing values less
than base are permitted. If base is 0, then and awcstoul family function
converts the wide character array based on its format. Numerical strings beginning
with'0' are assumed to be octal, numerical strings beginning with'0x' or'0X' are
assumed to be hexadecimal. All other numerical strings are assumed to be decimal.

If the endptr argument is not a null pointer, it is assigned a pointer to a position
within the wide character array pointed to by nptr. This position marks the first
wide character that is not convertible to the functions' respective types.

This function skips leading white space.

The converted value is return upon success. If a failure occurs zero is returned. If
the value is outside of a representable range, the appropriate UINTMAX_MIN, or
UINTMAX_ MAX value is returned and ERANGE is storedin errno.

This function may not be implemented on all platforms.

MSL C Reference Version 10 155

A 4
4\

inttypes.h
Greatest-Width Integer Functions

See Also

“wcstoimax” on page 153

156 MSL C Reference Version 10

g |

20

io.h

The header i0.h defines several Windows console functions.

Overview of io.h

This header file defines the facilities as follows:
e “ findclose” on page 158 closes a directory search.
e “ findfirst” on page 158 opens a directory search.

3

e “ findnext” on page 159 searches a directory.

“«

e * setmode” on page 160 sets the translation for unformatted input and output.

NOTE If you’re porting a UNIX or DOS program, you might also need the functions
in other UNIX compatibility headers.

See Also

Table 1.1 for information on POSIX naming conventions.

_finddata_t

The structure _finddata_t is defined to store directory information. This structure is
used in the directory searching functions.

Listing 20.1 Example of _finddata_t Usage

struct _finddata_t {

unsigned attrib;
__std(time_t) time_create; /* -1 for FAT file systems */
_ _std(time_t) time_access; /* -1 for FAT file systems */
__std(time_t) time _write;
fsize t size;

char name[260];

}

MSL C Reference Version 10 157

'
A

io.h
Overview of io.h

_findclose

Closes the handle opened by _findfirst.

#include <io.h>

int _findclose(long fhandle) ;

Table 20.1 _findclose

fhandle long The size in bytes of the

allocation

Remarks
The thandle is returned by _findfirst.
Zero is returned on success and a negative one on failure.

Windows compatible header yet may also be implemented in other headers.

See Also

_findfirst” on page 158

‘_findnext” on page 159

_findfirst
Searches a directory folder.
#include <io.h>
long _findfirst(const char *pathname,

struct _finddata_t * fdata);

Table 20.2 _findfirst

pathname const char * The pathname of the file to
be found

fdata _finddata_t * A pointer to a directory
information structure

158 MSL C Reference Version 10

io.h
Overview of io.h

Remarks
Wildcards are allowed in the directory search.
A file handle is returned.

Windows compatible header yet may also be implemented in other headers.

See Also
*_finddata_t” on page 157

3

‘_findnext” on page 159

¢ findclose” on page 158

_findnext

Continues a directory search began with _findfirst.
#include <io.h>

int _findnext (long fhandle, struct _finddata_t * fdata);

Table 20.3 _findnext

fhandle long The handle returned from
calling _findfirst

fdata _finddata_t * A pointer to a directory
information structure

Remarks
Wildcards are allowed in the directory search.

Zero is returned if the file is found, if no file is found then a negative one is
returned.

Windows compatible header yet may also be implemented in other headers.

See Also
*_finddata_t” on page 157

3

‘_findfirst” on page 158

¢ findclose” on page 158

MSL C Reference Version 10 159

y
A

io.h
Overview of io.h

_setmode

The _setmode function sets the translation mode of the file given by handle

#include <io.h>

int _setmode (int handle, int mode) ;

Table 20.4 _setmode

int handle * handle
int mode * The translation mode
Remarks

The mode must be one of two manifest constants, _O_TEXT or _O_BINARY.

PR,

The _O_TEXT mode sets text (a translated) mode. Carriage return-linefeed
(CR-LF) combinations are translated into a single linefeed character on input.
Linefeed characters are translated into CR-LF combinations on output.

The _O_BINARY mode sets binary (an untranslated) mode, in which linefeed
translations are suppressed.

While _setmode is typically used to modify the default translation mode of stdin
and stdout, you can use it on any file. If you apply _setmode tothe file
handle for a stream, call _setmode before performing any input or output
operations on the stream.

The previous translation mode is returned or negative one on failure.

Windows compatible header yet may also be implemented in other headers.

160

MSL C Reference Version 10

21
1IS0646.h

The header iso646.h defines keyword alternates for the C operator symbols.

Overview of is0646.h

This header file consists of equivalent “words” for standard C operators as shown in Table
21.1.

Table 21.1 Operator Keyword Equivalents

Operator Keyword Equivalent
&& and

&= and_eq
& bitand

| bitor

~ compl
1= not_eq
I or

|= or_eq
N xor

Am xor_eq

MSL C Reference Version 10 161

A 4
4\

is0646.h
Overview of iso646.h

162 MSL C Reference Version 10

22

limits.h

The 1imits.h header file macros describe the maximum and minimum integral type
limits.

Overview of limits.h

This header file consists of macros listed in “Integral type limits” on page 163.

Integral type limits

The 1imits.h header file macros describe the maximum and minimum values of
integral types. Table 22.1 describes the macros.

Table 22.1 Integral Type Limits

Macro Description

CHAR_BIT Number of bits of smallest object that is
not a bit field.

CHAR_MAX Maximum value for an object of type
char.

CHAR_MIN Minimum value for an object of type char.

SCHAR_MAX Maximum value for an object of type

signed char.

SCHAR_MIN Minimum value for an object of type
signed char.

UCHAR_MAX Maximum value for an object of type
unsigned char.

SHRT_MAX Maximum value for an object of type
short int.

MSL C Reference Version 10 163

'
A

limits.h

Overview of limits.h

Table 22.1 Integral Type Limits (continued)

Macro Description

SHRT_MIN Minimum value for an object of type
short int.

USHRT_MAX Maximum value for an object of type
unsigned short int.

INT_MAX Maximum value for an object of type int.

INT_MIN Minimum value for an object of type int.

LONG_MAX Maximum value for an object of type 1ong
int.

LONG_MIN Minimum value for an object of type 1ong
int.

ULONG_MAX Maximum value for an object of type
unsigned long int

MB_LEN_MAX Maximum number of bytes in a multibyte
character

LLONG_MIN minimum value for an object of type long
long int

LLONG_MAX Maximum value for an object of type long
long int

ULLONG_MAX Maximum value for an object of type

unsigned long long int

164

MSL C Reference Version 10

23

locale.h

The 1ocale.h header file provides facilities for handling different character sets and
numeric and monetary formats.

Overview of locale.h

This header file defines the facilities as follows:
¢ “localeconv” gets the locale.

e ‘“setlocale” sets the locale.

Locale Specification

The ANSI C Standard specifies that certain aspects of the C compiler are adaptable to
different geographic locales. The 1ocale.h header file provides facilities for handling
different character sets and numeric and monetary formats. CodeWarrior C supports the
“C” locale by default and a vendor implementation.

The 1conv structure, defined in 1ocale. h, specifies numeric and monetary formatting
characteristics for converting numeric values to character strings. A call to
localeconv () will return a pointer to an 1conv structure containing the settings for
the “C” locale Listing 23.1. An 1conv member is assigned “CHAR_MAX" on page 163
value if it is not applicable to the current locale.

Listing 23.1 Example of Iconv Structure and Contents Returned by localeconv() Usage

struct lconv {

char * decimal_point;
char * thousands_sep;
char * grouping;

char * int_curr_symbol;
char * currency_symbol;
char * mon_decimal_point;
char * mon_thousands_sep;
char * mon_grouping;

char * positive_sign;
char * negative_sign;

char int_frac_digits;
char frac_digits;

MSL C Reference Version 10 165

3
4

y
A

locale.h
Overview of locale.h

char p_cs_precedes;
char p_sep_by_space;
char n_cs_precedes;
char n_sep_by_space;
char p_sign_posn;
char n_sign_posn;
char *int_curr_symbol;
char int_p_cs_precedes;
char int_n_cs_precedes;
char int_p_sep_by_space;
char int_n_sep_by_space;
char int_p_sign_posn;
char int_n_sign_posn;
}i
localeconv
Return the 1conv settings for the current locale.
#include <locale.h>
struct lconv *localeconv(void) ;
Remarks
localeconv () returns a pointer to an 1conv structure for the “*C” locale.
Refer to Figure 1.
This function may not be implemented on all platforms.
setlocale

Query or set locale information for the C compiler.

#include <locale.h>

char *setlocale(int category,

Table 23.1 setlocale

const char *locale);

category int The part of the C compiler
to query or set.
locale char * A pointer to the locale

166

MSL C Reference Version 10

locale.h
Overview of locale.h

Remarks
The category argument specifies the part of the C compiler to query or set.

The argument can have one of six values defined as macros in locale.h:
LC_ALL for all aspects, LC_COLLATE for the collating function strcoll (),
LC_CTYPE for ctype.h functions and the multibyte conversion functions in
stdlib.h, LC_MONETARY for monetary formatting, LC_NUMERIC for
numeric formatting, and LC_TIME for time and date formatting.

If the 1locale argument is a null pointer, a query is made. The setlocale ()
function returns a pointer to a character string indicating which locale the specified
compiler part is set to. The CodeWarrior C compiler supports the *C” and “”
locale.

Attempting to set a part of the CodeWarrior C compiler's locale will have no
effect.

This function may not be implemented on all platforms.

See Also

“strcoll” on page 462

MSL C Reference Version 10 167

A 4
4\

locale.h
Overview of locale.h

168 MSL C Reference Version 10

24

malloc.h

The header malloc.h defines one function, alloca, which lets you allocate memory
quickly on from the stack.

Overview of malloc.h

This header file consists of alloca, which allocates memory from the stack.

NOTE If you're porting a UNIX or DOS program, you might also need the functions
in other UNIX compatibility headers.

See Also

“MSL Extras Library Headers” on page 4 for information on POSIX naming
conventions.

alloca

Allocates memory quickly on the stack.
#include <malloc.h>

void *alloca(size_t nbytes);

Table 24.1 alloca

nbytes size_t The size in bytes of the
allocation

Remarks

This function returns a pointer to a block of memory that is nbytes long. The
block is on the function’s stack. This function works quickly since it decrements
the current stack pointer. When your function exits, it automatically releases the
storage.

MSL C Reference Version 10 169

A 4
4\

malloc.h
Non Standard <malloc.h> Functions

If youuse alloca () to allocate a lot of storage, be sure to increase the Stack
Size for your project in the Project preferences panel.

If it is successful, alloca () returns a pointer to a block of memory. If it
encounters an error, alloca () returns NULL.

This function may not be implemented on all platforms.

See Also

“calloc” on page 417

3

‘free” on page 422

“malloc” on page 427

“realloc” on page 434

Non Standard <malloc.h> Functions

Various non standard functions are included in the header malloc.h forlegacy source

code and compatibility with operating system frameworks and application programming
interfaces

For the function heapmin see “heapmin” on page 87 for a full description.

170 MSL C Reference Version 10

g |

25
math.h

The math . h header file provides floating point mathematical and conversion functions.

Overview of math.h

This header file defines the facilities as follows:
Classification Macros
* “fpclassify” on page 175 classifies floating point numbers.
* “isfinite” on page 176 tests if a value is a finite number.
¢ “isnan” on page 177 tests if a value is a computable number.

¢ ‘“isnormal” on page 177 tests for normal numbers.

* “signbit” on page 178 tests for a negative number.
Functions
* “acos” on page 178 determines the arccosine.
¢ “asin” on page 179 determines the arcsine.
e “atan” on page 180 determines the arctangent.
e “atan?” on page 181 determines the arctangent of two variables.
* “ceil” on page 183 determines the smallest int not less than x.
¢ “cos” on page 184 determines the cosine.
* “cosh” on page 186 determines the hyperbolic cosine.
¢ “exp” on page 187 computes the exponential.

3

* “fabs” on page 188 determines the absolute value.

¢ “floor” on page 190 determines the largest integer not greater than x.

e “fmod” on page 191 determines the remainder of a division.

* “frexp” on page 193 extracts a value of the mantissa and exponent.

* “Idexp” on page 197 computes a value from a mantissa and exponent.

* “log” on page 198 determines the natural logarithm.

* “logl0” on page 200 determines the logarithm to base 10.

* “modf” on page 201 separates integer and fractional parts.

MSL C Reference Version 10 171

wr
4\

math.h
Overview of math.h

* “pow” on page 202 raises to a power.

* “sin” on page 204 determines the sine.

* “sinh” on page 205 determines the hyperbolic sine.

e “sqgrt” on page 207 determines the square root.

¢ “tan” on page 208 determines the tangent.

* “tanh” on page 209 determines the hyperbolic tangent.
C9X Implementations

* “acosh” on page 211 computes the (non-negative) arc hyperbolic cosine.

* “asinh” on page 212 computes the arc hyperbolic sine.

* “atanh” on page 213 computes the arc hyperbolic tangent.

e “cbrt” on page 214 computes the real cube root.

* “copysign” on page 215 gives a value with the magnitude of x and the sign of y.

* “erf” on page 216 computes the error function.
* “erfc” on page 217 complementary error function.
e “exp2” on page 217 computes the base-2 exponential.

* “expml” on page 218 computes the exponential minus 1.

* “fdim” on page 219 computes the positive difference of its arguments.

* “fma” on page 220 a ternary operation to multiply and add.

* “fmax” on page 221 computes the maximum numeric value of its argument.

* “fmin” on page 222 computes the minimum numeric value of its arguments.

¢ “gamma” on page 223 computes the gamma function.

* “hypot” on page 224 computes the square root of the sum of the squares of the
arguments.

¢ “isgreater” on page 194 compares two numbers for x greater than y.

» ‘“isgreaterless” on page 195 compares numbers for x not equal to y.

¢ “isless” on page 195 compares two numbers for x less than y.

* ‘islessequal” on page 196 compares two numbers for x is less than or equal to y.

* “isunordered” on page 196 compares two numbers for lack of order.

* ‘“ilogb” on page 225 determines the exponent.
* “lgamma” on page 226 computes the log of the absolute value.

* “loglp” on page 227 computes the natural- log of x plus 1.

* “log2” on page 228 computes the base-2 logarithm.
* “logb” on page 229 extracts the exponent of a double value.

172 MSL C Reference Version 10

math.h
Overview of math.h

* “nan” on page 230 stores floating point information.
¢ “nan” on page 230 Tests for NaN.

¢ “nearbyint” on page 230 rounds off the argument to an integral value.

* ‘“nextafter” on page 231 determines the next representable value in the type of the
function.

¢ “remainder” on page 232 computes the remainder x REM y required by IEC 559.

* “remquo” on page 233 computes the same remainder as the remainder function.

¢ “rint” on page 234 rounds off the argument to an integral value.
* “rinttol” on page 235 rounds its argument to the nearest long integral value.

* “round” on page 236 rounds its argument to an integral value in floating-point
format.

* “roundtol” on page 237 rounds its argument to the nearest integral value.
* ‘“scalb” on page 237 computes x * FLT_RADIX"n.

* “trunc” on page 238 rounds its argument to an integral value in floating-point format
nearest to but no larger than the argument.

Floating Point Mathematics

The HUGE_VAL macro, defined in math.h, is returned as an error value by the
strtod () function. See “strtold” on page 441 for information on strtod ().

Un-optimized x86 math . h functions may use the “errno” on page 75 global variable to
indicate an error condition. In particular, many functions set errno to EDOM when an
argument is beyond a legal domain. See Table 13.1.

NaN Not a Number

NaN stands for ‘Not a Number’ meaning that it has no relationship with any other
number. A NaN is neither greater, less, or equal to a number. Whereas infinity is
comparable to a number that is, it is greater than all numbers and negative infinity is less
than all numbers.

There are two types of NaN the signalling NaNand quiet NaN.The difference

between a signalling NaNand a quiet NaN is that both have a full exponent and
both have at least one non-zero significant bit, but the signalling NaN has its 2 most
significant bits as 1 whereas a quiet NaN has only the second most significant bit as 1.

MSL C Reference Version 10 173

3
4

'
A

math.h

Floating Point Classification Macros

Quiet NaN

A guiet NaN is the result of an indeterminate calculation such as zero divided by zero,
infinity minus infinity. The IEEE floating-point standard guarantees that a quiet NaN is
detectable by requiring that the invalid exception be raised whenever an NaN appears as
an operand to any basic arithmetic(+,/,-,*) or non-arithmetic operation (load/store). The
Main Standard Library for C follows the IEEE specification.

Signaling NaN

A signalling NaN does not occur as a result of arithmetic. A signalling NaN
occurs when you load a bad memory value into a floating-point register that happens to
have the same bit pattern as a signalling NaN. IEEE 754 requires that in such a
situation the invalid exception be raised and the signalling NaN be converted to a
quiet NaN so the lifetime of a signalling NaN may be brief.

Floating point error testing.

The math library used for PowerPC Mac OS and Windows (when optimized) is not fully
compliant with the 1990 ANSI C standard. One way it deviates is that none of the math
functions set errno.

The setting of errno is considered an obsolete mechanism because it is inefficient as well
as un-informative. Further more various math facilities may set errno haphazardly for 68k
Mac OS.

The MSL math libraries provide better means of error detection. Using fpclassify (which
is fully portable) provides a better error reporting mechanism. Listing 25.1 shows an
example code used for error detection that allows you to recover in your algorithm based
on the value returned from fpclassify.

Inlined Intrinsics Option

For the Win32 x86 compilers CodeWarrior has an optimization option, “inline intrinsics”.
If this option is on the math functions do not set the global variable errno. The debug
version of the ANSI C libraries built by CodeWarrior has “inline intrinsics” option off and
errno is set. The optimized release version of the library has “inline intrinsics” option on,
and errno is not set.

Floating Point Classification Macros

Several facilities are available for floating point error classification.

174

MSL C Reference Version 10

math.h
Floating Point Classification Macros

Enumerated Constants
The Main Standard Library for C includes the following constant types for
Floating point evaluation.
FP_NAN represents a quiet NaN
FP_INFINITE represents a positive or negative infinity
FP_ZERO represents a positive or negative zero
FP_NORMAL represents all normal numbers

FP_SUBNORMAL represents denormal numbers

Remarks

This function may not be implemented on all platforms.

See Also
“NaN Not a Number” on page 173

fpclassify

Classifies floating point numbers.

#include <math.h>

int _ fpclassify(long double x);
int _ fpclassifyd(double x);

int _ fpclassifyf(float x);

Table 25.1 fpclassify

X float, double or long double | number evaluated

Remarks

Anintegral value FP_NAN, FP_INFINITE, FP_ZERO, FP_NORMAL and
FP_SUBNORMAL.

This function may not be implemented on all platforms.

MSL C Reference Version 10 175

y
A

math.h
Floating Point Classification Macros

See Also
“isfinite” on page 176
“isnan” on page 177
“isnormal” on page 177

“signbit” on page 178

“NaN Not a Number” on page 173

Listing 25.1 Example of Error Detection Usage

switch (fpclassify (pow(x,vy))

{

case FP_NAN: // we know y is not an int and <O
case FP_INFINITY: // we know y is an int <0
case FP_NORMAL: // given x=0 we know y=0

case FP_ZERO:// given x<0 we know y >0

}

isfinite
The facility isfinite tests if a value is a finite number.

#include <math.h>

int isfinite(double x);

Table 25.2 isfinite

X float, double or long double | number evaluated

Remarks
The facility returns true if the value tested is finite otherwise it returns false.

This function may not be implemented on all platforms.

See Also

“fpclassify’” on page 175

176 MSL C Reference Version 10

math.h
Floating Point Classification Macros

isnan

The facility isnan test if a value is a computable number.
#include <math.h>

int isnan(double x) ;

Table 25.3 isnan

X float, double or long double | number evaluated

Remarks
This facility is true if the argument is not a number.

This function may not be implemented on all platforms.

See Also

3

‘fpclassify” on page 175
“NaN Not a Number” on page 173

isnormal

A test of a normal number.
#include <math.h>

int isnormal (double x);

Table 25.4 isnormal

X float, double or long double | number evaluated

Remarks
This facility is true if the argument is a normal number.

This function may not be implemented on all platforms.

See Also

3

‘fpclassify” on page 175

MSL C Reference Version 10 177

'
A

math.h
Floating Point Math Facilities

signbit
A test for a number that includes a signed bit
#include <math.h>
int _ signbit(long double x);
int _ signbitd(double x);

int _ signbit(float x);

Table 25.5 signbit

X float, double or long double | number evaluated

Remarks
This facility is true if the sign of the argument value is negative.

This function may not be implemented on all platforms.

See Also

3

‘fpclassify” on page 175

Floating Point Math Facilities

Several facilities are available for floating point manipulations.

acos

This function computes the arc values of cosine, sine, and tangent.
#include <math.h>

double acos(double x);

float acosf (float) ;

long double acosl (long double) ;

Table 25.6 acos

X float, double or long double | value to be computed

178 MSL C Reference Version 10

math.h
Floating Point Math Facilities

Remarks

The function acos () may set errno to EDOM if the argument is not in the range
of -1 to +1. See “Floating point error testing.” on page 174, for information on
newer error testing procedures. For example usage, see Listing 25.2.

The function acos () returns the arccosine of the argument x in radians. If the
argument to acos () is not in the range of -1 to +1, the global variable errno
may be set to EDOM and returns 0. See “Floating point error testing.” on page 174
for information on newer error testing procedures.

This function may not be implemented on all platforms.

See Also

3

‘Inlined Intrinsics Option” on page 174
“cos” on page 184
“errno” on page 75

acosf

Implements the acos() function for float type values. See “acos” on page 178.
acosl

Implements the acos() function for long double type values. See “acos” on page 178.
asin

Arcsine function.

#include <math.h>
double asin(double x);
float asinf (float);

long double asinl (long double) ;

Table 25.7 asin

X float, double or long double | value to be computed

MSL C Reference Version 10 179

wr
4\

math.h
Floating Point Math Facilities

Remarks

This function computes the arc values of sine. For example usage, see Listing 25.2.

The function asin () may set errno to EDOM if the argument is not in the range
of -1 to +1. See “Floating point error testing.” on page 174, for information on
newer error testing procedures.

The function asin () returns the arcsine of x in radians. If the argument to
asin () isnotin the range of -1to +1, the global variable errno may be set to
EDOM and returns 0. See “Floating point error testing.” on page 174, for
information on newer error testing procedures.

This function may not be implemented on all platforms.

See Also

3

‘Inlined Intrinsics Option” on page 174
“sin” on page 204
“errno” on page 75

asinf

Implements the asin() function for float type values. See “asin” on page 179.
asinl

Implements the asin() function for long double type values. See “asin” on page 179.
atan

Arctangent function. This function computes the value of the arc tangent of the argument.
#include <math.h>

double atan (double x);

float atanf (float);

long double atanl (long double) ;

180 MSL C Reference Version 10

math.h
Floating Point Math Facilities

Table 25.8 atan

X float, double or long double | value to be computed

Remarks

The function atan () returns the arc tangent of the argument x in the range [-
%/2, +%/2] radians. For example usage, see Listing 25.2.

This function may not be implemented on all platforms.
See Also

“tan” on page 208
“errno” on page 75

atanf

Implements the atan() function for float type values. See “atan” on page 180.
atanl

Implements the atan() function for long double type values. See “atan” on page 180.
atan2

Arctangent function. This function computes the value of the tangent of x/y using the sines
of both arguments.

#include <math.h>
double atan2 (double y, double Xx);
float atan2f(float, float);

long double atan2l (long double, long double) ;

MSL C Reference Version 10 181

y
A

math.h
Floating Point Math Facilities

Table 25.9 atan2

y double, float or long double | Value one
X double, float or long double | Value two
Remarks
A domain error occurs if both x and y are zero. For example usage, see Listing
25.2.
The function atan?2 () returns the arc tangent of y/x in the range [-%, ++
radians.

This function may not be implemented on all platforms.

See Also

3

‘Inlined Intrinsics Option” on page 174
“tan” on page 208
“errno” on page 75

Listing 25.2 Example of acos(), asin(), atan(), atan2() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double x = 0.5, v = -1.0;
printf ("arccos (%f) = %f\n", x, acos(x));
printf ("arcsin (%f) = %f\n", x, asin(x));
printf ("arctan (%f) = %f\n", x, atan(x));
printf ("arctan (%f / %f) = %$f\n", vy, X, atan2(y, x));
return O;

}

Output:

arccos (0.500000) = 1.047198

arcsin (0.500000) = 0.523599

arctan (0.500000) = 0.463648

arctan (-1.000000 / 0.500000) = -1.107149

182 MSL C Reference Version 10

math.h
Floating Point Math Facilities

atan2f

Implements the atan2() function for float type values. See “atan2” on page 181.
atan2|

Implements the atan2() function for long double type values. See “atan2” on page 181.
ceil

Compute the smallest floating point number not less than x.
#include <math.h>

double ceil (double x);

float ceilf (float);

long double ceill (long double) ;

Table 25.10 ceil

X float, double or long double | value to be computed

Remarks
ceil () returns the smallest integer not less than x.

This function may not be implemented on all platforms.

See Also

3

‘floor” on page 190
“fmod” on page 191

“round” on page 236

Listing 25.3 Example of ceil() Usage

#include <math.h>
#include <stdio.h>

MSL C Reference Version 10 183

4
A

math.h
Floating Point Math Facilities

int main(void)

{
double x = 100.001, y = 9.99;
printf ("The ceiling of %f is %$f.\n", x, ceil(x));
printf ("The ceiling of %f is %$f.\n", vy, ceil(y));
return O;

}

Output:

The ceiling of 100.001000 is 101.000000.
The ceiling of 9.990000 is 10.000000.

ceilf

Implements the ceil() function for float type values. See “ceil” on page 183.
ceill

Implements the ceil() function for long double type values. See “ceil” on page 183.
(10 17

Compute cosine.

#include <math.h>

double cos (double x);

float cosf(float);

long double cosl (long double) ;

Table 25.11 cos

X float, double or long double | value to be computed

184 MSL C Reference Version 10

g |

math.h
Floating Point Math Facilities

Remarks
cos () returns the cosine of x. x is measured in radians.

This function may not be implemented on all platforms.

See Also

“sin” on page 204
“tan” on page 208

Listing 25.4 Example of cos() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double x = 0.0;
printf ("The cosine of %f is %f.\n", x, cos(x));
return O;

}

Output:

The cosine of 0.000000 is 1.000000.

cosf

Implements the cos() function for float type values. See “cos” on page 184.

cosl

Implements the cos() function for long double type values. See “cos” on page 184.

MSL C Reference Version 10 185

y
A

math.h
Floating Point Math Facilities

cosh

Compute the hyperbolic cosine.

double cosh(double x);

float coshf(float);

long double coshl (long double) ;

Table 25.12 cosh

X float, double or long double | value to be computed

Remarks
cosh () returns the hyperbolic cosine of x.

This function may not be implemented on all platforms.

See Also

3

‘Inlined Intrinsics Option” on page 174
“sinh” on page 205
“tanh” on page 209

Listing 25.5 Example of cosh() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double x = 0.0;
printf ("Hyperbolic cosine of %f is %f.\n",x,cosh(x));
return O;

}

Output:

Hyperbolic cosine of 0.000000 is 1.000000.

186 MSL C Reference Version 10

math.h
Floating Point Math Facilities

coshf

Implements the cosh() function for float type values. See “cosh” on page 186.
coshl

Implements the cosh() function for long double type values. See “cosh” on page 186.
exp

Computes the exponent of the function’s argument
#include <math.h>

double exp (double x);

float expf(float);

long double expl (long double) ;

Table 25.13 exp

X float, double or long double | value to be computed

Remarks
A range error may occur for larger numbers.
exp () returns ¥, where e is the natural logarithm base value.

This function may not be implemented on all platforms.

See Also

3

‘Inlined Intrinsics Option” on page 174

3

‘log” on page 198
“expml” on page 218

“exp2” on page 217
“pow” on page 202

MSL C Reference Version 10 187

4
A

math.h
Floating Point Math Facilities

Listing 25.6 Example of exp() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double x = 4.0;
printf ("The natural logarithm base e raised to the\n");
printf ("power of %f is %f.\n", x, exp(x));
return O;
}
Output:

The natural logarithm base e raised to the
power of 4.000000 is 54.598150.

expf

Implements the exp() function for float type values. See “exp” on page 187.
expl

Implements the exp() function for long double type values. See “exp” on page 187.
fabs

Compute the floating point absolute value.
#include <math.h>

double fabs (double x);

float fabsf (float);

long double fabsl (long double) ;

188 MSL C Reference Version 10

math.h
Floating Point Math Facilities

Table 25.14 fabs

X float, double or long double | value to be computed

Remarks
fabs () returns the absolute value of x.

This function may not be implemented on all platforms.

See Also

3

‘floor” on page 190

“ceil” on page 183
“fmod” on page 191

Listing 25.7 Example of fabs() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double s = -5.0, t = 5.0;
printf ("Absolute value of %f is %f.\n", s, fabs(s));
printf ("Absolute value of %f is %f.\n", t, fabs(t));
return 0;

}

Output:

Absolute value of -5.000000 is 5.000000.
Absolute value of 5.000000 is 5.000000.

fabsf

Implements the fabs() function for float type values. See “fabs” on page 188.

MSL C Reference Version 10 189

y
A

math.h
Floating Point Math Facilities

fabsl

Implements the fabs() function for long double type values. See “fabs” on page 188.

floor

Compute the largest floating point not greater than x.
#include <math.h>

double floor (double x);

float floorf (float);

long double floorl (long double) ;

Table 25.15 floor

X float, double or long double | value to be computed

Remarks
The function £1ooxr () returns the largest integer not greater than x.

This function may not be implemented on all platforms.

See Also

“ceil” on page 183
“fmod” on page 191

“fabs” on page 188

Listing 25.8 Example of floor() Usage

#include <math.h>
#include <stdio.h>

int main(void)
{
double x = 12.03, y = 10.999;

printf ("Floor value of %f is %$f.\n", x, floor(x));
printf ("Floor value of %f is %f.\n", y, floor(y));

190 MSL C Reference Version 10

g |

math.h
Floating Point Math Facilities

return 0;

Output:

Floor value of 12.030000 is 12.000000.
Floor value of 10.999000 is 10.000000.

floorf

Implements the floor() function for float type values. See “floor”” on page 190.
floorl

Implements the floor() function for long double type values. See “floor”” on page 190.
fmod

Return the floating point remainder of x / y.

#include <math.h>

double fmod(double x, double v);

float fmodf (float, float);

long double fmodl (long double, long double) ;

Table 25.16 fmod

X double, float or long double | The value to compute
y double, float or long double | The divider
Remarks

fmod () returns, when possible, the value f'such that x = i v + f for some integer
i, and Ifl < lyl. The sign of f matches the sign of x.

This function may not be implemented on all platforms.

MSL C Reference Version 10 191

4
A

math.h
Floating Point Math Facilities

See Also

3

‘floor” on page 190
“ceil” on page 183
“fmod” on page 191

3

‘fabs” on page 188

Listing 25.9 Example of fmod() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double x = -54.4, yv = 10.0;
printf ("Remainder of %f / %f = %f.\n", x, vy, fmod(x, vy));
return 0;

}

Output:

Remainder of -54.400000 / 10.000000 = -4.400000.

fmodf

Implements the fmod() function for float type values. See “fmod” on page 191.

fmodl

Implements the fmod() function for long double type values. See “fmod” on page 191.

192 MSL C Reference Version 10

math.h
Floating Point Math Facilities

frexp

Extract the mantissa and exponent. The frexp () function extracts the mantissa and
exponent of value based on the formula x*2", where the mantissa is 0.5 8 Ixl < 1.0 and n
is an integer exponent.

#include <math.h>
double frexp (double value, int *exp);
float frexpf(float, int *);

long double frexpl (long double, int *);

Table 25.17 frexp

X double, float or long double | The value to compute
exp int Exponent
Remarks

frexp () returns the double mantissa of value. It stores the integer exponent
value at the address referenced by exp.

This function may not be implemented on all platforms.

See Also

“ldexp” on page 197

“fmod” on page 191

Listing 25.10 Example of frexp() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double m, value = 12.0;
int e;
m = frexp(value, &e);

printf ("$f = %f * 2 to the power of %d.\n",value, m, e);

return 0;

MSL C Reference Version 10 193

y
A

math.h
Floating Point Math Facilities

Output:
12.000000 = 0.750000 * 2 to the power of 4.

frexpf

Implements the frexp() function for float type values. See “frexp” on page 193.
frexpl

Implements the frexp() function for long double type values. See “frexp” on page 193.
isgreater

The facility determine the greater of two doubles. Unlike x>y isgreater does not
raise an invalid exception when x and y are unordered.

#include <math.h>

int isgreater(x, Vy);

Table 25.18 isgreater

X float, double or long double | number compared
y float, double or long double | number compared
Remarks

This facility is true if x is greater than y.

This function may not be implemented on all platforms.

194 MSL C Reference Version 10

math.h
Floating Point Math Facilities

isgreaterless

The facility determines if two numbers are unequal. Unlike x>y || x<y
isgreaterless does not raise an invalid exception when x and y are unordered.

#include <math.h>

int isgreaterless(x, V)

Table 25.19 isgreaterless

X float, double or long double | number compared
y float, double or long double | number compared
Remarks

This facility returns true if x is greater than or less than y.

This function may not be implemented on all platforms.

isless

The facility determines the lesser of two numbers.
#include <math.h>

int isless(x, vy);

Table 25.20 isless

X float, double or long double | number compared
y float, double or long double | number compared
Remarks

This facility is true if x is less than y.

This function may not be implemented on all platforms.

MSL C Reference Version 10 195

'
A

math.h
Floating Point Math Facilities

islessequal

The facility test for less than or equal to comparison. Unlike x<y || x==y
islessequal does not raise an invalid exception when x and y are unordered.

#include <math.h>

int islessequal (x, V);

Table 25.21 islessequal

X float, double or long double | number compared
y float, double or long double | number compared
Remarks

This facility is true if x is less than or equal to y.

This function may not be implemented on all platforms.

isunordered

The facility compares the order of the arguments.
#include <math.h>

int isunordered(x, V);

Table 25.22 isunordered

X float, double or long double | number compared
y float, double or long double | number compared
Remarks

This facility is true if the arguments are unordered false otherwise.

This function may not be implemented on all platforms.

196 MSL C Reference Version 10

math.h
Floating Point Math Facilities

Idexp

Compute a value from a mantissa and exponent. The 1dexp () function computes x
*2%P_This function can be used to construct a double value from the values returned by
the frexp () function.

#include <math.h>
double ldexp (double x, int exp);
float ldexpf(float, int);

long double ldexpl (long double, int);

Table 25.23 Idexp

X double, float or long double | The value to compute
exp int Exponent
Remarks

The Function ldexp () returns x * 2exp.

This function may not be implemented on all platforms.

See Also

“frexp” on page 193

“modf” on page 201

Listing 25.11 Example of Idexp() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double value, x = 0.75;
int e = 4;
value = ldexp(x, e);

printf ("$f * 2 to the power of %d is %f.\n",x, e, value);

return 0;

MSL C Reference Version 10 197

4
A

math.h
Floating Point Math Facilities

Output:
0.750000 * 2 to the power of 4 is 12.000000.

Idexpf

Implements the 1dexp() function for float type values. See “ldexp” on page 197.
Idexpl

Implements the 1dexp() function for long double type values. See “Idexp” on page 197.
log

Compute the natural logarithms.
#include <math.h>

double log(double x);

float logf(float);

long double logl (long double) ;

Table 25.24 log

X float, double or long double | value to be computed

Remarks

log () returns logex. If x < 0 the 1og () may assign EDOM to errno

See “Floating point error testing.” on page 174, for information on newer error
testing procedures.

This function may not be implemented on all platforms.

See Also

3

‘Inlined Intrinsics Option” on page 174

198 MSL C Reference Version 10

g |

math.h
Floating Point Math Facilities

«

exp” on page 187
“errno” on page 75

Listing 25.12 Example of log(), log10() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double x = 100.0;
printf ("The natural logarithm of %f is %$f\n",x, log(x));
printf ("The base 10 logarithm of %f is %f\n",x, loglO(x));
return O;

}

Output:

The natural logarithm of 100.000000 is 4.605170
The base 10 logarithm of 100.000000 is 2.000000

logf

Implements the log() function for float type values. See “log” on page 198.

logl

Implements the log() function for long double type values. See “log” on page 198.

MSL C Reference Version 10

199

y
A

math.h
Floating Point Math Facilities

log10

Compute the base 10 logarithms.

#include <math.h>

double 1loglO (double x);

float loglOf (float) ;

long double loglOl(long double) ;

Table 25.25 log10

X float, double or long double | value to be computed

Remarks

1ogl0 () returns log;px. If x <0 1og10 () may assign EDOM to errno. See
“Floating point error testing.” on page 174, for information on newer error testing
procedures. For example usage, see Listing 25.12.

This function may not be implemented on all platforms.

See Also

3

‘Inlined Intrinsics Option” on page 174

«

exp” on page 187
“errno” on page 75

log10f

Implements the log10() function for float type values. See “log10” on page 200.

log10I

Implements the log10() function for long double type values. See “log10” on page 200.

200 MSL C Reference Version 10

math.h
Floating Point Math Facilities

modf

Separates integer and fractional parts.

#include <math.h>

double modf (double value, double *iptr);
float fmodf (float value, float *iptr);

long double modfl (long double value, long double *iptr);

Table 25.26 modf

value double, float, or long The value to separate
double
iptr double, float, or long integer part
double
Remarks

The modf () function separates value into its integer and fractional parts. In
other words, modf () separates value such that value =f+iwhere 00 f< 1,
and i is the largest integer that is not greater than value.

modf () returns the signed fractional part of value, and stores the integer part in
the integer pointed to by iptr.

This function may not be implemented on all platforms.

See Also

“frexp” on page 193

“ldexp” on page 197

Listing 25.13 Example of modf() Usage

#include <math.h>
#include <stdio.h>

int main(void)
{
double i, f, value = 27.04;

f = modf (value, &i);
printf ("The fractional part of %$f is %f.\n", value, f);

MSL C Reference Version 10 201

y
A

math.h
Floating Point Math Facilities

printf ("The integer part of %$f is %f.\n", value,

return O;

i);

Output:
The fractional part of 27.040000 is 0.040000.
The integer part of 27.040000 is 27.000000.

modff

Implements the modf() function for float type values. See “modf” on page 201.
modfl

Implements the modf() function for long double type values. See “modf” on page 201.
pow

Calculate x”.

#include <math.h>

double pow(double x, double vy);

float powf (float, float x);

long double powl (long double, long double

Table 25.27 pow

X float, double or long double

value to be computed

Remarks

The pow () function may assign EDOM to errno if x is 0.0 and y is less than or
equal to zero or if x is less than zero and y is not an integer. For example of error

detection usage, see Listing 25.1.

202 MSL C Reference Version 10

g |

math.h
Floating Point Math Facilities

See “Floating point error testing.” on page 174, for information on newer error
testing procedures.

The function pow () returns xY.

This function may not be implemented on all platforms.

See Also

3

‘Inlined Intrinsics Option” on page 174
“sqrt” on page 207

Listing 25.14 Example of pow() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double x;
printf ("Powers of 2:\n");
for (x = 1.0; x <= 10.0; x += 1.0)
printf ("2 to the %4.0f is %4.0f.\n", x, pow(2, x));
return 0;

}

Output:

Powers of 2:

2 to the 1 is 2.

2 to the 2 is 4.

2 to the 3 is 8.

2 to the 4 is 16.

2 to the 5 is 32.

2 to the 6 is 64.

2 to the 7 is 128.

2 to the 8 is 256.

2 to the 9 is 512.

2 to the 10 is 1024.

powf

Implements the pow() function for float type values. See “pow” on page 202.

MSL C Reference Version 10 203

y
A

math.h
Floating Point Math Facilities

powl

Implements the pow() function for long double type values. See “pow” on page 202.

sin

Compute sine.

#include <math.h>
double sin(double x);
float sinf (float x);

long double sinl (long double x);

Table 25.28 sin

X float, double or long double | value to be computed
Remarks
The argument for the sin() function should be in radians. One radian is equal to
360/2% degrees.
The function sin () returns the sine of x. x is measured in radians.
This function may not be implemented on all platforms.
See Also

“cos” on page 184
“tan” on page 208

Listing 25.15 Example of sin() Usage

#include <math.h>
#include <stdio.h>

#define DtoR 2*pi/360

int main(void)

{
double x = 57.0;
double xRad = x*DtoR;

204

MSL C Reference Version 10

math.h

Floating Point Math Facilities

printf ("The sine of %.2f degrees is %.4f.\n",x,

return 0;

sin(xRad)) ;

Output:
The sine of 57.00 degrees is 0.8387.

sinf

Implements the sin() function for float type values. See “sin”” on page 204.
sinl

Implements the sin() function for long double type values. See “sin”” on page 204.
sinh

Compute the hyperbolic sine.
#include <math.h>
double sinh(double x);
float sinhf (float x);

long double sinhl (long double x) ;

Table 25.29 sinh

X float, double or long double

value to be computed

Remarks

A range error can occur if the absolute value of the argument is to large.

sinh () returns the hyperbolic sine of x.

This function may not be implemented on all platforms.

MSL C Reference Version 10

205

y
A

math.h
Floating Point Math Facilities

See Also

3

‘Inlined Intrinsics Option” on page 174
“cosh” on page 186

3

‘tanh” on page 209

Listing 25.16 Example of sinh() Usage

#include <stdio.h>
#include <math.h>

int main(void)

{
double x = 0.5;
printf ("Hyperbolic sine of %f is %f.\n", x, sinh(x));
return O;

}

Output:

Hyperbolic sine of 0.500000 is 0.5210095.

sinhf

Implements the sinh() function for float type values. See “‘sinh” on page 205.

sinhl

Implements the sinh() function for long double type values. See “‘sinh” on page 205.

206 MSL C Reference Version 10

math.h
Floating Point Math Facilities

sqrt

Calculate the square root.
#include <math.h>
double sgrt (double x);
float sqgrtf(float x);

long double sgrtl (long double x);

Table 25.30 sqrt

X float, double or long double | value to compute

Remarks
A domain error occurs if the argument is a negative value.
sqgrt () returns the square root of x.

This function may not be implemented on all platforms.

See Also

3

‘Inlined Intrinsics Option” on page 174
“pow” on page 202

Listing 25.17 Example of sqrt() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double x = 64.0;
printf ("The square root of %f is %f.\n", x, sgrt(x));
return 0;

}

Output:

The square root of 64.000000 is 8.000000.

MSL C Reference Version 10 207

y
A

math.h
Floating Point Math Facilities

sqrif

Implements the sqrt() function for float type values. See “sqrt” on page 207.
sqrtl

Implements the sqrt() function for long double type values. See “sqrt” on page 207.
tan

Computes tangent of the argument.
#include <math.h>
double tan(double x);
float tanf (float x);

long double tanl (long double x);

Table 25.31 tan

X float, double or long double | value to compute

Remarks

A range error may occur if the argument is close to an odd multiple of pi divided
by 2

tan () returns the tangent of x. x is measured in radians.

This function may not be implemented on all platforms.

See Also

3

‘Inlined Intrinsics Option” on page 174
“cos” on page 184
“sin” on page 204

Listing 25.18 Example of tan() Usage

#include <math.h>

208 MSL C Reference Version 10

g |

math.h

Floating Point Math Facilities

#include <stdio.h>
int main(void)
{

double x = 0.5;

printf ("The tangent of %f is %f.\n",

return O;

x, tan(x));

Output:
The tangent of 0.500000 is 0.546302.

tanf

Implements the tan() function for float type values. See “tan”” on page 208.
tanl

Implements the tan() function for long double type values. See “tan” on page 208.
tanh

Compute the hyperbolic tangent.
#include <math.h>
double tanh (double x);
float tanhf (float x);

long double tanhl (long double x);

Table 25.32 tanh

X float, double or long double | value to compute

MSL C Reference Version 10

209

4
A

math.h
Floating Point Math Facilities

Remarks
tanh () returns the hyperbolic tangent of x.

This function may not be implemented on all platforms.

See Also

“cosh” on page 186
“sinh” on page 205

Listing 25.19 Example of tanh() Usage

#include <math.h>
#include <stdio.h>

int main(void)
{
double x = 0.5;

printf ("The hyperbolic tangent of %f is %$f.\n",x, tanh(x));

return 0;

Output:
The hyperbolic tangent of 0.500000 is 0.462117.

tanhf

Implements the tanh() function for float type values. See “tanh” on page 209.

tanhl

Implements the tanh() function for long double type values. See “tanh” on page 209.

210 MSL C Reference Version 10

math.h
C99 Implementations

HUGE_VAL

The largest floating point value with the same sign possible for a function’s return.
#include <math.h>

Varies by CPU

Remarks

If the result of a function is too large to be represented as a value by the return
type, the function should return HUGE_VAL. It is the largest floating point value
with the same sign as the expected return type.

This function may not be implemented on all platforms.

C99 Implementations

Although not formally accepted by the ANSI/ISO committee these proposed math
functions are already implemented on some platforms.

acosh

Acosh computes the (non-negative) arc or inverse hyperbolic cosine of x in the range
[01, +INF].
#include <math.h>

double acosh (double x);

Table 25.33 acosh

X double The value to compute
Remarks
A domain error occurs for argument x is less than 1 and a range error occurs if x is
too large.

The (non-negative) arc hyperbolic cosine of x.

This function may not be implemented on all platforms.

MSL C Reference Version 10 211

y
A

math.h
C99 Implementations

See Also
“acos” on page 178

Listing 25.20 Example of acosh() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double a = 3.14;
printf ("The arc hyperbolic cosine of %f is %f.\n\n",
a,acosh(a));
return O;
}
Output:

The arc hyperbolic cosine of 3.140000 is 1.810991.

asinh

Asinh computes the arc or inverse hyperbolic sine.
#include <math.h>

double asinh(double x);

Table 25.34 asinh

X double The value to compute

Remarks
A range error occurs if the magnitude of x is too large.
The arc hyperbolic sine of the argument x.

This function may not be implemented on all platforms.

See Also
“asin” on page 179

212 MSL C Reference Version 10

math.h
C99 Implementations

Listing 25.21 Example of asinh() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double b = 3.14;
printf ("The arc hyperbolic sine of %f is %$f.\n\n",
b,asinh (b)) ;
return 0;
}
Output:

The arc hyperbolic sine of 3.140000 is 1.861813

atanh

The function atanh computes the arc hyperbolic tangent.
#include <math.h>

double atanh (double x);

Table 25.35 atanh

X double The value to compute

Remarks
The arc hyperbolic tangent of x.
A domain error occurs for arguments not in the range [-1,+1]

This function may not be implemented on all platforms.

See Also
“atan” on page 180

Listing 25.22 Example of atanh() Usage

#include <math.h>
#include <stdio.h>

MSL C Reference Version 10 213

y
A

math.h
C99 Implementations

int main(void)

{
double ¢ = 0.5;
printf ("The arc hyperbolic tan of %f is %f.\n\n",
c,atanh(c)) ;
return O;
}
Output:

The arc hyperbolic tan of 0.500000 is 0.549306.

cbrt

The cbrt functions compute the real cube root
#include <math.h>

double cbrt (double x);

float cbrtf(float £fx);

long double cbrtl (long double 1x);

Table 25.36 cbrt

X double The value being cubed

fx float The value being cubed

Ix long double The value being cubed
Remarks

The cbrt functions returns the real cube root of the argument.

This function may not be implemented on all platforms.

See Also

“sqrt” on page 207

214 MSL C Reference Version 10

math.h

C99 Implementations

copysign

The function copysign produces a value with the magnitude of x and the sign of y. The
copysign function regards the sign of zero as positive. It produces a NaN with the sign of v

if x is NaN.
#include <math.h>

double copysign(double x, double vy);

Table 25.37 copysign

X double Magnitude
y double The sign argument
Remarks

A value with the magnitude of x and the sign of y.

This function may not be implemented on all platforms.

Listing 25.23 Example of copysign() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double e = +10.0;
double f = -3.0;
printf ("Copysign(%f, %f) = %f.\n\n",
e, f,copysign(e, f));
return O;
}
Output:
Copysign(10.000000, -3.000000) = -10.000000.

MSL C Reference Version 10

215

y
A

math.h
C99 Implementations

erf

The erf function is used in probability.
#include <math.h>

double erf (double x);

Table 25.38 erf

X double The value to be computed

Remarks

The function erf() is defined as:

erf (x) = (2/sqgrt(pi) *

(integral from 0 to x of exp(-t”2)dt))
The error function of x is returned.

This function may not be implemented on all platforms.

Listing 25.24 Example of erf() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double g = +10.0;
printf ("The error function of (%f) = %f.\n\n",
g,erft(g));
return O;
}
Output:

The error function of (10.000000) = 1.000000

216 MSL C Reference Version 10

math.h
C99 Implementations

erfc

The erfc() function computes the complement of the error function.
#include <math.h>

double erfc(double x);

Table 25.39 erfc

X double The value to be computed

The erfc() function computes the complement of the error function of x :
erfc(x) =1 - (erf (x) = 2/sqgrt(pi) *

(integral from 0 to x of exp(-t~2) dt))

The complementary error function of x is returned.

This function may not be implemented on all platforms.

Listing 25.25 Example of erfc() Usage

#include <math.h>
#include <stdio.h>

int main(void)
{
double h = +10.0;
printf ("The inverse error function of (%f) = %f.\n\n",
h,erfc(h));
return 0;

Output:
The inverse error functions of (10.000000) = 0.000000}

exp2

The function exp2 computes the base-2 exponential.
#include <math.h>

double exp2 (double Xx);

MSL C Reference Version 10 217

y
A

math.h
C99 Implementations

Table 25.40 exp2

X double The value to compute

Remarks

The function exp2 computes the base-2 exponential. In other words exp2 (b)
solves forthe xin (b = 2x).

A range error occurs if the magnitude of x is too large

The function returns the base-2 exponential of x: 2”x

This function may not be implemented on all platforms.
See Also

“pow” on page 202

Listing 25.26 Example of exp2() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double i = 12;
printf ("27°%f = $f.\n\n",1,1, exp2(i));
return O;

Output:
27(12.000000) = 4096.000000.

expmi

The function expml1 computes the base-e exponential minus 1.
#include <math.h>

double expml (double x);

218 MSL C Reference Version 10

math.h
C99 Implementations

Table 25.41 expm1

X double The value to compute

Remarks
The function expml computes the base-e exponential minus 1. Written as:
expml(x) = (ex) - 1.0

A range error occurs if x is too large. For small magnitude x, expm1(x) is expected to be
more accurate than exp(x) -1

The base-e exponential of x, minus 1: (e”x) -1 is returned.

This function may not be implemented on all platforms.

Listing 25.27 Example of expm1() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double j = 12;
printf("(e - 1)7"%f = $f.\n\n",Jj,expml(j));
return 0;

}

Output:

(e - 1)712.000000 = 162753.791419.

fdim

The function fdim computes the positive difference of its arguments
#include <math.h>

double fdim(double x, double vy);

MSL C Reference Version 10 219

y
A

math.h
C99 Implementations

Table 25.42 fdim

X double Value one
y double Value two
Remarks

This function returns the value of x - y if x is greater than y else zero. If x is less
than or equal to y a range error may occur

This function may not be implemented on all platforms.

Listing 25.28 Example of fdim() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double k = 12;
double 1 = 4;
printf("| (%£ - %£f)| = %£.\n\n",k,1,fdim(k,1));
return 0;
}
Output:
| (12.000000 - 4.0000000) | = 8.0000000.
fma

The fma functions return the sum of the third argument plus the product of the first two
arguments rounded as one ternary operation.

#include <math.h>
double fma (double x, double y, double z);
float fmaf(float fx, float fy, float fz);

long double fmal (long double 1x, long double 1ly,long double
1z);

220 MSL C Reference Version 10

math.h
C99 Implementations

Table 25.43 fma

fx float An argument to be
multiplied
fy float The second argument
being multiplied
fz float The argument to be added
X double An argument to be
multiplied
y double The second argument
being multiplied
z double The argument to be added
Ix long double An argument to be
multiplied
ly long double The second argument
being multiplied
Iz long double The argument to be added
Remarks
The fma functions compute (x * y) + z, rounded as one ternary operation:
The fma functions compute the value (as if) to infinite precision and round once to
the result format, according to the rounding mode characterized by the value of
FLT_ROUNDS.
The fma functions returns the result of (x*vy)
This function may not be implemented on all platforms.
See Also

“round” on page 236

fmax

The function fmax computes the maximum numeric value of its argument

#include <math.h>

double fmax (double x,

double v);

MSL C Reference Version 10

221

y
A

math.h
C99 Implementations

Table 25.44 fmax

X double First argument
y double Second argument
Remarks

The maximum value of x or y is returned.

This function may not be implemented on all platforms.

See Also

3

‘fmin” on page 222

Listing 25.29 Example of fmax() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double m = 4;
double n = 6;
printf ("fmax (%f, %f)=%f.\n\n",m,n, fmax(m,n)) ;
return O;
}
Output:

fmax(4.000000, 6.000000) = 6.000000.

fmin

The function fmin computes the minimum numeric value of its arguments.
#include <math.h>

double fmin(double x, double y);

222 MSL C Reference Version 10

math.h
C99 Implementations

Table 25.45 fmin

X double First argument
y double Second argument
Remarks

Fmin returns the minimum numeric value of its arguments

This function may not be implemented on all platforms.

See Also

“fmax’ on page 221

Listing 25.30 Example of fmin() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double o = 4;
double p = 6;
printf ("fmin(%f, %f) = %f.\n\n", o,p,fmin(o,p));
return O;
}
Output:
fmin (4.000000, 6.000000) = 4.000000.
gamma
The gamma () function computes loge G(x).

#include <math.h>

double gamma (double x);

Table 25.46 gamma

X double The value to be computed

MSL C Reference Version 10 223

3
4

y
A

math.h

C99 Implementations

Remarks

The gamma () function computes loge G(x), where G (x) is defined as the
integral of (e(-t) * t(x-1))dt from O to infinity. The sign of G (x) 1is
returned in the external integer signgam.

The argument x need not be a non-positive integer, (G (x) is defined over the real
numbers, except the non-positive integers).

An application wishing to check for error situations should set errno to 0 before calling
lgamma (). If errno is non-zero on return.

¢ If the return value is NaN, an error has occurred.
¢ A domain error occurs if x is equal to zero or if x is a negative integer.
¢ A range error may occur.

The gamma function of x is returned.

This function may not be implemented on all platforms.

See Also

3

‘Igamma’ on page 226

hypot

The function hypot computes the square root of the sum of the squares of the arguments.
#include <math.h>

double hypot (double x, double y);

Table 25.47 hypot

X double The first value to be
squared
y double The second value to be
squared
Remarks

Hypot computes the square root of the sum of the squares of x and y without undue
overflow or underflow.

A range error may occur.

The square root of the sum of the squares of x and y is returned.

224

MSL C Reference Version 10

math.h
C99 Implementations

This function may not be implemented on all platforms.

See Also

3

‘Inlined Intrinsics Option” on page 174

Listing 25.31 Example of hypot() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double r = 4;
double s = 4;
printf (" (%£"2 + %£72)7(.5) = %$f\n\n",r,s,hypot(r,s));
return 0;
}
Output:
(4.000000"2 + 4.000000"2)"(.5) = 5.656854
ilogb

The ilogb functions determine the exponent of the argument as a signed int value.
#include <math.h>

int ilogb(double x);

int ilogbf (float vy);

int ilogbl (long double z);

Table 25.48 flogb

X double The whose exponent is
determined

y float The whose exponent is
determined

z long double The whose exponent is
determined

MSL C Reference Version 10 225

3
4

y
A

math.h

C99 Implementations

Remarks

The ilogb functions extract the exponent of x as a signed int value. If X is zero they
compute the value FP_ILOGBQO; if x is infinite they compute the value

INT_MAX; if x is a NaN they compute the value FP_ILOGBNAN; otherwise,
they are equivalent to calling the corresponding logb function and casting the
returned value to type int.

A rangeerror may occur if x is 0.
The ilogb functions return the exponent of x as a signed int value.
This function may not be implemented on all platforms.

This function may not be implemented on all platforms.

See Also

« >

exp” on page 187

Igamma

The 1gamma () function computes the same thing as the gamma ().

#include <math.h>

double lgamma (double x);

Table 25.49 Igamma

X double The value to be computed
Remarks
The 1gamma () function computes the same thing as the gamma () with the
addition of absolute value signs loge | G(x) |, whereG (x) is defined as the

integralof (e(-t) * t(x-1))dt from 0 to infinity.

The sign of G (x) is returned in the external integer signgam. The argument x
need not be a non-positive integer, (G (x) is defined over the real numbers,
except the non-positive integers).

An application wishing to check for error situations should set errno to 0 before
calling 1gamma () . If errno is non-zero on return, or the return value is NaN, an
error has occurred.

lgamma () may create a range error occurs if X is too large

The log of the absolute value of gamma of x .

226

MSL C Reference Version 10

math.h
C99 Implementations

This function may not be implemented on all platforms.

See Also
“gamma” on page 223

logip
The function loglp computes the base-e logarithm.
#include <math.h>

double loglp(double x);

Table 25.50 loglp

X double The value being computed

Remarks

The function log1p computes the base-e logarithm. Which can be denoted as

loglp = loge(1.0 + x)

The value of x must be greater than -1 . 0.

For small magnitude x, loglp(x) is expected to be more accurate than log(x+1)
¢ A domain error occurs if x is less than negative one.
¢ A range error may occur if x is equal to one.

The base-e logarithm of 1 plus x is returned.

This function may not be implemented on all platforms.

See Also

3

‘log” on page 198

Listing 25.32 Example of loglp() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double u = 5;
printf ("loglp computes loglp(%$f) = %f\n\n",u,loglp(u));
return O;

MSL C Reference Version 10 227

y
A

math.h
C99 Implementations

Output:
loglp computes loglp(5.000000) = 1.791759

log2

The function 10g2 computes the base-2 logarithm.
#include <math.h>

double log2 (double Xx);

Table 25.51 log2

X double The value being computed

Remarks
The function 1og2 computes the base-2 logarithm which can be denoted as:
log2(x) = log2(x)
The value of x must be positive.
* A domain error may occur if x is less than zero.
* A range error may occur if x is equal to zero.
The base-2 logarithm of x is returned.

This function may not be implemented on all platforms.

See Also

3

‘log” on page 198

Listing 25.33 Example of log2() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double v = 5;
printf("log2 (%f) = %$f\n\n",v,log2(v));
return O;

228 MSL C Reference Version 10

math.h
C99 Implementations

Output:
log2(5.000000) = 2.321928

logb

The logb () function computes the exponent of x.
#include <math.h>

double logb(double x);

Table 25.52 logb

X double The value being computed
Remarks
The 1ogb () function computes the exponent of x, which is the integral part of
logr | x | ,asasigned floating point value, for non-zero x, where r is the

radix of the machine's floating-point arithmetic. If x is subnormal it is treated as
though it were normalized.

A range error may occur if x is equal to zero.
The exponent of x as a signed integral value in the format of the x argument.

This function may not be implemented on all platforms.

See Also

3

‘Inlined Intrinsics Option” on page 174

Listing 25.34 Example of logb() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double w = 5;
printf ("logb(%f) = %$f\n\n",w,logb(w));
return O;

MSL C Reference Version 10 229

y
A

math.h
C99 Implementations

Output:
logb(5.000000) = 2.000000

nan

The function nan tests for NaN.
#include <math.h>

double nan(const char *tagp) ;

Table 25.53 nan

tagp const char * A character string

Remarks

See “Quiet NaN” on page 174, fore more information.

A quiet NAN is returned, if available.

This function may not be implemented on all platforms.

See Also

“isnan” on page 177
“NaN Not a Number” on page 173

nearbyint

The function nearbyint rounds off the argument to an integral value.
#include <math.h>

double nearbyint (double x);

Table 25.54 nearbyint

X double The value to be computed

230 MSL C Reference Version 10

math.h
C99 Implementations

Remarks
Nearbyint, computes like rint but doesn't raise an inexact exception.
The argument is returned as an integral value in floating point format.

This function may not be implemented on all platforms.

Listing 25.35 Example of nearbyint() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double x = 5.7;
printf ("nearbyint (%$f) = %f\n\n",x,nearbyint (x)) ;
return O;

}

Output:

nearbyint (5.700000) = 6.000000

nextafter

The nextafter function determines the next representable value in the type of the
function.

#include <math.h>

float nextafter (float x, float vy);

double nextafter (double x, double y);

long double nextafter (long double x, long double vy);

Table 25.55 nextafter

X float current representable
double value
long double
y float direction
double
long double

MSL C Reference Version 10 231

y
A

math.h

C99 Implementations

Remarks

The nextafter function determines the next representable value in the type of
the function, after x in the direction of v, where x and vy are first converted to the
type of the function. Thus, if v is less than x, nextafter () returns the
largest representable floating-point number less than x.

The next representable value after x is returned.

This function may not be implemented on all platforms.

Listing 25.36 Example of nextafter() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double vy = 7;
double z = 10;
printf ("nextafter (%f,%f) = %$f\n\n",y,z,nextafter(y,z));
return 0;
}
Output:
Nextafter (7.000000,10.000000) = 7.000000
remainder

Remainder computes the remainder x REM y required by IEC 559.
#include <math.h>

double remainder (double x, double vy);

Table 25.56 remainder

X double The first value

y double The second value

232

MSL C Reference Version 10

math.h
C99 Implementations

Remarks
The remainder () function returns the floating point remainder r = x -
ny when y is non-zero. The value n is the integral value nearest the exact value x/
y.When | n - x/y | = _ , the value n is chosen to be even.

The behavior of remainder () isindependent of the rounding mode.
The remainder x REM vy is returned.

This function may not be implemented on all platforms.

See Also

“remquo” on page 233

Listing 25.37 Example of remainder() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double varl = 2;
double var2 = 4;
printf ("remainder (%$f,%f) = %f\n\n",varl,var2,remainder (varl,var2));
return O;
}
Output:
remainder (2.000000,4.000000) = 2.000000
remquo

The function remquo computes the same remainder as the remainder function.
#include <math.h>

double remquo (double x, double y, int *quo);

Table 25.57 remquo

X double First value

MSL C Reference Version 10 233

'
A

math.h

C99 Implementations

Table 25.57 remquo (continued)

y double Second value
quo int* Pointer to an object
quotient
Remarks
The argument quo points to an object whose sign is the sign as x/y and whose
magnitude is congruent mod 2”n to the magnitude of the integral quotient of x/y,
where n >= 3.
The value of x may be so large in magnitude relative to y that an exact
representation of the quotient is not practical.
The remainder of x and y is returned.
This function may not be implemented on all platforms.
See Also

“remainder” on page 232

rint

The function rint rounds off the argument to an integral value. Rounds its argument to an
integral value in floating-point format using the current rounding direction.

#include <math.h>

double rint (double x) ;

Table 25.58 rint

double

The value to be computed

Remarks

The argument in integral value in floating point format is returned.

This function may not be implemented on all platforms.

See Also

“rinttol” on page 235

234

MSL C Reference Version 10

math.h
C99 Implementations

Listing 25.38 Example of rint() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double varONE = 2.5;
printf ("rint (%f) = %$f\n\n",varONE, rint (varONE)) ;
return 0;

}

Output:

rint (2.500000) = 2.000000

rinttol

Rintrol rounds its argument to the nearest integral value using the current rounding
direction.

#include <math.h>

long int rinttol (double x);

Table 25.59 rinttol

X double Value being rounded

Remarks
If the rounded range is outside the range of long, result is unspecified
The argument in integral value in floating point format is returned.

This function may not be implemented on all platforms.

See Also
“rint” on page 234

MSL C Reference Version 10 235

y
A

math.h
C99 Implementations

round

Round rounds its argument to an integral value in floating-point format.
#include <math.h>

double round(double x);

Table 25.60 round

X double The value to be rounded

Remarks

Rounding halfway cases away from zero, regardless of the current rounding
direction.

The argument rounded to an integral value in floating point format nearest to is
returned but is never larger in magnitude than the argument.

This function may not be implemented on all platforms.

See Also
“roundtol” on page 237

Listing 25.39 Example of round() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double varALPHA = 2.4;
printf ("round (%f) = %$f\n\n",varALPHA, round (varALPHA)) ;
return O;

}

Output:

round(2.400000) = 2.000000

236 MSL C Reference Version 10

math.h
C99 Implementations

roundtol

The function roundtol rounds its argument to the nearest integral value. Rounding halfway
cases away from zero, regardless of the current rounding direction.

#include <math.h>

long int roundtol (double round) ;

Table 25.61 rooundtol
round double The value being rounded
Remarks
If the rounded range is outside the range of long, result is unspecified
The argument rounded to an integral value in long int format is returned.
This function may not be implemented on all platforms.
See Also
“round” on page 236
scalb

The function scalb computes x * FLT_RADIX"n efficiently, not normally by computing
FLT_RADIX"n explicitly.

#include <math.h>

double scalb(double x, long int n);

Table 25.62 scalb

X double The original value
n long int Power value
Remarks

A range error may occur

The function scalb returns x * FLT_RADIX"n.

MSL C Reference Version 10 237

y
A

math.h
C99 Implementations

This function may not be implemented on all platforms.

trunc

Trunc rounds its argument to an integral value in floating-point format nearest to but no
larger in magnitude than the argument.

#include <math.h>

double trunc(double x);

Table 25.63 trunc

X double The value to be truncated.

Remarks
For 68k processors returns an integral value.

The trunc function returns an argument to an integral value in floating-point
format.

This function may not be implemented on all platforms.

Listing 25.40 Example of trunc() Usage

#include <math.h>
#include <stdio.h>

int main(void)

{
double varPHI = 2.4108;
printf ("trunc(%f) = %$f\n\n",varPHI, trunc (varPHI)) ;
return O;

}

Output:

trunc(2.410800) = 2.000000

238 MSL C Reference Version 10

26

Process.h

The header Process.h defines the threadex functions _beginthreadex and _endthreadex.

Overview of Process.h

This header file defines the facilities as follows:
e “ beginthread” on page 239 begins a thread.
e “ beginthreadex” on page 240 begins a with local data.
e “ endthread” on page 241 ends thread for _beginthread.
e “ endthreadex” on page 242 ends thread for _beginthreadex.

_beginthread

This function starts a thread for a multi-threaded application.

#include <process.h>

long _beginthread(void (__cdecl *inCodeAddress) (void *)
thread,

unsigned int inStackSize, void *inParameter) ;

Table 26.1 _beginthread

thread void * The address of the thread
function
inStackSize int Set by the linkers /STACK

switch, 1MB is the default

inParameter void * The same as the
IpvThreadParameter used
in CreateThread() that is
used to pass an
initialization routine.

MSL C Reference Version 10 239

y
A

Process.h
Overview of Process.h

Remarks

The thread runs concurrently with the rest of the code.

The thread handle is returned or zero upon failure.

A Windows only function—this function may not be implemented on all versions.

See Also

*_endthread” on page 241
¢ _beginthreadex” on page 240

_beginthreadex

Begins a thread.

#include <process.h>

HANDLE _ cdecl _beginthreadex (
LPSECURITY_ATTRIBUTES inSecurity,
DWORD inStacksize,

LPTHREAD_START_ROUTINE inCodeAddress,

LPVOID inParameter,
DWORD inCreationFlags,

LPDWORD inThreadID) ;

Table 26.2 _beginthreadex

inSecurity LPSECURITY_ATTRIBUT | Security Attributes, NULL
ES is the default attributes.
inStacksize DWORD * Set by the linkers /STACK
switch, 1MB is the default
inCodeAddress LPTHREAD_START_ROU | The address of the
TINE function containing the
code where the new thread
should start.
inParameter LPVOID The same as the
IpvThreadParameter used
in CreateThread() that is
used to pass an
initialization routine.

240 MSL C Reference Version 10

Process.h
Overview of Process.h

Table 26.2 _beginthreadex (continued)

inCreationFlags DWORD If zero begins thread
immediately, if
CREATE_SUSPENDED it
waits before executing.

inThreadID LPDWORD An variable to store the ID
assigned to a new thread.

The function _beginthreadex is similar to the Windows call CreateThread except
this functions properly creates the local data used by MSL.

A HANDLE variable is returned if successful.

A Windows only function—this function may not be implemented on all versions.

See Also
*_endthreadex” on page 242

_endthread

This function ends a thread called by _beginthread.
#include <process.h>

void _endthread(void) ;

Remarks
This facility has no parameters.
There is no return value for this function.

Windows only compatible function.

See Also

3

‘_beginthread” on page 239
*_endthreadex” on page 242

MSL C Reference Version 10 241

'
A

Process.h

Overview of Process.h

_endthreadex

Exits the thread.

#include <process.h>

VOID _ cdecl _endthreadex (DWORD inReturnCode) ;

Table 26.3 _endthreadex

inReturnCode

DWORD

The exit code is passed
through this argument.

Remarks

The function_endthreadex is similar to the Windows call ExitThread except this
functions properly destroys the thread local data used by MSL.

There is no return.

A Windows only function—this function may not be implemented on all versions.

See Also

3

‘_beginthreadex” on page 240

—beginihreadex on page 24U

242

MSL C Reference Version 10

27
setjmp.h

The setjmp . h header file provides a means of saving and restoring a processor state.
The facilities that do this are “longjmp” and “setjmp”:

Overview of setjmp.h

The setjmp . h header file provides a means of saving and restoring a processor state.
The setjmp . h functions are typically used for programming error and low-level
interrupt handlers.

* The function “setjmp” on page 245 saves the current calling environment—the
current processor state—in its jmp_buf argument. The jmp_buf type, an array,
holds the processor program counter, stack pointer, and relevant data and address
registers.

¢ s

* The function “longjmp” on page 244 restores the processor to its state at the time of
the last setjmp () call. In other words, longjmp () returns program execution to
the last setjmp () call if the setjmp () and Longjmp () pair use the same
jmp_buf variable as arguments.

Non-local Jumps and Exception Handling

Because the jmp_buf variable can be global, the set jmp and 1ongjmp calls do not
have to be in the same function body.

A jmp_buf variable must be initialized with a call to setjmp () before being used with
longjmp (). Calling longjmp () with an un-initialized jmp_buf variable may crash
the program. Variables assigned to registers through compiler optimization may be
corrupted during execution between setjmp () and longjmp () calls. This situation
can be avoided by declaring affected variables as volatile.

MSL C Reference Version 10 243

y
A

setjmp.h

Overview of setimp.h

longjmp

Restore the processor state saved by setjmp ().

#include <setjmp.h>

void longjmp (jmp_buf env, int val);

Table 27.1 longjmp

env

jmp_buf The current processor
state

val

int A value returned by
setjmp()

Remarks

The 1longjmp () function restores the calling environment (i.e. returns program
execution) to the state saved by the last called setjmp () to use the env variable.
Program execution continues from the setjmp () function. The val argument is
the value returned by setjmp () when the processor state is restored.

The longjmp function is redefined when AltiVec support is enabled. The
programmer must ensure that both the “to” compilation unit and “from”
compilation unit have AltiVec enabled. Failure to do so will create an undesired
result.

After longjmp is completed, program execution continues as if the corresponding
invocation of the setjmp macro had just returned the value specified by val. The
longjmp function cannot cause the setjmp macro to return the value O; if val is O,
the setjmp macro returns the value 1.

The env variable must be initialized by a previously executed setjmp () before
being used by longjmp () to avoid undesired results in program execution.

This function may not be implemented on all platforms.

See Also

“setjmp” on page 245

“signal” on page 251

“abort” on page 405

244

MSL C Reference Version 10

setjmp.h
Overview of setimp.h

setjmp

Save the processor state for longjmp ().

#include <setjmp.h>

int setjmp (jmp_buf env) ;

Table 27.2 setjmp

env

jmp_buf The current processor
state

Remarks

The setjmp () function saves the calling environment—data and address
registers, the stack pointer, and the program counter—in the env argument. The
argument must be initialized by set jmp () before being passed as an argument to
longjmp (). For example usage, see Listing 27.1.

The setjmp function is redefined when AltiVec support is enabled. The
programmer must ensure that both the “from” compilation unit and “to”
compilation unit have AltiVec enabled. Failure to do so will create an undesired
result.

When it is first called, setjmp () saves the processor state and returns 0. When
longjmp () is called program execution jumps to the setjmp () that saved the
processor state in env. When activated through a call to longjmp (),

setjmp () returns longjmp ()'s val argument.

This function may not be implemented on all platforms.

See Also

“longjmp” on page 244

“signal” on page 251

“abort” on page 405

Listing 27.1 Example of setjmp() Usage

#include <setjmp.h>
#include <stdio.h>
#include <stdlib.h>

// Let main() and doerr () both have
// access to global env

MSL C Reference Version 10 245

4
A

setjmp.h
Overview of setimp.h

volatile jmp_buf env;

void doerr (void) ;
int main(void)

{
int 1, J, k;
printf ("Enter 3 integers that total less than 100.\n");
printf ("A zero sum will quit.\n\n");
// If the total of entered numbers is not less than 100,
// program execution is restarted from this point.
if (setjmp(env) != 0)
printf ("Try again, please.\n");
do {
scanf ("%d %4 %4d", &i, &j, &k);
if ((i + 3 + k) == 0)
exit (0); // quit program
printf("%d + %d + %d = %d\n\n", i, Jj, k, i+j+k);
if ((i + 3 + k) >= 100)
doerr () ; // error!
} while (1); // loop forever
return O;
}
void doerr (void) // this is the error handler
{
printf ("The total is >= 100!\n");
longjmp (env, 1);
}
Output:

Enter 3 integers that total less than 100.
A zero sum will quit.

10 20 30
10 + 20 + 30 = 60

-4 5 1000
-4 + 5 + 1000 = 1001

The total is >= 100!

246 MSL C Reference Version 10

g |

setjmp.h
Overview of setimp.h

Try again, please.
000

MSL C Reference Version 10

247

A 4
4\

setjmp.h
Overview of setimp.h

248 MSL C Reference Version 10

28

signal.h

The signal .h header file lists the software interrupt specifications.

Overview of signal.h

Signals are software interrupts. There are signals for aborting a program, floating point
exceptions, illegal instruction traps, user-signaled interrupts, segment violation, and
program termination.

e Table 28.1 lists the macros in the signal .h file.
* “signal” on page 251 specifies how a signal is handled: a signal can be ignored,

handled in a default manner, or be handled by a programmer-supplied signal
handling function.

* ‘“raise” on page 253 calls the signal handling function.

3

* “Signal Function Handling Arguments” on page 251 describes the pre-defined signal
handling macros that expand to functions.

Signal handling

Signals are invoked, or raised, using the raise () function. When a signal is raised its
associated function is executed.

With the MSL C implementation of signal . h, a signal can only be invoked through the
function ‘“raise” on page 253, and, in the case of the STGABRT signal, through the
function “abort” on page 405. When a signal is raised, its signal handling function is
executed as a normal function call.

The default signal handler for all signals except SIGTERM is SIG_DFL. The SIG_DFL
function aborts a program with the abort () function, while the STGTERM signal
terminates a program normally with the exit () function.

The ANSI C Standard Library specifies that the SIG prefix used by the signal.h macros is
reserved for future use. The programmer should avoid using the prefix to prevent conflicts
with future specifications of the Standard Library.

The type typedef char sig_atomic_t in signal.h can be accessed as an
incorruptible, atomic entity during an asynchronous interrupt.

MSL C Reference Version 10 249

V¥ ¢
i

signal.h
Overview of signal.h

The number of signals is defined by __signal_max given a value in this header.

CAUTION

Using unprotected re-entrant functions such as printf(), getchar(),
malloc(), etc. functions from within a signal handler is not recommended
in any system that can throw signals in hardware. Signals are in effect
interrupts, and can happen anywhere, including when you're already
within a function. Even functions that protect themselves from re-entry in
a multi-threaded case can fail if you re-enter them from a signal handler.

Table 28.1 signal.h Macros

Macro

Details

SIGABRT

Abort signal. This macro is defined as a
positive integer value. This signal is called
by the abort () function.

SIGBREAK

Terminates calling program.

SIGFPE

Floating point exception signal. This
macro is defined as a positive integer
value.

SIGILL

lllegal instruction signal. This macro is
defined as a positive integer value.

SIGINT

Interactive user interrupt signal. This
macro is defined as a positive integer
value.

SIGSEGV

Segment violation signal. This macro is
defined as a positive integer value.

SIGTERM

Terminal signal. This macro is defined as
a positive integer value. When raised this
signal terminates the calling program by
calling the exit() function.

The signal () function specifies how a signal is handled: a signal can be ignored,
handled in a default manner, or be handled by a programmer-supplied signal handling
function. Table 28.2 lists the pre-defined signal handling macros.

250

MSL C Reference Version 10

signal.h

Overview of signal.h
Table 28.2 Signal Function Handling Arguments
Macro Description
SIG_IGN This macro expands to a pointer to a

function that returns void. It is used as a
function argument in signal () to
designate that a signal be ignored.

SIG_DFL This macro expands to a pointer to a
function that returns void. This signal
handler quits the program without flushing
and closing open streams.

SIG_ERR A macro defined like SIG_IGN and
SIG_DFL as a function pointer. This value
is returned when signal() cannot honor a
request passed to it.

signal

Set signal handling.
#include <signal.h>

void (*signal (int sig, void (*func) (int))) (int);

Table 28.3 signal

sig int A number associated with
the signal handling
function

func void * A pointer to a signal
handling function

Remarks

The signal () function returns a pointer to a signal handling routine that takes
an int value argument. For example usage, see Listing 28.1.

The sig argument is the signal number associated with the signal handling
function. The signals defined in signal . h are listed in Table 28.1.

MSL C Reference Version 10 251

3
4

y
A

signal.h

Overview of signal.h

The func argument is the signal handling function. This function is either
programmer-supplied or one of the pre-defined signal handlers described in

3

‘Signal Function Handling Arguments” on page 251.

When it is raised, a signal handler's execution is preceded by the invocation of
signal (sig, SIG_DFL). Thiscallto signal () effectively disables the
user's handler. It can be reinstalled by placing a call within the user handler to
signal () with the user's handler as its function argument.

signal () returns a pointer to the signal handling function set by the last call to

signal ()
SIG_ERR.

for signal sig. If the request cannot be honored, signal () returns

This function may not be implemented on all platforms.

See Also
“raise” on page 253

“abort” on page 405

“atexit” on page 408

“exit” on page 420

Listing 28.1 Example of signal() Usage

#include <signal.h>
#include <stdio.h>
#include <stdlib.h>

void userhandler (int) ;

void userhandler (int sig)

{
char c;
printf ("userhandler!\nPress return.\n");
/* wait for the return key to be pressed */
c = getchar();
}
int main(void)
{
void (*handlerptr) (int) ;
int 1i;
handlerptr = signal (SIGINT, userhandler) ;
if (handlerptr == SIG_ERR)
printf("Can't assign signal handler.\n");
252 MSL C Reference Version 10

signal.h

Overview of signal.h
for (i = 0; 1 < 10; 1i++) {
printf ("%$d\n", 1i);

if (i == 5) raise(SIGINT) ;
}
return O;
}
Output:
0
1
2
3
4
5
userhandler!

Press return.

O o Jo

raise

Raise a signal.
#include <signal.h>

int raise(int sig);

Table 28.4 raise

sig

int

A signal handling function

Remarks

The raise () function calls the signal handling function associated with signal

sig.

raise () returns a zero if the signal is successful; it returns a nonzero value if it is

unsuccessful.

This function may not be implemented on all platforms.

MSL C Reference Version 10

253

A 4
4\

signal.h
Overview of signal.h

See Also

“longjmp” on page 244

“signal” on page 251

“abort” on page 405

“atexit” on page 408

“exit” on page 420

254 MSL C Reference Version 10

29
SIOUX.h

The SIOUX (Simple Input and Output User eXchange) libraries handle Graphical User
Interface issues. Such items as menus, windows, and events are handled so your program
doesn’t need to for C and C++ programs.

Overview of SIOUX

The following section describes the Macintosh versions of the console emulation interface
known as SIOUX. The facilities and structure members for the Standard Input Output
User eXchange console interface are “Using SIOUX” and “SIOUX for Macintosh”.

* “Using SIOUX” on page 255 is a general description of SIOUX properties.

¢ “SIOUX for Macintosh” on page 256 explains the (Simple Input and Output User
eXchange) library for the Macintosh Operating Systems.

NOTE If you’re porting a UNIX or DOS program, you might also need the functions
in other UNIX compatibility headers.

See Also

“MSL Extras Library Headers” on page 4 for information on POSIX naming
conventions.

Using SIOUX

Sometimes you need to port a program that was originally written for a command
line interface such as DOS or UNIX. Or you need to write a new program quickly
and don’t have the time to write a complete Graphical User Interface that handles
windows, menus, and events.

To help you, CodeWarrior provides you with the SIOUX libraries, which handles
all the Graphical User Interface items such as menus, windows, and titles so your
program doesn’t need to. It creates a window that’s much like a dumb terminal or
TTY but with scrolling. You can write to it and read from it with the standard C
functions and C++ operators, such as printf(), scanf(), getchar(), putchar() and the
C++ inserter and extractor operators << and >>. The SIOUX and WinSIOUX

MSL C Reference Version 10 255

A 4
4\

SIOUX.h
SIOUX for Macintosh

libraries also creates a File menu that lets you save and print the contents of the
window. The Macintosh hosted SIOUX includes an Edit menu that lets you cut,
copy, and paste the contents in the window. For information on Macintosh
redirecting to or from file the stdin, stdout, cout, and cin input output or
commandline arguments.

Macintosh only—this function may not be implemented on all Mac OS versions.

See Also

“Overview of console.h” on page 41.

NOTE If you’re porting a UNIX or DOS program, you might also need the functions
in other UNIX compatibility headers.

SIOUX for Macintosh

SIOUX for Macintosh contains the following segments.

* “Creating a Project with SIOUX" on page 257 shows a running SIOUX program.

e “Customizing SIOUX” on page 258 shows how to customize your SIOUX window.

3

‘The SIOUXSettings Structure” on page 259 list structure members that may be
set for altering SIOUX’s appearance

e “Using SIOUX windows in your own application” on page 264 contains information
for using Mac OS facilities with in your SIOUX project.

— “path2fss” on page 265 a function similar to PBMakeFSSpec.

13

— “SIOUXHandleOneEvent” on page 265 allows you to use an even in SIOUX

— “SIOUXSetTitle” on page 267 allows you to specify a custom title for SIOUX’s
window

NOTE A WASTE® by Marco Piovanelli based SIOUX console is available as a pre-
release version. This will allow screen output of over 32k characters. All
normal SIOUX functions should work but normal pre-release precautions
should be taken. Please read all release notes.

The window is a re-sizable, scrolling text window, where your program reads and writes
text. It saves up to 32K of your program’s text.

With the commands from the Edit menu, you can cut and copy text from the SIOUX
window and paste text from other applications into the SIOUX window. With the
commands in the File menu, you can print or save the contents of the SIOUX window.

256 MSL C Reference Version 10

SIOUX.h
SIOUX for Macintosh

To stop your program at any time, press Command-Period or Control-C. The SIOUX
application keeps running so you can edit or save the window’s contents. If you want to
exit when your program is done or avoid the dialog asking whether to save the window,
see “Changing what happens on quit” on page 263

To quit out of the SIOUX application at any time, choose Quit from the File menu. If you
haven’t saved the contents of the window, the application displays a dialog asking you
whether you want to save the contents of the window now. If you want to remove the
status line, see “‘Showing the status line”” on page 264.

Creating a Project with SIOUX

To use the SIOUX library, create a project from a project stationery pads that creates an
Console style project.

In this chapter, standard input and standard output refer to stdin, stdout, cin, and
cout. Standard error reporting such as stderr, clog, and cerr is not redirected to
a file using ccommand ().

If you want only to write to or read from standard input and output, you don’t need to call
any special functions or include any special header files. When your program refers to
standard input or output, the SIOUX library kicks in automatically and creates a SIOUX
window for it.

NOTE Remember that functions like printf () and scanf () use standard input
and output even though these symbols do not appear in their parameter lists.

If you want to customize the SIOUX environment, you must #include STOUX . h and
modify STOUXSettings before you use standard input or output. As soon as you use
one of them, SIOUX creates a window and you cannot modify it. For more information,

see “Customizing SIOUX"” on page 258.

If you want to use a SIOUX window in a program that has its own event loop, you must
modify STOUXSettings and call the function STOUXHandleOneEvent (). For

more information, see “Using SIOUX windows in your own application” on page 264.

If you want to add SIOUX to a project you already created, the project must contain
certain libraries.

A PPC project must either contain at least these libraries:
 MSL_AI_.PPC.Lib
¢ InterfaceLib
e MathLib
Or at least:
* MSL C.PPC.Lib

MSL C Reference Version 10 257

3
4

y
A

SIOUX.h

SIOUX for Macintosh

MSL C++.PPC.Lib (for C++)
MSL_SIOUX_PPC.Lib

¢ MSL_Runtime_PPC.Lib

¢ InterfaceLib

e MathLib

A Carbon project must either contain at least these libraries:
e MSL_AIl_Carbon.Lib
¢ CarbonLib
Or at least:
* MSL_C_Carbon.Lib
¢ MSL_C++_Carbon.Lib (for C++)
* MSL_SIOUX_Carbon.Lib
¢ CarbonLib
A Mach-O project must contain at least these libraries:
e MSL_AIl_Mach-0.lib
¢ MSL_SIOUX_Mach-O.lib (to be implemented)
Or at least:
e MSL_C_Mach-O.lib
¢ MSL_C++_Mach-O.lib (for C++)
e MSL_SIOUX_Mach-O.lib (to be implemented)
¢ MSL_Runtime_Mach-O.lib

Customizing SIOUX

This following sections describe how you can customize the SIOUX environment by
modifying the structure STOUXSettings. SIOUX examines the data fields of
SIQUXSettings to determine how to create the SIOUX window and environment.

NOTE To customize SIOUX, you must modify SIOUXSettings before you call
any function that uses standard input or output. If you modify
SIOUXSettings afterwards, SIOUX does not change its window.

<

The first three sections, “Changing the font and tabs” on page 261, “Changing the size and
location” on page 262, and “‘Showing the status line” on page 264. describe how to

customize the SIOUX window. The next section, “Changing what happens on quit” on
page 263, describe how to modify how SIOUX acts when you quit it. The last section,

258

MSL C Reference Version 10

SIOUX.h
SIOUX for Macintosh

“Using SIOUX windows in your own application” on page 264. describes how you can

use a SIOUX window in your own Macintosh program.

Table 29.1 summarizes what’s in the STOUXSettings structure.

Table 29.1 The SIOUXSettings Structure

This field...

Specifies...

char initialize TB

Whether to initialize the
Macintosh toolbox.

char standalone

Whether to use your own
event loop or SIOUX’s.

char setupmenus

Whether to create File and
Edit menus for the
application.

char autocloseonquit

Whether to quit the
application automatically
when your program is
done.

char asktosaveonclose

Query the user whether to
save the SIOUX output as
a file, when the program is
done.

char showstatusline

Whether to draw the status
line in the SIOUX window.

short tabspaces

If greater than zero,
substitute a tab with that
number of spaces. If zero,
print the tabs.

short column

The number of characters
per line that the SIOUX
window will contain.

short rows

The number of lines of text
that the SIOUX window will
contain.

short toppixel

The location of the top of
the SIOUX window.

short leftpixel

The location of the left of
the SIOUX window.

MSL C Reference Version 10

259

'
A

SIOUX.h
SIOUX for Macintosh

Table 29.1 The SIOUXSettings Structure (continued)

This field... Specifies...

short fontid The font in the SIOUX
window.

short fontsize The size of the font in the
SIOUX window.

short stubmode SIOUX acts like a stubs
library

char usefloatingwindows (Carbon) use non floating

front window

short fontface The style of the font in the
SIOUX window.
int sleep The default value for the

sleep settingis zero. Zero
gets the most speed out of
SIOUX by telling the
system to not give time to
other processes during a
WaitNextEvent call. A
more appropriate setting
(that is more friendly to
other processes) is to set
the sleep value to
GetCaretTime () .

Listing 29.1 contains a small program that customizes a SIOUX window.

Listing 29.1 Example of Customizing a SIOUX Window

#include <stdio.h>
#include <sioux.h>
#include <MacTypes.h>
#include <Fonts.h>

int main(void)
{
short familyID;

/* Don’'t exit the program after it runs or ask whether
to save the window when the program exit */
SIOUXSettings.autocloseonquit = false;

260 MSL C Reference Version 10

SIOUX.h

SIOUX for Macintosh

SIOUXSettings.asktosaveonclose = false;
/* Don’t show the status line */
SIOUXSettings.showstatusline = false;
/* Make the window large enough to fit 1 line

of text that contains 12 characters. */
SIOUXSettings.columns = 12;
SIOUXSettings.rows = 1;
/* Place the window’s top left corner at (5,40). */
SIOUXSettings.toppixel = 40;
SIOUXSettings.leftpixel = 5;
/* Set the font to be 48-point, bold, italic Times. */

SIOUXSettings.fontsize = 48;
SIOUXSettings.fontface = bold + italic;
GetFNum ("\ptimes", &familyID) ;
SIOUXSettings.fontid = familyID;

printf ("Hello World!");

return O;

Changing the font and tabs

This section describes how to change how SIOUX handles tabs with the field
tabspaces and how to change the font with the fields fontid, fontsize, and
fontface.

NOTE The status line in the SIOUX window writes its messages with the font
specified in the fields fontid, fontsize, and font face. If that font is
too large, the status line may be unreadable. You can remove the status line by
setting the field showstatusline to false, as described in “Showing the
status line” on page 264.

To change the font in the SIOUX window, set fontid to one of these values defined in the
header file Fonts.h:

e courier where the ID is kFontIDCourier
¢ geneva where the ID is kFontIDGeneva
e helvetica where the ID is kFontIDHelvetica

e monaco where the ID is kFontIDMonaco

MSL C Reference Version 10 261

3
4

y
A

SIOUX.h

SIOUX for Macintosh

* newYork where the ID is kFontIDNewYork
¢ symbol where the ID is kFontIDSymbol
* times where the ID is kFontIDTimes
By default, fontid is monaco.
To change the character style for the font, set fontface to one of these values:
* normal
* bold
e italic
¢ underline
e outline
¢ shadow
* condense
¢ extend

To combine styles, add them together. For example, to write text that’s bold and italic, set
fontfaceto bold + italic. By default, fontfaceisnormal.

To change the size of the font, set fontsize to the size. By default, fontsizeis 9.

The field tabspaces controls how SIOUX handles tabs. If tabspaces is any number
greater than 0, SIOUX prints that number of spaces required to get to the next tab position
instead of a tab. If tabspaces is 0, it prints a tab. In the SIOUX window, a tab looks
like a single space, so if you are printing a table, you should set tabspaces to an
appropriate number, such as 4 or 8. By default, tabspaces is 4.

The sample below sets the font to 12-point, bold, italic New York and substitutes 4 spaces
for every tab:

SIOUXSettings.fontsize = 12;
SIOUXSettings.fontface = bold + italic;
SIOUXSettings.fontid = kFontIDNewYork;
SIOUXSettings.tabspaces = 4;

Changing the size and location
SIOUX lets you change the size and location of the SIOUX window.

To change the size of the window, set rows to the number of lines of text in the window
and set columns to the number of characters in each line. SIOUX checks the font you
specified in fontid, fontsize, and font face and creates a window that will be
large enough to contain the number of lines and characters you specified. If the window is

262

MSL C Reference Version 10

SIOUX.h
SIOUX for Macintosh

too large to fit on your monitor, SIOUX creates a window only as large as the monitor can
contain.

For example, the code below creates a window that contains 10 lines with 40 characters
per line:

SIOUXSettings.rows = 10;
SIOUXSettings.columns = 40;
By default, the SIOUX window contains 24 rows with 80 characters per row.

To change the position of the SIOUX window, set toppixel and leftpixel to the
point where you want the top left corner of the SIOUX window to be. By setting
toppixelto 38 and leftpixel to 0, you can place the window as far left as possible
and just under the menu bar. Notice that if toppixel is less than 38, the SIOUX
window is under the menu bar. If toppixel and leftpixel are both 0, SIOUX
doesn’t place the window at that point but instead centers it on the monitor.

For example, the code below places the window just under the menu bar and near the left
edge of the monitor:

SIOUXSettings.toppixel = 40;
STIOUXSettings.leftpixel = 5;

Changing what happens on quit

The fields autocloseonguit and asktosaveonclose let you control what
SIOUX does when your program is over and SIOUX closes its window.

The field autocloseonguit determines what SIOUX does when your program has
finished running. If autocloseonquit is true, SIOUX automatically exits. If
autocloseongquit is false, SIOUX continues to run, and you must choose Quit
from the File menu to exit. By default, autocloseonquit is false.

NOTE You can save the contents of the SIOUX window at any time by choosing Save
from the File menu.

The field asktosaveonclose determines what SIOUX does when it exits. If
asktosaveoncloseis true, SIOUX displays a dialog asking whether you want to
save the contents of the SIOUX window. If asktosaveoncloseis false, SIOUX
exits without displaying the dialog. By default, asktosaveonclose is true.

For example, the code below quits the SIOUX application as soon as your program is done
and doesn’t ask you to save the output:

SIOUXSettings.autocloseonquit = true;

STIOUXSettings.asktosaveonclose = false;

MSL C Reference Version 10 263

3
4

y
A

SIOUX.h

SIOUX for Macintosh

Showing the status line

The field showstatusline lets you control whether the SIOUX window displays a
status line, which contains such information as whether the program is running, handling
output, or waiting for input. If showstatusline is true, the status line is displayed.
If showstatuslineis false, the status line is not displayed. By default,
showstatuslineis false.

Using SIOUX windows in your own application

This section explains how you can limit how much SIOUX controls your program. But
first, you need to understand how SIOUX works with your program. You can consider the
SIOUX environment to be an application that calls your main () function as just another
function. Before SIOUX calls main (), it performs some initialization to set up the
Macintosh Toolbox and its menu. After main () completes, SIOUX cleans up what it
created. Even while main () is running, SIOUX sneaks in whenever it performs input or
output, acting on any menu you’ve chosen or command key you’ve pressed.

However, SIOUX lets you choose how much work it does for you. You can choose to
handle your own events, set up your own menus, and initialize the Macintosh Toolbox
yourself.

When you want to write an application that handles its own events and uses SIOUX
windows for easy input and output, set the field standalone to false before you use
standard input or output. SIOUX doesn’t use its event loop and sets the field
autocloseonguite to true for you, so the application exits as soon as your program
is done. In your event loop, you need to call the function STOUXHandleOneEvent (),
described on “Using SIOUX windows in your own application” on page 264.

When you don’t want to use SIOUX’s menus, set the field setupmenus to false. If
standalone is also false, you won’t be able to create menus, and your program will
have none. If standalone is true, you can create and handle your own menus.

When you want to initialize the Macintosh Toolbox yourself, set the field
initializeTBto false. The field standalone does not affect initializeTB.

For example, these lines set up SIOUX for an application that handles its own events,
creates its own menus, and initializes the Toolbox:

SIOUXSettings.standalone = false;
SIOUXSettings.setupmenus = false;

SIOUXSettings.initializeTB = false;

264

MSL C Reference Version 10

SIOUX.h

SIOUX for Macintosh
path2fss
This function is similar to PBMakeFSSpec.
#include <path2fss.h>
OSErr path2fss
(const char * pathName, FSSpecPtr spec)
Table 29.2 path2fss
pathname const char * The path name
spec FSSpecPtr A file specification pointer

Remarks

This function is similar to PBMakeFSSpec with four major differences:
* Takes only a path name as input (as a C string) no parameter block.
¢ Only makes FSSpecs for files, not directories.

* Works on *any* HFS Mac (Mac 512KE, Mac Plus or later) under any system
version that supports HFS.

¢ Deals correctly with MFS disks (correctly traps file names longer than 63 chars and
returns bdNamErr).

Like PBMakeFSSpec, this function returns fnfErr if the specified file does not exist but
the FSSpec is still valid for the purposes of creating a new file.

Errors are returned for invalid path names or path names that specify directories rather
than files.

Macintosh only—this function may not be implemented on all Mac OS versions.

SIOUXHandleOneEvent

Handles an event for a SIOUX window.
#include <SIOUX.h>

Boolean SIOUXHandleOneEvent (EventRecord *event) ;

MSL C Reference Version 10 265

y
A

SIOUX.h
SIOUX for Macintosh

Table 29.3 SIOUXHandleOneEvent

event EventRecord* A pointer to a toolbox
event

Remarks

Before you handle an event, call STOUXHandleOneEvent () so SIOUX can
update its windows when necessary. The argument event should be an event that
WaitNextEvent () or GetNextEvent () returned. The function returns
true if it handled the event and false if it didn’t. If event is a NULL pointer,
the function polls the event queue until it receives an event.

If it handles the event, STOUXHandleOneEvent () returns true. Otherwise,
SIOUXHandleOneEvent () returns false.

Macintosh only—this function may not be implemented on all Mac OS versions.

Listing 29.2 Example of SIOUXHandleOneEvent() Usage

void MyEventLoop (void)
{
EventRecord event;
RgnHandle cursorRgn;
Boolean gotEvent, SIOUXDidEvent;

cursorRgn = NewRgn () ;

do {
gotEvent = WaitNextEvent (everyEvent, &event,
MyGetSleep (), cursorRgn);

/* Before handling the event on your own,
* call STIOUXHandleOneEvent () to see whether
* the event is for SIQUX.
*x/
if (gotEvent)
SIOUXDidEvent = SIOUXHandleOneEvent (&event) ;

if (!SIOUXDidEvent)
DoEvent (&event) ;

} while (!gDone)

266 MSL C Reference Version 10

SIOUX.h
SIOUX for Macintosh

SIOUXSetTitle

To set the title of the STOUX output window.
include <SIOUX.h>

extern void SIOUXSetTitle(unsigned char title[256])

Table 29.4 SIOUXSetTitle

title unsigned char [] A pascal string

Remarks

You must call the STOUXSetTitle () function after an output to the STOUX
window. The function STOUXSetTitle () does not return an error if the title is
not set. A write to console is not performed until a new line is written, the stream is
flushed or the end of the program occurs.

NOTE The argument for STOUXSetTitle () is a pascal string, not a C style string.

There is no return value from SIOUXSetTitle ()

Macintosh only—this function may not be implemented on all Mac OS versions.

Listing 29.3 Example of SIOUXSetTitle() Usage

#include <stdio.h>
#include <SIOUX.h>

int main(void)

{
printf ("Hello World\n") ;
SIOUXSetTitle ("\pMy Title");

return 0;

MSL C Reference Version 10 267

A 4
4\

SIOUX.h
SIOUX for Macintosh

268 MSL C Reference Version 10

30
stat.h

The stat . h header file contains several functions that are useful for porting a program
from UNIX.

Overview of stat.h

This header file defines the facilities as follows:

¢ “Stat Structure and Definitions” on page 269 explains the stat struct and types.

* ‘“chmod” on page 272 gets or sets a files attributes.

* “fstat” on page 273 gets information about an open file.
* “mkdir” on page 275 makes a directory for folder.
* “stat” on page 276 gets statistics of a file.

stat.h and UNIX Compatibility

Generally, you don’t want to use these functions in new programs. Instead, use their
counterparts in the native APIL.

NOTE If you’re porting a UNIX or DOS program, you might also need the functions
in other UNIX compatibility headers.

See Also

“MSL Extras Library Headers” on page 4 for information on POSIX naming
conventions.

Stat Structure and Definitions

The header stat.h includes the stat (and _stat, for Windows) structure, listed in
Table 30.2. It also has several type definitions and file mode definitions. The necessary
types are listed in Table 30.1. The file modes are listed in Table 30.3. File mode macros
are listed in Table 30.4 and Table 30.5.

MSL C Reference Version 10 269

'
A

stat.h
Overview of stat.h

Table 30.1 Defined Types

Type Used to Store

dev_t Device type

gid_t The file size

ino_t File information

mode_t File Attributes

nlink_t The number of links

off_t The file size in bytes

uid_t The user's ID

Table 30.2 The stat or _stat Structure

Type Variable Purpose

mode_t st_mode File mode, see “File
Modes” on page 271

ino_t st_ino File serial number

dev_t st_dev ID of device containing this
file

dev_t std_rdev (Windows) ID of device containing this
file

nlink_t st_nlink Number of links

uid_t st_uid User ID of the file's owner

gid_t st_gid Group ID of the file's group

off_t st_size File size in bytes

__std(time_t) st_atime Time of last access

__std(time_t) st_mtime Time of last data
modification

__std(time_t) st_ctime Time of last file status
change

270

MSL C Reference Version 10

stat.h

Overview of stat.h
Table 30.2 The stat or _stat Structure (continued)
Type Variable Purpose
long st_blksize Optimal blocksize
long st_blocks Blocks allocated for file
File Modes
File mode information.
Table 30.3 File Modes
File Mode Purpose
S_IFMT File type
S_IFIFO FIFO queue
S_IFCHR Character special
S_IFDIR Directory
S_IFBLK Blocking stream (non Windows)
S_IFREG Regular
S_IFLNK Symbolic link (non Windows)
S_IFSOCK Socket (non Windows)
Table 30.4 File Mode Macros Non-Windows
File Mode Purpose
S_IRGRP Read permission file group class
S_IROTH Read permission file other class
S_IRUSR Read permission file owner class
S_IRWXG Permissions for file group class
S_IRWXO Permissions for file other class
S_IRWXU Permissions for file owner class

MSL C Reference Version 10 271

'
A

stat.h
Overview of stat.h

Table 30.4 File Mode Macros Non-Windows (continued)

File Mode Purpose

S_ISGID Set group ID on execution
S_ISUID Set user ID on execution
S_IWGRP Write permission file group class
S_IWOTH Write permission file other class
S_IWUSR Write permission file owner class
S_IXGRP Exec permission file group class
S_IXOTH Exec permission file other class
S_IXUSR Exec permission file owner class

Table 30.5 File Mode Macros Windows Only

File Mode Purpose

S_IEXEC Execute/search permission, owner
(Windows)

S_IREAD Read permission, owner (Windows Only)

S_IWRITE Write permission, owner (Windows Only)

chmod

Gets or sets file attributes.
#include <stat.h>
int chmod(const char *, mode_t);

int _chmod(const char *, mode_t);

272 MSL C Reference Version 10

stat.h
Overview of stath

Table 30.6 chmod

path const char * The file to change modes
on
mod mode_t A mask of the new file
attributes
Remarks

The file attributes as a mask is returned or a negative one on failure.

This function may not be implemented on all platforms.

See Also

“fstat” on page 273

fstat

Gets information about an open file.

#include <stat.h>

int fstat(int fildes,

int _

Table 30.7 fstat

struct stat *buf);

fstat (int fildes, struct stat *buf);

fildes int A file descriptor
buf struct stat * The stat structure address
Remarks

This function gets information on the file associated with £i1des and puts the
information in the structure that buf points to. The structure contains the fields
listed in “Stat Structure and Definitions” on page 269.

If it is successful, £stat () returns zero. If it encounters an error, fstat ()
returns -1 and sets errno.

This function may not be implemented on all platforms.

MSL C Reference Version 10

273

4
A

stat.h
Overview of stat.h

See Also
“stat” on page 276

Listing 30.1 Example of fstat() Usage

#include <stdio.h>
#include <time.h>
#include <unix.h>

int main(void)

{
struct stat info;
int fd;
fd = open("mytest", O_WRONLY | O_CREAT | O_TRUNC) ;
write(fd, "Hello world!\n", 13);
fstat (fd, &info);

/* Get information on the open file. */
printf ("File mode: 0x%1X\n", info.st_mode) ;
printf("File ID: 0x%1X\n", info.st_ino);
printf ("Volume ref. no.: 0x%1X\n", info.st_dev);
printf ("Number of links: %$hd\n", info.st_nlink);
printf ("User ID: %lu\n", info.st_uid);
printf ("Group ID: %$1lu\n", info.st_gid);
printf ("File size: %1d\n", info.st_size);
printf ("Access time: %s", ctime(&info.st_atime));
printf ("Modification time: %s", ctime(&info.st_mtime));
printf ("Creation time: %s", ctime(&info.st_ctime)) ;
close (£fd) ;
return O;

This program may print the following:

File mode: 0x800

File ID: 0x5ACA
Volume ref. no.: OXFFFFFFFF
Number of links: 1

User ID: 200

Device type: 0

File size: 13

274 MSL C Reference Version 10

stat.h

Overview of stath
mkdir
Makes a folder.
#include <stat.h>
int mkdir (const char *path, int mode) ;
int _mkdir (const char *path);
Table 30.8 mkdir
path const char * The path name
mode int The open mode
(Not applicable for
Windows)

Remarks

This function creates the new folder specified in path. It ignores the argument
mode.

If it is successful, mkdir () returns zero. If it encounters an error, mkdir ()
returns -1 and sets errno.

This function may not be implemented on all platforms.

See Also

“unlink” on page 535
“rmdir” on page 529

Listing 30.2 Example of mkdir() on Macintosh OS

#include <stdio.h>
#include <stat.h>

int main(void)

{
if(mkdir(":Asok", 0) == 0)
printf ("Folder Asok is created");
return O;
}
Windows

#include <stdio.h>

MSL C Reference Version 10 275

y
A

stat.h
Overview of stat.h

#include <stat.h>

int main(void)

{
1if(mkdir(".\\Asok") == 0)
printf ("Folder Asok is created");
return O;
}
Output

Creates a folder named Asok as a sub-folder of the current folder

stat

Gets information about a file.
#include <stat.h>
int stat(const char *path, struct stat *buf);

int _stat(const char *path, struct stat *buf);

Table 30.9 stat

path const char * The path name
buf struct stat * A pointer to the stat struct
Remarks

This function gets information on the file specified in path and puts the
information in the structure that buf points to. The structure contains the fields

«

listed in “Stat Structure and Definitions” on page 269.

If it is successful, stat () returns zero.

This function may not be implemented on all platforms.

See Also

“fstat” on page 273
“uname” on page 549

276 MSL C Reference Version 10

g |

stat.h
Overview of stat.h
Listing 30.3 Example of stat() Usage
#include <stdio.h>
#include <time.h>
#include <unix.h>
int main(void)
{
struct stat info;
stat ("Akbar:System Folder:System", &info);

/* Get information on the System file. */
printf ("File mode: 0x%1X\n", info.st_mode) ;
printf("File ID: 0x%1X\n", info.st_ino);
printf ("Volume ref. no.: 0x%1X\n", info.st_dev);
printf ("Number of links: %$hd\n", info.st_nlink);
printf ("User ID: %lu\n", info.st_uid);
printf ("Group ID: %1lu\n", info.st_gid);
printf ("File size: %1d\n", info.st_size);
printf ("Access time: %s", ctime(&info.st_atime));
printf ("Modification time: %s", ctime(&info.st_mtime)) ;
printf ("Creation time: %s", ctime(&info.st_ctime)) ;
return 0;

}

This program may print the following:

File mode: 0x800

File ID: 0x4574

Volume ref. no.: 0x0

Number of links: 1

User ID: 200

Group ID: 100

File size: 30480

Access time: Mon Apr 17 19:46:37 1995
Modification time: Mon Apr 17 19:46:37 1995
Creation time: Fri Oct 7 12:00:00 1994
MSL C Reference Version 10 277

y
A

stat.h
Overview of stat.h

umask

Sets a UNIX style file creation mask.
#include <stat.h> /* Macintosh */
mode_t umask (mode_t cmask)

mode_t _umask (mode_t cmask)

Table 30.10 umask

cmask mode_t permission bitmask
Remarks
The function umask isused forcallsto open(), creat() and mkdir ()

to turn off permission bits in the mode argument.

If _MSL_POSIX true and you are compiling for Macintosh or Windows
umask returns mode_t and takes a mode_t otherwise it takes an int
type.

NOTE The permission bits are not used on either the Mac nor Windows. The function
is provided merely to allow compilation and compatibility.

The previous mask. Zero is returned for Mac and Windows operating systems. if
_MSL_POSIX is on and you are on mac and win umask returns mode_t.

This function may not be implemented on all platforms.

See Also

“creat, _wcreate” on page 118

“open, _wopen’ on page 121

“mkdir” on page 275

278 MSL C Reference Version 10

31
stdarg.h

The stdarg.h header file allows the creation of functions that accept a variable number
of arguments.

Overview of stdarg.h

This header file defines the facilities as follows:

e “va_arg” on page 280 returns an argument value.

* “va copy” on page 280 copies and initializes a variable argument list.

¢ “va_end” on page 281 cleans the stack to allow a proper function return.

* ‘“va start” on page 282 initializes the variable-length argument list.

Variable Arguments for Functions

The stdarg.h header file allows the creation of functions that accept a variable number
of arguments.

A variable-length argument function is defined with an ellipsis (. . .) as its last argument.
For example:

int funnyfunc(int a, char ¢, ...);

The function is written using the va_1list type, the va_start (),va_arg() and the
va_end () macros.

The function has a va_1ist variable declared within it to hold the list of function
arguments. The macro °“‘va_start” on page 282 initializes the va_1list variable and is
called before gaining access to the arguments. The macro “va_arg” on page 280 returns
each of the arguments in va_11ist. When all the arguments have been processed through
va_arg (), the macro “va end” on page 281 is called to allow a normal return from the
function.

MSL C Reference Version 10 279

y
A

stdarg.h
Overview of stdarg.h

va_arg

Macro to return an argument value.
#include <stdarg.h>

type va_arg(va_list ap, type type);

Table 31.1 va_arg

ap va_list A variable list

type type The type of the argument
value to be obtained

Remarks

The va_arg () macro returns the next argument on the function's argument list.
The argument returned has the type defined by type. The ap argument must first be
initialized by the va_start () macro.

The va_arg () macro returns the next argument on the function's argument list of
type.

This function may not be implemented on all platforms.

See Also

“va_end” on page 281

“va_start” on page 282

For example of va() usage, see “Example of va_start() Usage” on page 282.

va_copy

Copies and initializes a variable argument list.
#include <stdarg.h>

void va_copy(va_list dest, va_list src)

280 MSL C Reference Version 10

stdarg.h
Overview of stdarg.h

Table 31.2 va_copy

dest va_list The va_list being initialized
src va_list The source va_list being
copied
Remarks

The va_copy ()

macro makes a copy of the variable list src in a state as if

the va_start macro had been applied to it followed by the same sequence of
va_arg macros as had been applied to src to bring it into its present state

There is no return for this facility.

This function may not be implemented on all platforms.

See Also

3

‘Variable Arguments for Functions” on page 27

va_end

Prepare a normal function return.

#include <stdarg.h>

void va_end(va_list ap);

Table 31.3 va_end

ap

va_list

A variable list

Remarks

The va_end () function cleans the stack to allow a proper function return. The
function is called after the function's arguments are accessed with the va_arg ()

macro.

This function may not be implemented on all platforms.

See Also

“va_arg” on page 280

“va_start” on page 282

MSL C Reference Version 10

281

y
A

stdarg.h
Overview of stdarg.h

va_start

Initialize the variable-length argument list.
#include <stdarg.h>

void va_start(va_list ap, ParmN Parm) ;

Table 31.4 va_start

ap va_list A variable list
Parm ParmN The last named parameter
Remarks

The va_start () macro initializes and assigns the argument list to ap. The
ParmN parameter is the last named parameter before the ellipsis (. . .) in the
function prototype. For example usage, see Listing 31.1.

This function may not be implemented on all platforms.

See Also

“va_arg” on page 280

“va_end” on page 281

Listing 31.1 Example of va_start() Usage

#include <stdarg.h>
#include <string.h>
#include <stdio.h>

void multisum(int *dest, ...);
int main(void)
{
int all;
all = 0;
multisum(&all, 13, 1, 18, 3, 0);
printf ("%$d\n", all);

return O;

282 MSL C Reference Version 10

g |

stdarg.h
Overview of stdarg.h

void multisum(int *dest, ...)

{
va_list ap;
int n, sum = 0;
va_start (ap, dest);
while ((n = va_arg(ap, int)) != 0)
sum += n; /* add next argument to dest */
*dest = sum;
va_end (ap) ; /* clean things up before leaving */
}
Output:
3

MSL C Reference Version 10 283

A 4
4\

stdarg.h
Overview of stdarg.h

284 MSL C Reference Version 10

32
stdbool.h

The stdbool.h header file defines types used for boolean integral values.

Overview of stdbool.h

The stdbool.h header file consists of definitions in Table 32.1 only if the compiler
support for c99 has been turned on using the C99 pragma.

#pragma c99 on | off | reset

Table 32.1 Defines in stdbool.h

bool _Bool

true 1

false 0

__bool_true_false_are_defined 1
Remarks

There are no other defines in this header.

This function may not be implemented on all platforms.

MSL C Reference Version 10 285

A 4
4\

stdbool.h
Overview of stdbool.h

286 MSL C Reference Version 10

33
stddef.h

The stddef . h header file defines commonly used macros and types that are used
throughout the ANSI C Standard Library.

Overview of stddef.h

The commonly used definitions macros and types are defined in stddef.h
e “NULL” on page 287 defines NULL.

o “offsetof” on page 287 is the offset of a structure’s member.

“ptrdiff t” on page 288 is used for pointer differences.

* “size t” on page 288 is the return from a size of operation.

¢ “wchar_t” on page 288 is a wide character type.

NULL
The NULL macro is the null pointer constant used in the Standard Library.
Remarks
This definition may not be implemented on all platforms.
offsetof

The of fsetof (structure, member) macro expands to an integral expression of
type size_t. The value returned is the offset in bytes of a member, from the base of its
structure.

NOTE If the member is a bit field the result is undefined.

Remarks

This macro may not be implemented on all platforms.

MSL C Reference Version 10 287

A 4
4\

stddef.h
Overview of stddef.h
ptrdiff_t
The ptrdiff_t type is the signed integral type used for holding the result of
subtracting one pointer's value from another.
Remarks
This type may not be implemented on all platforms.
size_t
The size_t type is an unsigned integral type returned by the sizeof () operator.
Remarks
This type may not be implemented on all platforms.
wchar_t

The wchar_t type is an integral type capable of holding all character representations of
the wide character set.

Remarks

This type may not be implemented on all platforms.

288 MSL C Reference Version 10

34

stdint.h

The header stdint .h defines types used for standard integral values.

Overview of stdint.h

The stdint.h header file consists of integer types listed as follows:

“Integer Types” on page 289

e “Limits of Specified-width Integer Types” on page 291

“Macros for Integer Constants” on page 295

“Macros for Greatest-width Integer Constants” on page 295

NOTE The types in this header may not be implemented on all platforms.

Integer Types

The header stdint.h contains several integer types.

Table 34.1, “Exact Width Integer Type”
Table 34.2, “Minimum Width Integer Type”

Table 34.3, “Fastest Minimum-Width Integer Types”
Table 34.4, “Integer Types Capable of Holding Object Pointers”
Table 34.5, “Greatest Width Integer Types”

Table 34.6, “Mac OS X Specific Integer Types”

Table 34.1 Exact Width Integer Type

Type Equivalent Type Equivalent
int8_t signed char int16_t short int
int32_t long int uint8_t unsigned char

MSL C Reference Version 10 289

'
A

stdint.h
Overview of stdint.h

Table 34.1 Exact Width Integer Type (continued)

Type Equivalent Type Equivalent
uint16_t unsigned short int uint32_t unsigned long int
int64_t long long uint64_t unsigned long long

Table 34.2 Minimum Width Integer Type

Type Equivalent Type Equivalent
int_least8_t signed char int_least16_t short int
int_least32_t long int uint_least8_t unsigned char
uint_least16_t unsigned short int uint_least32_t unsigned long int
int_least64_t long long uint_least64_t unsigned long long

Table 34.3 Fastest Minimum-Width Integer Types

Type Equivalent Type Equivalent
int_fast8_t signed char int_fast16_t short int
int_fast32_t long int uint_fast8_t unsigned char
uint_fast16_t unsigned short int uint_fast32_t unsigned long int
int_fast64_t long long uint_fast64_t unsigned long long

Table 34.4 Integer Types Capable of Holding Object Pointers

Type Equivalent Type Equivalent

intptr_t int32_t uintptr_t uint32_t

Table 34.5 Greatest Width Integer Types

Type Equivalent Type Equivalent

intmax_t int64_t uintmax_t int32_t

290 MSL C Reference Version 10

stdint.h

Overview of stdint.h
Table 34.6 Mac OS X Specific Integer Types
Type Equivalent Type Equivalent
u_int8_t unsigned char u_int16_t unsigned short
u_int32_t unsigned int u_inté4_t unsigned long long
register_t __std(int32_t)

Limits of Specified-width Integer Types

The limits of exact-width integer types are defined in the following tables.

¢ Table 34.10,
e Table 34.11,

¢

¢

e Table 34.7, “Minimum Values of Exact Width Signed Integer Types”

¢ Table 34.8, “Maximum Values of Exact Width Signed Integer Types”

* Table 34.9, “Maximum Values of Exact Width Unsigned Integer Types”

¢

¢

“Minimum Values of Minimum Width Signed Integer Types”

“Maximum Values of Minimum Width Signed Integer Types”

e Table 34.12, “Maximum Values of Minimum Width Unsigned Integer Types”

e Table 34.13,
e Table 34.14,

e Table 34.15,
Types”
e Table 34.16,

e Table 34.17,
e Table 34.18,
e Table 34.19,

Table 34.7 Minimum Values of Exact Width Signed Integer Types

¢

¢

¢

¢

“Minimum Values of Fastest Minimum Width Signed Integer Types”
“Maximum Values of Fastest Minimum Width Signed Integer Types”
“Maximum Values of Fastest Minimum Width Unsigned Integer

“Minimum Value of Pointer Holding Signed Integer Types”

“Minimum Value of Greatest Width Signed Integer Type”
“Maximum Value of Greatest Width Signed Integer Type”
“Limits of Other Integer Types”

Type Equivalent
INT8_MIN SCHAR_MIN
INT16_MIN SHRT_MIN
INT32_MIN LONG_MIN
INT64_MIN LLONG_MIN

MSL C Reference Version 10

291

'
A

stdint.h
Overview of stdint.h

Table 34.8 Maximum Values of Exact Width Signed Integer Types

Type Equivalent
INT8_MAX SCHAR_MAX
INT16_MAX SHRT_MAX
INT32_MAX LONG_MAX
INT64_MAX LLONG_MAX

Table 34.9 Maximum Values of Exact Width Unsigned Integer Types

Type Equivalent
UINT8_MAX UCHAR_MAX
UINT16_MAX USHRT_MAX
UINT32_MAX ULONG_MAX
UINT64_MAX ULLONG_MAX

Table 34.10 Minimum Values of Minimum Width Signed Integer Types

Type Equivalent
INT_LEAST8_MIN SCHAR_MIN
INT_LEAST16_MIN SHRT_MIN
INT_LEAST32_MIN LONG_MIN
INT_LEAST64_MIN LLONG_MIN

Table 34.11 Maximum Values of Minimum Width Signed Integer Types

Type Equivalent
INT_LEAST8_MAX SCHAR_MAX
INT_LEAST16_MAX SHRT_MAX

MSL C Reference Version 10

stdint.h
Overview of stdint.h

Table 34.11 Maximum Values of Minimum Width Signed Integer Types (continued)

Type Equivalent
INT_LEAST32_MAX LONG_MAX
INT_LEAST64_MAX LLONG_MAX

Table 34.12 Maximum Values of Minimum Width Unsigned Integer Types

Type Equivalent
UINT_LEAST8_MAX UCHAR_MAX
UINT_LEAST16_MAX USHRT_MAX
UINT_LEAST32_MAX ULONG_MAX
UINT_LEAST64_MAX ULLONG_MAX

Table 34.13 Minimum Values of Fastest Minimum Width Signed Integer Types

Type Equivalent
INT_FAST8_MIN SCHAR_MIN
INT_FAST16_MIN SHRT_MIN
INT_FAST32_MIN LONG_MIN
INT_FAST64_MIN LLONG_MIN

Table 34.14 Maximum Values of Fastest Minimum Width Signed Integer Types

Type Equivalent
INT_FAST8_MAX SCHAR_MAX
INT_FAST16_MAX SHRT_MAX
INT_FAST32_MAX LONG_MAX
INT_FAST64_MAX LLONG_MAX

MSL C Reference Version 10 293

y
A

stdint.h

Overview of stdint.h

Table 34.15 Maximum Values of Fastest Minimum Width Unsigned Integer Types

Type Equivalent
UINT_FAST8_MAX UCHAR_MAX
UINT_FAST16_MAX USHRT_MAX
UINT_FAST32_MAX ULONG_MAX
UINT_FAST64_MAX ULLONG_MAX

Table 34.16 Minimum Value of Pointer Holding Signed Integer Types

Type Equivalent
INTPTR_MIN LONG_MIN
INTPTR_MAX LONG_MAX
UINTPTR_MAX ULONG_MAX

Table 34.17 Minimum Value of Greatest Width Signed Integer Type

Type

Equivalent

INTMAX_MIN

LLONG_MIN

Table 34.18 Maximum Value of Greatest Width Signed Integer Type

Type Equivalent

UINTMAX_MAX ULLONG_MAX
Table 34.19 Limits of Other Integer Types

Type Equivalent

PTRDIFF_MIN LONG_MIN

PTRDIFF_MAX LONG_MAX

294

MSL C Reference Version 10

stdint.h
Overview of stdint.h

Table 34.19 Limits of Other Integer Types (continued)

Type Equivalent
SIG_ATOMIC_MIN INT_MIN
SIG_ATOMIC_MAX INT_MAX

Macros for Integer Constants

The macros expand to integer constants suitable for initializing objects that have integer

types.

INT8_C (value) value

INT16_C (value) value

INT32_C (value) value ## L
INT64_C (value) value ## LL
UINT8_C (value) value ## U
UINT16_C (value) value ## U
UINT32_C(value) value ## UL
UINT64_C(value) value ## ULL

Macros for Greatest-width Integer
Constants

The INTMAX_C macro expands to an integer constant with the value of its argument and
the type intmax_t.

INTMAX_C (value) value ## LL

The UINTMAX_C macro expands to an integer constant with the value of its argument
and the type uintmax_t.

UINTMAX_C (value) value ## ULL

MSL C Reference Version 10 295

A 4
4\

stdint.h
Overview of stdint.h

296 MSL C Reference Version 10

g |

stdio.

35
h

The stdio.h header file provides functions for input/output control.

Overview of stdio.h

The stdio.h header file provides functions for input/output control. There are functions
for creating, deleting, and renaming files, functions to allow random access, as well as to
write and read text and binary data.

This header file defines the facilities as follows:

“clearerr” on page 302 clears an error from a stream.

“fclose” on page 304 closes a file.

“fdopen” on page 306 converts a file descriptor to a stream.

“feof” on page 307 detects the end of a file.

“ferror”” on page 309 checks a file error status.

3

‘fflush” on page 310 flushes a stream.

“fgetc” on page 312 gets a character from a file.

“fgetpos” on page 314 gets a file position from large files.

“fgets” on page 316 gets a string from a file.
*_fileno” on page 317 gets the file number (Windows version only).

“fopen” on page 317 opens a file for manipulation.

“fprintf” on page 320 prints formatted output to a file.

“fputc” on page 328 writes a character to a file.

“fputs” on page 330 writes a string to a file.

“fread” on page 331 reads a file.

“freopen” on page 333 reopens a file.

“fscanf” on page 335 scans a file.
“fseek” on page 341 moves to a file position.

“fsetpos™ on page 343 sets a file position for large files.

3

‘ftell” on page 344 tells a file offset.

MSL C Reference Version 10 297

wr
4\

stdio.h
Overview of stdio.h

o “fwide” on page 345 determines a character orientation.

e “fwrite” on page 347 writes to a file.

e “getc” on page 348 gets a character from a stream.

» ‘“getchar” on page 349 gets a character from stdin.

* “gets” on page 351 gets a string from stdin.
e ‘“perror” on page 352 writes an error to stderr.

e “printf” on page 353 writes a formatted output to stdout.

e “putc” on page 362 writes a character to a stream.
* “putchar” on page 363 writes a character to stdout.
¢ “puts” on page 365 writes a string to stdout.

* “remove” on page 366 removes a file.

¢ “rename” on page 367 renames a file.
* “rewind” on page 368 resets the file indicator to the beginning.

» “scanf” on page 370 scans stdin for input.

* ‘“setbuf” on page 375 sets the buffer size for a stream.

e “setvbuf” on page 377 sets the stream buffer size and scheme.

¢ “snprintf” on page 379 writes a number of characters to a buffer.

e “sprintf” on page 380 writes to a character buffer.

* “sscanf” on page 381 scans a string.
* “tmpfile” on page 382 creates a temporary file.

¢ “tmpnam” on page 384 creates a temporary name.

* ‘“ungetc” on page 385 places a character back in a stream.

o “vfprintf” on page 387 writes variable arguments to file.

» “vfscanf” on page 389 a variable argument scanf.

o “vprintf” on page 391 writes variable arguments to stdout.

* “vsnprintf” on page 393 writes variable arguments to a char array buffer with a
number limit.

o “vsprintf” on page 395 writes variable arguments to a char array buffer.

* “vsscanf” on page 397 reads formatted text from a character strin (variable scanf).

13

* “ wfopen” on page 399 opens a wide character file.

“«

* “_wifreopen” on page 399 reopens a wide character file.

13

* “ wremove” on page 400 removes a wide character file.

e “ wrename” on page 401 renames wide character file.

298 MSL C Reference Version 10

stdio.h
Standard input/output

e “ wtmpnam” on page 401 creates a temporary wide character file name.

Standard input/output

Streams

A stream is a logical abstraction that isolates input and output operations from the physical
characteristics of terminals and structured storage devices. They provide a mapping
between a program’s data and the data as actually stored on the external devices. Two
forms of mapping are supported, for text streams andfor binary streams.
See “Text Streams and Binary Streams” on page 300, for more information.

Streams also provide buffering, which is an abstraction of a file designed to reduce
hardware I/0 requests. Without buffering, data on an I/O device must be accessed one
item at a time. This inefficient I/O processing slows program execution considerably. The
stdio.h functions use buffers in primary storage to intercept and collect data as it is
written to or read from a file. When a buffer is full its contents are actually written to or
read from the file, thereby reducing the number of I/O accesses. A buffer's contents can be
sent to the file prematurely by using the ££1ush () function.

The stdio.h header offers three buffering schemes: unbuffered, block buffered, and
line buffered. The setvbuf () function is used to change the buffering scheme of any
output stream.

When an output stream is unbuffered, data sent to it are immediately read from or written
to the file.

When an output stream is block buffered, data are accumulated in a buffer in primary
storage. When full, the buffer's contents are sent to the destination file, the buffer is
cleared, and the process is repeated until the stream is closed. Output streams are block
buffered by default if the output refers to a file.

A line buffered output stream operates similarly to a block buffered output stream. Data
are collected in the buffer, but are sent to the file when the line is completed with a
newline character (' \n"').

A stream is declared using a pointer to a FILE. There are three FILE pointers that are
automatically opened for a program: FILE *stdin, FILE *stdout,and FILE
*stderr. The FILE pointers stdin and stdout are the standard input and output
files, respectively, for interactive console 1/O. The stderr file pointer is the standard
error output file, where error messages are written to. The stderr stream is written to the
console. The stdin and stdout streams are line buffered while the stderr
stream is unbuffered.

MSL C Reference Version 10 299

3
4

y
A

stdio.h

Standard input/output

Text Streams and Binary Streams

In a binary stream, there is no transformation of the characters during input or output and
what is recorded on the physical device is identical to the program’s internal data
representation.

A text stream consists of sequence of characters organized into lines, each line terminated
by a new-line character. To conform to the host system’s convention for representing text
on physical devices, characters may have to be added altered or deleted during input and
output. Thus, there may not be a one-to-one correspondence between the characters in a
stream and those in the external representation. These changes occur automatically as part
of the mapping associated with text streams. Of course, the input mapping is the inverse of
the output mapping and data that are output and then input through text streams will
compare equal with the original data.

In MSL, the text stream mapping affects only the linefeed (LF) character, ‘\n” and the
carriage return (CR) character, ‘\r’. The semantics of these two control characters are:

* \n Moves the current print location to the start of the next line.
* \r Moves the current print location to the start of the current line.

where “current print location “is defined as “that location on a display device where the
next character output by the fputc function would appear”.

The ASCII character set defines the value of LF as Ox0a and CR as 0x0d and these are the
values that these characters have when they are part of a program's data. On physical
devices in the Macintosh operating system, newline characters are represented by 0x0d
and CR as 0x0a; in other words, the values are interchanged. To meet this requirement, the
MSL C library for the Mac, interchanges these values while writing a file and again while
reading so that a text stream will be unchanged by writing to a file and then reading back.
MPW chose 0x0a for the newline character in its text file, so, when the MPW switch is on,
this interchange of values does not take place. However, if you use this option, you must
use the MSL C and C++ libraries that were compiled with this option on.

These versions of the libraries are marked with an N (on 68k) or NL (on PPC), for
example ANSI (N/2i) C.68k.Lib or ANSI (NL) C.PPC.Lib. See the notes on the
mpwc_newline pragma in the CodeWarrior C Compilers Reference.

On Windows, the situation is different. There, lines are terminated with the character pair
CR/LF. As a consequence, in the Windows implementation of MSL, when a text stream is
written to a file, a single newline character is converted to the character pair CR/LF and
the reverse transformation is made during reading.

The library routines that read a file have no means of determining the mode in which text
files were written and thus some assumptions have to be made. On the Mac, it is assumed
that the Mac convention is used. Under MPW, it is assumed that the MPW convention is
to be used and on Windows, the DOS convention.

300

MSL C Reference Version 10

stdio.h
Standard input/output

File position indicator

The file position indicator is another concept introduced by the stdio . h header. Each
opened stream has a file position indicator acting as a cursor within a file. The file position
indicator marks the character position of the next read or write operation. A read or write
operation advances the file position indicator. Other functions are available to adjust the
indicator without reading or writing, thus providing random access to a file.

Note that console streams, stdin, stdout, and stderr in particular, do not have file
position indicators.

End-of-file and errors

Many functions that read from a stream return the EOF value, defined in stdio.h. The
EOF value is a nonzero value indicating that the end-of-file has been reached during the
last read or write.

Some stdio.h functions also use the errno global variable. Refer to the errno.h
header section. The use of errno is described in the relevant function descriptions below.

Wide Character and Byte Character
Stream Orientation

There are two types of stream orientation for input and output, a wide character (wchar_t)
oriented and a byte (char) oriented. A stream is without orientation after that stream has
been associated with a file, until an operation occurs.

Once any operation is performed on that stream, that stream becomes oriented by that
operation to be either byte oriented or wide character oriented and remains that way until
the file has been closed and reopened.

After a stream orientation is established, any call to a function of the other orientation is
not applied. That is, a byte-oriented input/output function does not have an effect on a
wide-oriented stream.

Unicode

Unicode encoded characters are represented and manipulated in MSL as wide characters
of type wchar_t and can be manipulated with the wide character functions defined in the C
Standard.

Table 35.1 Byte Oriented Functions

fgetc fgets fprintf fputc fputs

fread fscanf fwrite getc getchar

MSL C Reference Version 10 301

'
A

stdio.h

Standard input/output

Table 35.1 Byte Oriented Functions (continued)

gets printf putc putchar puts

scanf ungetc viprintf vfscanf vprintf
Table 35.2 The Wide Character Oriented Functions in wchar.h

fgetwe fgetws fwprintf fputwe fputws fwscanf

getwc getwchar putwc putwchar swprintf swscanf

towctrans vfwscanf vswscanf vwscanf viwprintf vswprintf

vwprintf wasctime watof wcscat weschr wcsemp

wcescoll wescspn wcscpy wcslen wcesncat wesnemp

wesncpy wespbrk wcsspn wesrchr wesstr westod

wcestok wcesftime wesxfrm wctime wctrans wmemchr

wmemcmp wmemcpy wmemmov wmemset wprintf wscanf

e

Stream Orientation and Standard Input/

Output

The three predefined associated streams, stdin, stdout, and stderr are without orientation at
program startup. If any of the standard input/output streams is closed it is not possible to
reopen and reconnect that stream to the console. However, it is possible to reopen and
connect the stream to a named file.

The C and C++ input/output facilities share the same stdin, stdout and stderr streams.

clearerr

Clear a stream's end-of-file and error status.

#include <stdio.h>

void clearerr (FILE *stream) ;

302

MSL C Reference Version 10

stdio.h
Standard input/output

Table 35.3 clearerr

stream FILE *

A pointer to a FILE stream

Remarks

The clearerr () function resets the end-of-file status and error status for
stream. The end-of-file status and error status are also reset when a stream is

opened.

This function may not be implemented on all platforms.

See Also

3

‘feof”” on page 307
“ferror” on page 309

“fopen” on page 317

“fseek” on page 341

“rewind” on page 368

Listing 35.1 Example of clearerr() Usage

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
FILE *f;

static char name[] = "myfoo";
char buf[80];

// create a file for output

if ((f = fopen(name, "w")) == NULL)
printf("Can't open %s.\n", name);
exit (1) ;

}

// output text to the file
fprintf (f, "chair table chest\n");
fprintf (£, "desk raccoon\n");

// close the file
fclose(f);

// open the same file again for input

MSL C Reference Version 10

303

y
A

stdio.h
Standard input/output
if ((f = fopen(name, "r")) == NULL) {
printf("Can't open %s.\n", name);
exit (1) ;
}

// read all the text until end-of-file
for (; feof(f) == 0; fgets(buf, 80, f))
fputs (buf, stdout);

printf ("feof () for file %s is %d.\n", name, feof(f));
printf ("Clearing end-of-file status. . .\n");
clearerr (£f);

printf ("feof () for file %s is %d.\n", name, feof(f));

// close the file
fclose(f);

return 0;

Output

chair table chest

desk raccoon

feof () for file myfoo is 256.
Clearing end-of-file status.
feof () for file myfoo is 0.

fclose

Close an open file.
#include <stdio.h>

int fclose(FILE *stream) ;

Table 35.4 fclose

stream FILE * A pointer to a FILE stream

Remarks

The fclose () function closes a file created by fopen (), freopen (), or
tmpfile (). The function flushes any buffered data to its file and closes the

304 MSL C Reference Version 10

stdio.h
Standard input/output

stream. After calling fclose (), streamis no longer valid and cannot be used
with file functions unless it is reassigned using fopen (), freopen (), or
tmpfile().

All of a program's open streams are flushed and closed when a program terminates
normally.

fclose () closes then deletes a file created by tmpfile ().

On embedded/ RTOS systems this function only is implemented for stdin, stdout
and stderr files.

fclose () returns a zero if it is successful and returns an EOF if it fails to close
a file.

This function may not be implemented on all platforms.

See Also

“fopen” on page 317

“freopen” on page 333

“tmpfile” on page 382

“abort” on page 405

“exit” on page 420

Listing 35.2 Example of fclose() Usage

#include <stdio.h>
#include <stdlib.h>
int main(void)
{
FILE *f;
static char name[] = "myfoo";

// create a new file for output

if ((f = fopen(name, "w")) == NULL) {
printf("Can't open %s.\n", name);
exit (1) ;

}

// output text to the file
fprintf (£, "pizza sushi falafel\n");
fprintf (f, "escargot sprocket\n");

// close the file

if (fclose(f) == -1) {
printf("Can't close %s.\n", name);
exit (1) ;

}

MSL C Reference Version 10 305

y
A

stdio.h
Standard input/output

return O;

Output to file myfoo:
pizza sushi falafel
escargot sprocket

fdopen

Converts a file descriptor to a stream.
#include <stdio.h>
FILE *fdopen(int fildes, char *mode) ;

FILE *_fdopen(int fildes, char *mode) ;

Table 35.5 fdopen

fildes int A file descriptor, which is
integer file number that can
be obtained from the
function fileno().

mode char* The file opening mode

Remarks

This function creates a stream for the file descriptor £i1des. You can use the
stream with such standard I/O functions as fprintf () and getchar (). In
MSL C/C++, it ignores the value of the mode argument.

If it is successful, fdopen () returns a stream. If it encounters an error,
fdopen () returns NULL.

This function may not be implemented on all platforms.

See Also

“fileno” on page 83
“open. _wopen’ on page 121

306 MSL C Reference Version 10

stdio.h
Standard input/output

Listing 35.3 Example of fdopen() Usage

#include <stdio.h>
#include <unix.h>

int main(void)

{
int f£d;
FILE *str;
fd = open("mytest", O_WRONLY | O_CREAT);
/* Write to the file descriptor */
write(fd, "Hello world!\n", 13);
/* Convert the file descriptor to a stream */
str = fdopen(fd, "w") ;
/* Write to the stream */
fprintf (str, "My name is %s.\n", getlogin());
/* Close the stream. */
fclose(str) ;
/* Close the file descriptor */
close (£fd) ;
return O;
}
feof

Check the end-of-file status of a stream.

#include <stdio.h>

int feof (FILE *stream) ;

Table 35.6 feof

stream FILE *

A pointer to a FILE stream

Remarks

The feof () function checks the end-of-file status of the last read operation on
stream. The function does not reset the end-of-file status.

MSL C Reference Version 10

307

4
A

stdio.h
Standard input/output

On embedded/ RTOS systems this function only is implemented for stdin, stdout
and stderr files.

feof () returns a nonzero value if the stream is at the end-of-file and returns zero
if the stream is not at the end-of-file.

This function may not be implemented on all platforms.

See Also

“clearerr” on page 302

“ferror” on page 309

Listing 35.4 Example of feof() Usage

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
FILE *f;
static char filename[80], buf[80] = "";

// get a filename from the user
printf ("Enter a filename to read.\n");
gets (filename) ;

// open the file for input

if ((£ = fopen(filename, "r")) == NULL) {
printf("Can't open %s.\n", filename) ;
exit (1) ;

}

// read text lines from the file until

// feof () indicates the end-of-file

for (; feof(f) == ; fgets(buf, 80, f))
printf (buf) ;

// close the file
fclose(f);

return 0;

Output:
Enter a filename to read.
itwerks

308 MSL C Reference Version 10

stdio.h

Standard input/output

The quick brown fox
jumped over the moon.
ferror

Check the error status of a stream.

#include <stdio.h>

int ferror (FILE *stream) ;
Table 35.7 ferror

stream FILE * A pointer to a FILE stream

Remarks

The ferror () function returns the error status of the last read or write operation
on stream. The function does not reset its error status.

On embedded/ RTOS systems this function only is implemented for stdin, stdout
and stderr files.

ferror () returns a nonzero value if stream's error status is on, and returns
zero if stream's error status is off.

This function may not be implemented on all platforms.

See Also

“clearerr” on page 302

3

‘feof”” on page 307

Listing 35.5 Example of ferror() Usage

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
FILE *f;
char filename[80], buf[80];
int 1n = 0;

// get a filename from the user

MSL C Reference Version 10 309

y
A

stdio.h
Standard input/output

printf ("Enter a filename to read.\n");
gets (filename) ;

// open the file for input

if ((£ = fopen(filename, "r")) == NULL) {
printf("Can't open %s.\n", filename) ;
exit (1) ;

}

// read the file one line at a time until end-of-file
do {

fgets (buf, 80, f);

printf ("Status for line %d: %d.\n", 1ln++, ferror(f));
} while (feof(f) == 0);

// close the file
fclose(f);

return 0;

Output:

Enter a filename to read.
itwerks

Status for line 0: O.
Status for line 1: 0.
Status for line 2: 0.

fflush

Empty a stream's buffer to its host environment.
#include <stdio.h>

int fflush(FILE *stream) ;

Table 35.8 fflush

stream FILE * A pointer to a FILE stream

Remarks

The ££1ush () function empties stream's buffer to the file associated with
streamn. If the stream points to an output stream or an update stream in which the

310 MSL C Reference Version 10

stdio.h
Standard input/output

most recent operation was not input, the fflush function causes any unwritten data
for that stream to be delivered to the host environment to be written to the file;
otherwise the behavior is undefined.

The fflush() function should not be used after an input operation.

Using £flush() for input streams especially the standard input stream (stdin)
is undefined and is not supported and will not flush the input buffer.

On embedded/ RTOS systems this function only is implemented for stdin, stdout
and stderr files.

The function f£flush() returns EOF if a write error occurs, otherwise it
returns zero.

This function may not be implemented on all platforms.

See Also

“setvbuf” on page 377

Listing 35.6 Example of fflush() Usage

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
FILE *f;
int count;
// create a new file for output
if ((£ = fopen("foofoo", "w")) == NULL) {
printf("Can't open file.\n");
exit (1) ;
}
for (count = 0; count < 100; count++) {
fprintf (£, "%5d", count);
if((count % 10) == 9)
{
fprintf (£, "\n");
fflush(f); /* flush buffer every 10 numbers */
}
}
fclose(f);
return 0;
}

MSL C Reference Version 10 311

y
A

stdio.h

Standard input/output

Output to file foofoo:

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99

fgetc

Read the next character from a stream.

#incl

int £

Table 35.9 fgetc

ude <stdio.h>

getc (FILE *stream) ;

stream FILE *

A pointer to a FILE stream

Remarks

The fgetc () function reads the next character from stream and advances its
file position indicator.

On embedded/ RTOS systems this function only is implemented for stdin, stdout
and stderr files.

fgetc () returns the character as an unsigned char converted to an int. Ifthe
end-of-file has been reached or a read error is detected, fgetc () returns

EOF . The difference between a read error and end-of-file can be determined by
the use of feof () ..

If the file is opened in update mode (+) a file cannot be read from and then written
to without repositioning the file using one of the file positioning functions (fseek(),
fsetpos(), or rewind()) unless the last read or write reached the end-of-file.

This function may not be implemented on all platforms.

312

MSL C Reference Version 10

g |

stdio.h
Standard input/output

See Also

“Wide Character and Byte Character Stream Orientation” on page 301

“getc” on page 348
“getchar” on page 349

Listing 35.7 Example of fgetc() Usage

#include <stdio.h>
#include <stdlib.h>

int main(void)

{

FILE *f;
char filename[80], c;

// get a filename from the user
printf ("Enter a filename to read.\n");

gets (filename) ;

// open the file for input

if ((£ = fopen(filename, "r")) == NULL) {
printf("Can't open %s.\n", filename) ;
exit (1) ;

}

// read the file one character at a time until
// end-of-file is reached
while ((¢ = fgetc(f)) != EOF)

putchar (c) ; // print the character

// close the file
fclose(f);

return O;

Output:
Enter a filename to read.
foofoo

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59

MSL C Reference Version 10 313

y
A

stdio.h

Standard input/output
60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 8 87 88 89
90 91 92 93 94 95 96 97 98 99

fgetpos

Get a stream's current file position indicator value.

#incl

int £

ude <stdio.h>

getpos (FILE *stream, fpos_t *pos);

Table 35.10 fgetpos

stream FILE * A pointer to a FILE stream
pos fpos_t * A pointer to a file position
type
Remarks

The fgetpos () function is used in conjunction with the fsetpos () function
to allow random access to a file. The fgetpos () function gives unreliable
results when used with streams associated with a console (stdin, stderr,
stdout).

While the fseek () and ftell () functions use 1ong integers to read and set
the file position indicator, fgetpos () and £setpos () use fpos_t values to
operate on larger files. The fpos_t type, defined in stdio.h, can hold file
position indicator values that do not fitina long int.

The fgetpos () function stores the current value of the file position indicator for
stream in the fpos_t variable pos points to.

On embedded/ RTOS systems this function only is implemented for stdin, stdout
and stderr files.

fgetpos () returns zero when successful and returns a nonzero value when it
fails.

This function may not be implemented on all platforms.

See Also

“fseek” on page 341

314

MSL C Reference Version 10

stdio.h
Standard input/output

“fsetpos” on page 343

“ftell” on page 344

Listing 35.8 Example of fgetpos() Usage

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
FILE *f;
fpos_t pos;
char filename[80], buf[80];

// get a filename from the user
printf ("Enter a filename to read.\n");

gets (filename) ;

// open the file for input

if ((£ = fopen(filename, "r")) == NULL) {
printf("Can't open %s.\n", filename) ;
exit (1) ;

}

printf ("Reading each line twice.\n");

// get the initial file position indicator wvalue
// (which is at the beginning of the file)
fgetpos (f, &pos);

// read each line until end-of-file is reached
while (fgets(buf, 80, f) != NULL) {
printf ("Once: %s", buf);

// move to the beginning of the line to read it again
fsetpos (£, &pos);

fgets(buf, 80, f);

printf ("Twice: %s", buf);

// get the file position of the next line
fgetpos (f, &pos);
}

// close the file
fclose(f);

return O;

MSL C Reference Version 10 315

y
A

stdio.h
Standard input/output

Output:
Enter a filename to read.

myfoo

Reading each line twice.
chair table chest
chair table chest
desk raccoon
desk raccoon

Once:
Twice:
Once:
Twice:

fgets

Table 35.11 fgets

Read a character array from a stream.

#include <stdio.h>

char *fgets(char *s, int n, FILE *stream);

s char * The destination string
n int The maximum number of
chars read
stream FILE * A pointer to a FILE stream
Remarks

The fgets () function reads characters sequentially from stream beginning at
the current file position, and assembles them into s as a character array. The
function stops reading characters when n-1 characters have been read. The
fgets () function finishes reading prematurely if it reaches a newline (' \n')
character or the end-of-file. For example usage, see Listing 35.16.

If the file is opened in update mode (+) a file cannot be read from and then written
to without repositioning the file using one of the file positioning functions (fseek(),
fsetpos(), or rewind()) unless the last read or write reached the end-of-file.

Unlike the gets () function, fgets () appends the newline character (' \n ') to
s. It also null terminates the characters written into the character array.

On embedded/ RTOS systems this function only is implemented for stdin, stdout
and stderr files.

316

MSL C Reference Version 10

stdio.h
Standard input/output

fgets () returns a pointer to s if it is successful. If it reaches the end-of-file
before reading any characters, s is untouched and fgets () returns a null pointer
(NULL). If an error occurs fgets () returns a null pointer and the contents of s
may be corrupted.

This function may not be implemented on all platforms.

See Also

“Wide Character and Byte Character Stream Orientation” on page 301
“gets” on page 351

_fileno

‘

This function is described in extras.h as “fileno” on page 83 in this header it is
Windows only.

fopen

Open a file as a stream.
#include <stdio.h>

FILE *fopen(const char *filename, const char *mode) ;

Table 35.12 fopen

filename const char * The filename of the file to
open
mode const char * The file opening mode
Remarks

The fopen () function opens a file specified by £i1lename, and associates a
stream with it. The fopen () function returns a pointer to a FILE. This pointer is
used to refer to the file when performing I/O operations.

The mode argument specifies how the file is to be used. Table 35.13 shows the
values for mode.

MSL C Reference Version 10 317

A 4
4\

stdio.h
Standard input/output

UPDATE MODE

A file opened with an update mode (“+”) is buffered. The file cannot be written to
and then read from unless the write operation and read operation are separated by
an operation that flushes the stream's buffer. This can be done with the fflush()
function or one of the file positioning operations (fseek(), fsetpos(), or rewind()).
Similarly, a file cannot be read from and then written to without repositioning the
file using one of the file positioning functions unless the last read or write reached
the end-of-file.

All file modes, except the append modes (“a”, “a+", “ab”, “ab+") set the file
position indicator to the beginning of the file. The append modes set the file
position indicator to the end-of-file.

NOTE Write modes, even if in Write and Read (w+, wb+) delete any current data in a
file when the file is opened.

Table 35.13 Open Modes for fopen()

Mode Description

“r’ Open an existing text file for reading only.

“w” Create a new text file for writing, or open
and truncate an existing file

“a” Open an existing text file, or create a new
one if it does not exist, for appending.
Writing occurs at the end-of-file position.

“r+” Update mode. Open an existing text file for
reading and writing. See Remarks.

“w+” Update mode. Create a new text file for
writing, or open and truncate an existing
file, for writing and reading. See Remarks.

“a+” Update mode. Open an existing text file or
create a new one for reading and writing.
Writing occurs at the end-of-file position.
See Remarks.

“rb” Open an existing binary file for reading
only.

“wb” Create a new binary file or open and
truncate an existing file, for writing

318 MSL C Reference Version 10

stdio.h
Standard input/output

Table 35.13 Open Modes for fopen() (continued)

Mode Description

“ab” Open an existing binary file, or create a
new one if it does not exist, and append.
Writing occurs at the end-of-file.

“r+b” or “rb+” Update mode. Open an existing binary file

for reading and writing. See Remarks.

“w+b” or “wb+”

Update mode. Create a new binary file or
open and truncate an existing file, for
writing and reading. See Remarks.

“a+b” or “ab+”

Update mode. Open an existing binary file
or create a new one for reading and
writing. Writing occurs at the end-of-file
position. See Remarks.

fopen () returns a pointer to a FILE if it successfully opens the specified file for
the specified operation. fopen () returns a null pointer (NULL) when it is not

successful.

This function may not be implemented on all platforms.

See Also

“fclose” on page 304

«

wifopen” on page 399

Listing 35.9 Example of fopen() Usage

#include <stdio.h>
#include <stdlib.h>

int main(void)

{

FILE *f;
int count;

//
if

}

//

create a new file for output
((£ = fopen("foofoo",

exit (1) ;

output numbers 0 to 9

I|wl|)) P
printf("Can't create file.\n");

NULL) {

MSL C Reference Version 10

319

A
4

4
A

stdio.h
Standard input/output
for (count = 0; count < 10; count++)

fprintf (£, "%5d", count);

// close the file
fclose(f);

// open the file to append

if ((£ = fopen("foofoo", "a")) == NULL)

printf("Can't append to file.\n");
exit (1) ;
}

// output numbers 10 to 19
for (; count <20; count++)

fprintf (£, "%5d\n", count);

// close file
fclose(f);

return O;

Output to file foofoo:

0 1 2 3 4 5 6 7 8

11
12
13
14
15
16
17
18
19

10

fprintf

Send formatted text to a stream.
#include <stdio.h>
int fprintf (FILE *stream,

const char *format, ...);

320

MSL C Reference Version 10

stdio.h

Standard input/output
Table 35.14 fprintf
stream FILE * A pointer to a FILE stream
format const char * The format string

Remarks

The fprintf () function writes formatted text to st ream and advances the file
position indicator. Its operation is the same as printf () with the addition of the
stream argument. Refer to the description of printf ().

If the file is opened in update mode (+) the file cannot be written to and then read
from unless the write operation and read operation are separated by an operation
that flushes the stream's buffer. This can be done with the fflush() function or one
of the file positioning operations (fseek(), fsetpos(), or rewind()).

On embedded/ RTOS systems this function only is implemented for stdin, stdout
and stderr files.

Output Control String and Conversion Specifiers

The format character array contains normal text and conversion specifications.
Conversion specifications must have matching arguments in the same order in which they
occur in format.

The various elements of the format string is specified in the ANSI standards to be in this
order from left to right.

¢ A percent sign

¢ Optional flags -,+,0,# or space

¢ Optional minimum field width specification

¢ Optional precision specification

* Optional size specification

¢ Conversion specifier c,d,e,E.f, Fg,G,i,n,0,p,s,u,x,X or %

A conversion specification describes the format its associated argument is to be converted
to. A specification starts with a percent sign (%), optional flag characters, an optional
minimum width, an optional precision width, and the necessary, terminating conversion
type. Doubling the percent sign (%%) results in the output of a single %.

An optional flag character modifies the formatting of the output; it can be left or right

justified, and numerical values can be padded with zeroes or output in alternate forms.
More than one optional flag character can be used in a conversion specification. Table
35.16 describes the flag characters.

MSL C Reference Version 10 321

3
4

y
A

stdio.h

Standard input/output

The optional minimum width is a decimal digit string. If the converted value has more
characters that the minimum width, it is expanded as required. If the converted value has
fewer characters than the minimum width, it is, by default, right justified (padded on the
left). If the - flag character is used, the converted value is left justified (padded on the
right).

The maximum minimum field width allowed in MSL Standard Libraries is 509
characters.

The optional precision width is a period character (.) followed by decimal digit string. For
floating point values, the precision width specifies the number of digits to print after the
decimal point. For integer values, the precision width functions identically to, and cancels,
the minimum width specification. When used with a character array, the precision width
indicates the maximum width of the output.

A minimum width and a precision width can also be specified with an asterisk (*) instead
of a decimal digit string. An asterisk indicates that there is a matching argument,
preceding the conversion argument, specifying the minimum width or precision width.

The terminating character, the conversion type, specifies the conversion applied to the
conversion specification's matching argument. Table 35.17 describes the conversion type
characters.

Table 35.15 and Table 35.18 also include other modifiers for formatted output functions.

MSL AltiVec Extensions for Fprintf

The AltiVec extensions to the standard printf family of functions is supported in Main
Standard Libraries.

Separator arguments after % and before any specifier may be any character or may be the
@ symbol. The @ symbol is a non-Motorola extension that will use a specified string as a
specifier.

In the specific case of a 'c' specifier any char may be used as a separator. For all other
specifiers -, '+, '#, ' ' may not be used.

Listing 35.23 demonstrates their use.

322

MSL C Reference Version 10

stdio.h

Standard input/output
Table 35.15 Length Modifiers for Formatted Output Functions
Modifier Description
h The hflag followed by a4, i, o, u, x,

or X conversion specifier indicates that
the corresponding argument is a short
int orunsigned short int.

The lower case L followed by a, i, o,
u, x, or X conversion specifier
indicates the argument is a long int or
unsigned long int.

The lower case L followed by a ¢
conversion specifier, indicates that the
argument is of type wint_t.

The lower case L followed by an s
conversion specifier, indicates that the
argument is of type wchar_t.

Il The double | followed by a4, i, o, u,
x, or X conversion specifier indicates
the argumentis a long long or
unsigned long long

L The upper case L followed by e, E, £,
g, or G conversion specifier
indicates a long double.

\Y AltiVec: A vector bool char,
vector signed char or vector
unsigned char when followed by c,
d, i, o, u, x or X

A vector float, when followed by £ .

vh AltiVec: A vector short, vector
hv unsigned short, vector bool
short or vector pixel when
followed by c, 4, i, o, u, x or X

vl AltiVec: A vector int, vector

Iv unsigned int or vector bool int
when followed by ¢, 4, i, o, u, x
or X

MSL C Reference Version 10 323

'
A

stdio.h
Standard input/output

Table 35.16 Flag Specifiers For formatted Output Functions

Modifier Description

- The conversion will be left justified.

+ The conversion, if numeric, will be prefixed
with a sign

(+ or -). By default, only negative numeric
values are prefixed with a minus sign (-).

space If the first character of the conversion is not a
sign character, it is prefixed with a space.
Because the plus sign flag character (+)
always prefixes a numeric value with a sign,
the space flag has no effect when combined
with the plus flag.

For c, d, i, and u conversion types, the # flag
has no effect. For s conversion types, a
pointer to a Pascal string, is output as a
character string. For o conversion types, the
flag prefixes the conversion with a 0. For x
conversion types with this flag, the
conversion is prefixed with a Ox. For e, E, f,
g, and G conversions, the # flag forces a
decimal point in the output. For g and G
conversions with this flag, trailing zeroes
after the decimal point are not removed.

0 This flag pads zeroes on the left of the
conversion. It appliesto d, i, 0, u, x, X, e, E, f,
g, and G conversion types. The leading
zeroes follow sign and base indication
characters, replacing what would normally
be space characters. The minus sign flag
character overrides the 0 flag character. The
0 flag is ignored when used with a precision
width for d, i, 0, u, X, and X conversion
types.

@ AltiVec: This flag indicates a pointer to a
string specified by an argument. This string
will be used as a separator for vector
elements.

324 MSL C Reference Version 10

stdio.h
Standard input/output

Table 35.17 Conversion Specifiers for Formatted Output Functions

Modifier

Description

d

The corresponding argument is converted to
a signed decimal.

The corresponding argument is converted to
a signed decimal.

The argument is converted to an unsigned
octal.

The argument is converted to an unsigned
decimal.

X, X

The argument is converted to an unsigned
hexadecimal. The x conversion type uses
lowercase letters (abcdef) while X uses
uppercase letters (ABCDEF).

This conversion type stores the number of
items output by printf() so far. Its
corresponding argument must be a pointer to
an int.

The corresponding floating point argument
(float, or double) is printed in decimal
notation. The default precision is 6 (6 digits
after the decimal point). If the precision width
is explicitly O, the decimal point is not printed.
Forthe £ conversion specifier, a double
argument representing infinity produces [-
]inf; a double argument representing a
NaN (Not a number) produces [-]nan.
For the F conversion specifier, [-]1INF or
[-1NAN are produced instead.

MSL C Reference Version 10

325

'
A

stdio.h
Standard input/output

Table 35.17 Conversion Specifiers for Formatted Output Functions (continued)

Modifier

Description

e E

The floating point argument (float or double)
is output in scientific notation: [-
1b.aaae*Eee. There is one digit (b)
before the decimal point. Unless indicated by
an optional precision width, the default is 6
digits after the decimal point (aaa). If the
precision width is 0, no decimal point is
output. The exponent (eg) is at least 2 digits
long.

The e conversion type uses lowercase e as
the exponent prefix. The E conversion type
uses uppercase E as the exponent prefix.

g, G

The g conversion type uses the for e
conversion types and the G conversion type
uses the f or E conversion types. Conversion
type e (or E) is used only if the converted
exponent is less than -4 or greater than the
precision width. The precision width
indicates the number of significant digits. No
decimal point is output if there are no digits
following it.

The corresponding argument is output as a
character.

The corresponding argument, a pointer to a
character array, is output as a character
string. Character string output is completed
when a null character is reached. The null
character is not output.

The corresponding argument is taken to be a
pointer. The argument is output using the X
conversion type format.

326

MSL C Reference Version 10

stdio.h
Standard input/output

Table 35.18 CodeWarrior Extensions for Formatted Output Functions

Modifier Description

#s The corresponding argument, a pointer to a
Pascal string, is output as a character string.
A Pascal character string is a length byte
followed by the number characters specified
in the length byte.

Note: This conversion type is an extension to
the ANSI C library but applied in the same
manner as for other format variations.

fprintf () returns the number of arguments written or a negative number if an error

occurs.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation’ on page 301

—wide Lharacter and byle Lnaracter otream vrientation on page SUl

“printf” on page 353
“sprintf”” on page 380

“viprintf” on page 387

“vprintf” on page 391

“vsprintf” on page 395

Listing 35.10 Example of fpritnf() Usage

#include <stdio.h>
#include <stdlib.h>

int main(void)

{

FILE *f;

static char filename[] = "myfoo";
int a = 56;

char ¢ = 'M';

double x = 483.582;

// create a new file for output

if ((£ = fopen(filename, "w")) == NULL)
printf("Can't open %s.\n", filename) ;
exit (1) ;

MSL C Reference Version 10

327

y
A

stdio.h

Standard input/output

}

// output formatted text to the file

fprintf (£,

"%$10s %4.4f %-10d\n%10c", filename, x, a, c);

// close the file

fclose(f);

return O;

Output to file foo:
myfoo 483.5820 56

M

fputc

Write a character to a stream.

#include <stdio.h>

int fputc(int ¢, FILE *stream);

Table 35.19 fputc

[int The character to write to a
file
stream FILE * A pointer to a FILE stream
Remarks

The fputc () function writes the character ¢ to stream and advances
stream's file position indicator. Although the ¢ argument is an unsigned
int, itis converted to a char before being written to stream. fputc () is
written as a function, not as a macro.

If the file is opened in update mode (+) the file cannot be written to and then read
from unless the write operation and read operation are separated by an operation
that flushes the stream's buffer. This can be done with the fflush() function or one
of the file positioning operations (fseek(), fsetpos(), or rewind()).

On embedded/ RTOS systems this function only is implemented for stdin, stdout
and stderr files.

328

MSL C Reference Version 10

g |

stdio.h
Standard input/output

fputc () returns the character written if it is successful, and returns EOF if it
fails.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 301
“putc” on page 362
“putchar” on page 363

Listing 35.11 Example of fputc() Usage

#include <stdio.h>
#include <stdlib.h>

int main(void)

{

FILE *f;
int letter;

// create a new file for output

if ((£ = fopen("foofoo", "w")) == NULL) {
printf("Can't create file.\n");
exit (1) ;

}

// output the alphabet to the file one letter

// at a time

for (letter = 'A'; letter <= 'Z'; letter++)
fputc(letter, £f);

fclose(f);

return 0;

Output to file foofoo:
ABCDEFGHIJKLMNOPQRSTUVWXYZ

MSL C Reference Version 10 329

y
A

stdio.h
Standard input/output

fputs

Table 35.20 fputs

Write a character array to a stream.

#include <stdio.h>

int fputs(const char *s, FILE *stream);

const char * The string to write to a file

stream FILE * A pointer to a FILE stream

Remarks

The fputs () function writes the array pointed to by s to stream and advances
the file position indicator. The function writes all characters in s up to, but not
including, the terminating null character. Unlike puts (), fputs () does not
terminate the output of s with a newline (' \n').

If the file is opened in update mode (+) the file cannot be written to and then read
from unless the write operation and read operation are separated by an operation
that flushes the stream's buffer. This can be done with the fflush() function or one
of the file positioning operations (fseek(), fsetpos(), or rewind()).

On embedded/ RTOS systems this function only is implemented for stdin, stdout
and stderr files.

fputs () returns a zero if successful, and returns a nonzero value when it fails.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 301
“puts” on page 365

Listing 35.12 Example of fputs() Usage

#include <stdio.h>
#include <stdlib.h>

int main(void)

{

FILE *f;

330

MSL C Reference Version 10

stdio.h
Standard input/output

// create a new file for output

if ((£ = fopen("foofoo", "w")) == NULL)
printf("Can't create file.\n");
exit (1) ;

}

// output character strings to the file
fputs ("undo\n", f);

fputs ("copy\n", f);

fputs("cut\n", f);

fputs ("rickshaw\n", f);

// close the file
fclose(f);

return 0;

Output to file foofoo:
undo

copy

cut

rickshaw

fread

Read binary data from a stream.

#include <stdio.h>

size_t fread(void *ptr, size_t size,

size_t nmemb, FILE *stream) ;

Table 35.21 fread

ptr void * A pointer to the read
destination

size size_t The size of the array
elements pointed to

MSL C Reference Version 10

331

y
A

stdio.h
Standard input/output

Table 35.21 fread (continued)

nmemb size_t Number of elements to be
read
stream FILE * A pointer to a FILE stream
Remarks

The fread () function reads a block of binary or text data and updates the file
position indicator. The data read from stream are stored in the array pointed to
by ptr. The size and nmemb arguments describe the size of each item and the
number of items to read, respectively.

The fread () function reads nmemb items unless it reaches the end-of-file or a
read error occurs.

If the file is opened in update mode (+) a file cannot be read from and then written
to without repositioning the file using one of the file positioning functions (fseek(),
fsetpos(), or rewind()) unless the last read or write reached the end-of-file.

On embedded/ RTOS systems this function only is implemented for stdin, stdout
and stderr files.

fread () returns the number of items read successfully.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 301

3

‘fgets” on page 316

“fwrite” on page 347

Listing 35.13 Example of fread() Usage

#include <stdio.h>
#include <stdlib.h>

// define the item size in bytes
#define BUFSIZE 40

int main(void)

{
FILE *f;
static char s[BUFSIZE] = "The quick brown fox";
char target [BUFSIZE];

332 MSL C Reference Version 10

g |

stdio.h
Standard input/output

// create a new file for output and input

if ((£ = fopen("foo", "w+")) == NULL) {
printf("Can't create file.\n");
exit (1) ;

}

// output to the stream using fwrite()
fwrite(s, sizeof(char), BUFSIZE, f);

// move to the beginning of the file
rewind (f) ;

// now read from the stream using fread()
fread(target, sizeof (char), BUFSIZE, f);

// output the results to the console
puts(s) ;
puts (target) ;

// close the file
fclose(f);

return O;

Output:
The quick brown fox
The quick brown fox

freopen

Re-direct a stream to another file.
#include <stdio.h>
FILE *freopen(const char *filename,

const char *mode, FILE *stream) ;

MSL C Reference Version 10 333

y
A

stdio.h
Standard input/output

Table 35.22 freopen

filename const char * The name of the file to re-
open
mode const char * The file opening mode
stream FILE * A pointer to a FILE stream
Remarks

The freopen () function changes the file that st ream is associated with to
another file. The function first closes the file the stream is associated with, and
opens the new file, £ilename, with the specified mode, using the same stream.

fopen () returns the value of stream, if it is successful. If fopen () fails it
returns a null pointer (NULL).

This function may not be implemented on all platforms.

See Also

“fopen” on page 317

Listing 35.14 Example of freopen() Usage

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
FILE *f;
// re-direct output from the console to a new file
if ((£ = freopen("newstdout", "w+", stdout)) == NULL) {
printf("Can't create new stdout file.\n");
exit (1) ;
}
printf ("If all goes well, this text should be in\n");
printf("a text file, not on the screen via stdout.\n");
fclose(f);
return O;
}
334 MSL C Reference Version 10

stdio.h
Standard input/output

fscanf

Read formatted text from a stream.

#include <stdio.h>

int fscanf (FILE *stream,

Table 35.23 fscanf

const char *format, ...);

stream FILE * A pointer to a FILE stream
format const char * A format string
Remarks

The fscanf () function reads programmer-defined, formatted text from
stream. The function operates identically to the scanf () function with the
addition of the stream argument indicating the stream to read from. Refer to the
scanf () function description.

If the file is opened in update mode (+) a file cannot be read from and then written
to without repositioning the file using one of the file positioning functions (fseek(),
fsetpos(), or rewind()) unless the last read or write reached the end-of-file.

On embedded/ RTOS systems this function only is implemented for stdin, stdout
and stderr files.

Input Control String and Conversion Specifiers

The format argument is a character array containing normal text, white space
(space, tab, newline), and conversion specifications. The normal text specifies
literal characters that must be matched in the input stream. A white space character
indicates that white space characters are skipped until a non-white space character
is reached. The conversion specifications indicate what characters in the input
stream are to be converted and stored.

The conversion specifications must have matching arguments in the order they
appear in format. Because scanf () stores data in memory, the arguments
matching the conversion specification arguments must be pointers to objects of the
relevant types.

A conversion specification consists of the percent sign (%) prefix, followed by an

optional maximum width or assignment suppression, and ending with a conversion
type. A percent sign can be skipped by doubling it in format; %% signifies a single
% in the input stream.

MSL C Reference Version 10 335

3
4

y
A

stdio.h

Standard input/output

An optional width is a decimal number specifying the maximum width of an input
field. scanf () will not read more characters for a conversion than is specified by
the width.

An optional assignment suppression character (*) can be used to skip an item by
reading it but not assigning it. A conversion specification with assignment
suppression must not have a corresponding argument.

The last character, the conversion type, specifies the kind of conversion requested.
Table 35.24 and Table 35.24 describe the length specifier and conversion type
characters.

MSL AltiVec Extensions for Scanf

The AltiVec extensions to the standard scanf family of functions is supported in
Main Standard Libraries.

Separator arguments after % and before any specifier may be any character or may
be the @ symbol. The @ symbol is a non-Motorola extension that will use a
specified string as a specifier.

In the specific case of a 'c' specifier any char may be used as a separator. For all

1o

other specifiers -', '+, '#, ' ' may not be used.

Listing 35.31 demonstrates their use.

Table 35.24 Length Specifiers for Formatted Input

Modifier Description

The hh flag indicates that the following 4,
i, o, u, x, X or n conversion specifier
applies to an argument that is of type char
or unsigned char.

The h flag indicates that the following 4,
i, o, u, x, X or n conversion specifier
applies to an argument that is of type short
int Or unsigned short int.

When used with integer conversion specifier,
the 1 flag indicates 1ong int oran
unsigned long int type. When used with
floating point conversion specifier, the 1 flag
indicates a double.

When used witha ¢ or s conversion
specifier, the 1 flag indicates that the
corresponding argument with type pointer to
wchar_t.

336

MSL C Reference Version 10

stdio.h
Standard input/output

Table 35.24 Length Specifiers for Formatted Input (continued)

Modifier Description

I When used with integer conversion specifier,
the Il flag indicates that the corresponding
argument is of type long long or an unsigned
long long.

L The L flag indicates that the corresponding
float conversion specifier corresponds to an
argument of type long double.

\ AltiVec: A vector bool char, vector
signed char or vector unsigned
char when followedbyc, 4, i, o, u,
x or X

A vector float, when followed by £ .

vh AltiVec: vector short, vector

hv unsigned short, vector bool short
or vector pixel when followed by c,
d, i, o, u, x or X

vl AltiVec: vector long, vector
Iv unsigned long or vector bool when
followedby c, 4, i, o, u, x or X

Table 35.25 Conversion Specifiers for Formatted Input

Modifier Description

d A decimal integer is read.

i A decimal, octal, or hexadecimal integer is
read. The integer can be prefixed with a plus
or minus sign (+, -), 0 for octal numbers, 0x
or 0X for hexadecimal numbers.

o An octal integer is read.
u An unsigned decimal integer is read.
X, X A hexadecimal integer is read.

MSL C Reference Version 10 337

'
A

stdio.h

Standard input/output

Table 35.25 Conversion Specifiers for Formatted Input (continued)

Modifier Description

e Ef,9, G A floating point number is read. The number
can be in plain decimal format (e.g.
3456.483) or in scientific notation ([-
1b.aaae[-]1dd) .

s A character string is read. The input
character string is considered terminated
when a white space character is reached or
the maximum width has been reached. The
null character is appended to the end of the
array.

[¢ A character is read. White space characters
are not skipped, but read using this
conversion specifier.

p A pointer address is read. The input format
should be the same as that output by the p
conversion type in printf().

n This conversion type does not read from the
input stream but stores the number of
characters read so far in its corresponding
argument.

[scanset] Input stream characters are read and filtered
determined by the scanset. See “Scanset”
for a full description.

Scanset

The conversion specifier %] allows you to specify a scanset, which is a sequence of
characters that will be read and stored in the string pointed to by the scanset's
corresponding argument. The characters between the [and the terminating] define the
scanset. A null character is appended to the end of the character sequence.

Input stream characters are read until a character is found that is not in the scanset. If
the first character of scanset is a circumflex (*) then input stream characters are read until
a character from the scanset isread. A null character is appended to the end of the
character array.

Thus, the conversion specifier % [abcdef] specifies that the scanset is abcdef
and any of the characters ‘a’ through ‘f’ are to be accepted and stored. As soon as

338

MSL C Reference Version 10

stdio.h
Standard input/output

any character outside this set is encountered, reading and storing will cease. Thus, for
example, assuming we have the declaration:

char str[20];
the execution of
sscanf ("acdfxbe", "%$[abcdef]l", str);

will store acdf in str; the ‘x’ and following characters will not be stored
because the ‘x’ is not in the scanset.

If the first character of the scanset is the circumflex, #, then the following characters will
define a set of characters such that encountering any one of them will cause reading and
storing to stop; any character outside a scanset defined in this way will be accepted, we
will call this an exclusionary scanset. Thus execution of

sscanf ("stuvawxyz", "%["abcdef]", str);

will store stuv in str. If you want ” to be part of the scanset, you cannot list it as the
first character otherwise it will be interpreted as introducing the members of an
exclusionary scanset. Thus %["abc] definesthe exclusionary
scanset abc whereas $[a”bc] defines the scanset abc”. %["a"bc]
defines the exclusionary scanset abc”, asdoes %[""abc].

If youwant] tobeinthe scanset, it mustbe the first character of the scanset,
immediately following the %[or, tobeinan exclusionary scanset,
immediately after the #, for example, $[]abc] or %["]abc]. Inany other
position, the] will be interpreted as terminating the scanset.

To include the - character inthe scanset, it must be either listed first (possibly after
an initial » or last, thus for example, %[-abc], %[abc-1, %$["-abcl,
or% [~abc-]1. The C Standard explicitly states:

e If a - character is in the scanlist and is not the first, nor the second where the first
character is a ”, nor the last character, the behavior is implementation defined.

MSL interprets such a use of - in a scanlist as defining a range of characters; thus, the
specification % [a-z] as being the equivalent of

% [abcdefghijklmnopgrstuvwxyz] . You should bear in mind that this is MSL’s
interpretation and such usage may be interpreted differently in other C library
implementations. Note also that it is assumed that the numeric value of the character
before the - is less than that of the one after. If this relationship does not hold undefined
and probably unwanted effects may be experienced.

fscanf () returns the number of items read or, if an input error occurs before any
conversions, the value EOF . If there is an error in reading data that is inconsistent with
the format string, £scanf () sets errno to a nonzero value. £scanf () returns EOF if
it reaches the end-of-file.

This function may not be implemented on all platforms.

MSL C Reference Version 10 339

4
A

stdio.h
Standard input/output

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 301

“errno” on page 75
“scanf” on page 370

Listing 35.15 Example of fscanf() Usage

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
FILE *f;
int 1i;
double x;
char c;
// create a new file for output and input
if ((£ = fopen("foobar", "w+")) == NULL) {

printf("Can't create new file.\n");
exit (1) ;

}
// output formatted text to the file
fprintf (£, "%$d\n%$f\n%c\n", 45, 983.3923, 'M');
// go to the beginning of the file
rewind (f) ;
// read from the stream using fscanf ()
fscanf(f, "%d %1f %c", &i, &x, &c);
// close the file
fclose(f);
printf ("The integer read is %d.\n", 1);
printf ("The floating point value is %f.\n", x);
printf ("The character is %c.\n", c¢);
return O;

}

Output:

The integer read is 45.

340 MSL C Reference Version 10

stdio.h
Standard input/output

The floating point value is 983.392300.
The character is M.

fseek

Move the file position indicator.
#include <stdio.h>

int fseek(FILE *stream, long offset, int whence) ;

Table 35.26 fseek

stream FILE * A pointer to a FILE stream
offset long The offset to move in bytes
whence int The starting position of the
offset
Remarks

The fseek () function moves the file position indicator to allow random access
to a file. For example usage, see Listing 35.16.

The function moves the file position indicator either absolutely or relatively. The whence
argument can be one of three values defined in stdio.h: SEEK_SET, SEEK_CUR,
SEEK_END.

The SEEK_SET value causes the file position indicator to be set of fset bytes from the
beginning of the file. In this case of £set must be equal or greater than zero.

The SEEK_CUR value causes the file position indicator to be set of fset bytes from its
current position. The of fset argument can be a negative or positive value.

The SEEK_END value causes the file position indicator to be set of fset bytes from the
end of the file. The of fset argument must be equal or less than zero.

The £seek () function undoes the last ungetc () call and clears the end-of-file status
of stream.

NOTE The function fseek has limited use when used with MS DOS text files
opened in text mode because of the carriage return / line feed translations.
For more information review “Text Streams and Binary Streams” on page 300.
The fseek operations may be incorrect near the end of the file due to eof
translations.

MSL C Reference Version 10 341

y
A

stdio.h
Standard input/output

The only fseek operations guaranteed to work in MS DOS text files opened in text
mode are:

» Using the offset returned from ftell() and seeking from the beginning of the file.
¢ Seeking with an offset of zero from SEEK_SET, SEEK_CUR and SEEK_END.

On embedded/ RTOS systems this function only is implemented for stdin, stdout and
stderr files.

fseek () returns zero if it is successful and returns a nonzero value if it fails.

This function may not be implemented on all platforms.

See Also

“foetpos” on page 314

“fsetpos” on page 343

“ftell” on page 344

Listing 35.16 Example of fseek() Usage

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
FILE *f;
long int posl, pos2, newpos;
char filename[80], buf[80];

// get a filename from the user
printf ("Enter a filename to read.\n");

gets (filename) ;

// open a file for input

if ((£ = fopen(filename, "r")) == NULL) {
printf("Can't open %s.\n", filename) ;
exit (1) ;

}

printf ("Reading last half of first line.\n");

// get the file position indicator before and after
// reading the first line

posl = ftell(f);

fgets(buf, 80, f);

pos2 = ftell(f);

printf ("Whole line: %s\n", buf);

342 MSL C Reference Version 10

stdio.h
Standard input/output

// calculate the middle of the line
newpos = (pos2 - posl) / 2;

fseek (f, newpos, SEEK_SET) ;
fgets(buf, 80, f);
printf ("Last half: %s\n", buf);

// close the file
fclose(f);

return O;

Output:

Enter a filename to read.
itwerks

Reading last half of first line.
Whole line: The quick brown fox

Last half: brown fox

fsetpos

Set the file position indicator.

#include <stdio.h>

int fsetpos(FILE *stream, const fpos_t *pos);

Table 35.27 fsetpos

stream FILE * A pointer to a FILE stream
pos fpos_t A pointer to a file
positioning type
Remarks

The fsetpos () function sets the file position indicator for stream using the
value pointed to by pos. The function is used in conjunction with fgetpos ()
when dealing with files having sizes greater than what can be represented by the

long int argument used by fseek ().

MSL C Reference Version 10

343

3
4

y
A

stdio.h
Standard input/output
fsetpos () undoes the previous call to ungetc () and clears the end-of-file
status.
On embedded/ RTOS systems this function only is implemented for stdin, stdout
and stderr files.
fsetpos () returns zero if it is successful and returns a nonzero value if it fails.
This function may not be implemented on all platforms.
See Also
“fgetpos” on page 314
“fseek” on page 341
“ftell” on page 344
For example usage of “fgetpos”, see Listing 35.8.
ftell

Table 35.28 ftell

Return the current file position indicator value.
#include <stdio.h>

long int ftell (FILE *stream) ;

stream FILE * A pointer to a FILE stream

Remarks

The ftell () function returns the current value of stream's file position indicator.
It is used in conjunction with £seek () to provide random access to a file.

The function will not work correctly when it is given a stream associated to a
console file, such as stdin, stdout, or stderr, where a file indicator position
is not applicable. Also, ftell () cannot handle files with sizes larger than what
can be represented with a long int. In such a case, use the fgetpos () and
fsetpos () functions.

On embedded/ RTOS systems this function only is implemented for stdin, stdout
and stderr files.

ftell (), when successful, returns the current file position indicator value. If it
fails, ftell () returns -1L and sets the global variable errno to a nonzero
value.

344

MSL C Reference Version 10

stdio.h
Standard input/output

This function may not be implemented on all platforms.

See Also

“errno” on page 75, “fgetpos’” on page 314

fwide

Determine the orientation of a stream.

#include <stdio.h>

int fwide (FILE *stream, int orientation);

Table 35.29 fwide

stream FILE * A pointer to the stream
being tested
orientation int The desired orientation
Remarks

The fwide function determines the orientation of the stream pointed to by stream.
If the value of orientation is greater than zero and stream is without orientation,
stream is made to be wide oriented. If the value of orientation is less than zero and
stream is without orientation, stream is made to be byte oriented. Otherwise, the
value of orientation is zero and the function does not alter the orientation of the
stream. In all cases, if stream already has an orientation, it will not be changed.

The fwide function returns a value greater than zero if, after the call, the stream
has wide orientation, a value less than zero if the stream has byte orientation, or

zero if the stream has no orientation.

This function may not be implemented on all platforms.

Listing 35.17 Example of fwide() Usage

#include <stdio.h>

int main()
{
FILE * fp;
char filename[FILENAME_MAX] ;
int orientation;
char * cptr;

MSL C Reference Version 10

345

wr
4\

stdio.h
Standard input/output

cptr = tmpnam(filename) ;
fp = fopen(filename, "w");
orientation = fwide(fp, 0);

// A newly opened file has no orientation
printf("Initial orientation = %i\n", orientation);
fprintf (fp, "abcdefghijklmnopgrstuvwxyz\n") ;

// A byte oriented output operation will set the orientation
// to byte oriented
orientation = fwide(fp, 0);

printf ("Orientation after fprintf = %i\n", orientation);
fclose (fp) ;

fp = fopen(filename, "r");

orientation = fwide(fp, 0);

printf ("Orientation after reopening = %i\n", orientation);
orientation = fwide(fp, -1);

// fwide with a non-zero orientation argument will set an
// unoriented file's orientation

printf ("Orientation after fwide = %i\n", orientation);
orientation = fwide(fp, 1);

// but will not change the file's orientation if it

// already has an orientation

printf ("Orientation after second fwide = %i\n",orientation);
fclose (fp) ;

remove (filename) ;

return O;

Output:

Initial orientation = 0

Orientation after fprintf = -1
Orientation after reopening = 0
Orientation after fwide = -1
Orientation after second fwide = -1

346 MSL C Reference Version 10

stdio.h
Standard input/output

fwrite

Write binary data to a stream.

#include <stdio.h>

size_t fwrite(const void *ptr, size_t size,

Table 35.30 fwrite

size_t nmemb, FILE *stream) ;

ptr

void * A pointer to the item being
written

size

size_t The size of the item being
written

nmemb size_t The number of items being

written

stream FILE * A pointer to a FILE stream

Remarks

The fwrite () function writes nmemb items of size bytes each to stream.
The items are contained in the array pointed to by ptr. After writing the array to
stream, fwrite () advances the file position indicator accordingly.

If the file is opened in update mode (+) the file cannot be written to and then read
from unless the write operation and read operation are separated by an operation
that flushes the stream's buffer. This can be done with the fflush() function or one
of the file positioning operations (fseek(), fsetpos(), or rewind()).

On embedded/ RTOS systems this function only is implemented for stdin, stdout
and stderr files.

fwrite () returns the number of items successfully written to stream.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 301
“fread” on page 331

For example of fread() usage, see Listing 35.13.

MSL C Reference Version 10 347

y
A

stdio.h
Standard input/output

getc

Read the next character from a stream.

#include <stdio.h>

int getc(FILE *stream) ;

Table 35.31 getc

stream

FILE *

A pointer to a FILE stream

Remarks

The getc () function reads the next character from stream, advances the file
position indicator, and returns the character as an int value. Unlike the fgetc ()

function, getc () is implemented as a macro.

If the file is opened in update mode (+) it cannot be read from and then written to
without being repositioned using one of the file positioning functions (fseek(),
fsetpos(), or rewind()) unless the last read or write reached the end-of-file.

getc () returns the next character from the stream or returns EOF if the end-of-

file has been reached or a read error has occurred.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 301

—wide Lharacter and byte Lharacter siream Unentation on page Sul

“fgetc” on page 312

“fputc” on page 328

“getchar” on page 349

“putchar’” on page 363

Listing 35.18 Example of getc() Usage

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
FILE *f;
char filename[80],

c;

348

MSL C Reference Version 10

g |

stdio.h
Standard input/output

// get a filename from the user
printf ("Enter a filename to read.\n");
scanf ("%$s", filename) ;

// open a file for input

if ((£ = fopen(filename, "r")) == NULL) {
printf("Can't open %s.\n", filename) ;
exit (1) ;

}
// read one character at a time until end-of-file
while ((¢ = getc(f)) != EOF)

putchar (c) ;

// close the file
fclose(f);

return O;

Output

Enter a filename to read.
foofoo
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99

getchar

Get the next character from stdin.
#include <stdio.h>

int getchar (void) ;

MSL C Reference Version 10 349

3
4

4
A

stdio.h
Standard input/output

Remarks
The getchar () function reads a character from the stdin stream.

The function getchar () isimplemented as getc (stdin) and as such
getchar’s return may be delayed or optimized out of program order if stdin
is buffered. For most implementations, stdin is line buffered.

getchar () returns the value of the next character from stdin as an int if itis
successful. getchar () returns EOF if it reaches an end-of-file or an error occurs.

This function may not be implemented on all platforms.

See also:

3

‘Wide Character and Byte Character Stream Orientation” on page 301

“foetc” on page 312

“getc” on page 348

“putchar’” on page 363

Listing 35.19 Example of getchar() Usage

#include <stdio.h>

int main(void)

{
int c;
printf ("Enter characters to echo, * to quit.\n");
// characters entered from the console are echoed
// to it until a * character is read
while ((¢ = getchar()) != '*")
putchar (c) ;
printf ("\nDone!\n") ;
return O;
}
Output:

Enter characters to echo, * to quit.
I'm experiencing deja-vu *

I'm experiencing deja-vu

Done!

350 MSL C Reference Version 10

stdio.h

Standard input/output
gets

Read a character array from stdin.

#include <stdio.h>

char *gets(char *s);

Table 35.32 gets
s chars The string being written in
to

Remarks
The gets () function reads characters from stdin and stores them sequentially
in the character array pointed to by s. Characters are read until either a newline or
an end-of-file is reached.
Unlike fgets (), the programmer cannot specify a limit on the number of
characters to read. Also, gets () reads and ignores the newline character (' \n ')
so that it can advance the file position indicator to the next line. The newline
character is not stored s. Like fgets (), gets () terminates the character string
with a null character.
If an end-of-file is reached before any characters are read, gets () returns a null
pointer (NULL) without affecting the character array at s. If a read error occurs, the
contents of s may be corrupted.
gets () returns s if it is successful and returns a null pointer if it fails.
This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 301

3

‘fgets” on page 316

Listing 35.20 Example of gets() Usage

#include <stdio.h>
#include <string.h>

int main(void)

{

char buf[100];

MSL C Reference Version 10 351

y
A

stdio.h
Standard input/output

printf ("Enter text lines to echo.\n");
printf ("Enter an empty line to quit.\n");

// read character strings from the console
// until an empty line is read
while (strlen(gets(buf)) > 0)
puts (buf) ; // puts() appends a newline to its output

printf ("Done!\n") ;

return O;

Output:

Enter text lines to echo.
Enter an empty line to quit.
I'm experiencing deja-vu
I'm experiencing deja-vu
Now go to work

Now go to work

Done!

perror

Output an error message to stderr.
#include <stdio.h>

void perror (const char *s);

Table 35.33 perror

s const char * Prints an errno and
message

Remarks

If s is not NULL or a pointer to a null string the perroxr () function outputs to
stderr the character array pointed to by s followed by a colon and a space
*: ' . Then, the error message that would be returned by strerror () for
the current value of the global variable errno.

This function may not be implemented on all platforms.

352 MSL C Reference Version 10

stdio.h
Standard input/output

See Also

“abort” on page 405

“errno” on page 75

Listing 35.21 Example of perror() Usage

#include <errno.h>
#include <stdio.h>

int main()

{
perror ("No error reported as");
errno = EDOM;
perror ("Domain error reported as");
errno = ERANGE;
perror ("Range error reported as");
return 0;

}

Output

No error reported as: No Error
Domain error reported as: Domain Error
Range error reported as: Range Error

printf

Output formatted text.
#include <stdio.h>

int printf (const char *format,

Table 35.34 printf

format const char *

A format string

Remarks

The printf () function outputs formatted text. The function takes one or more
arguments, the first being format, a character array pointer. The optional
arguments following format are items (integers, characters, floating point values,

MSL C Reference Version 10

353

3
4

y
A

stdio.h

Standard input/output

etc.) that are to be converted to character strings and inserted into the output of
format at specified points.

The printf () function sends its output to stdout.

Printf Control String and Conversion Specifiers

The format character array contains normal text and conversion specifications.
Conversion specifications must have matching arguments in the same order in which they
occur in format.

The various elements of the format string is specified in the ANSI standards to be in this
order from left to right.

* A percent sign

¢ Optional flags -,+,0,# or space

¢ Optional minimum field width specification

¢ Optional precision specification

* Optional size specification

* Conversion specifier c,d,e,E,f,F,g,G,i,n,0,p,s,u,x,X or %

A conversion specification describes the format its associated argument is to be converted
to. A specification starts with a percent sign (%), optional flag characters, an optional
minimum width, an optional precision width, and the necessary, terminating conversion
type. Doubling the percent sign (%%) results in the output of a single %.

An optional flag character modifies the formatting of the output; it can be left or right
justified, and numerical values can be padded with zeroes or output in alternate forms.
More than one optional flag character can be used in a conversion specification. Table
35.36 describes the flag characters.

The optional minimum width is a decimal digit string. If the converted value has more
characters that the minimum width, it is expanded as required. If the converted value has
fewer characters than the minimum width, it is, by default, right justified (padded on the
left). If the - flag character is used, the converted value is left justified (padded on the
right).

The maximum minimum field width allowed in MSL Standard Libraries is 509
characters.

The optional precision width is a period character (.) followed by decimal digit string. For
floating point values, the precision width specifies the number of digits to print after the
decimal point. For integer values, the precision width functions identically to, and cancels,
the minimum width specification. When used with a character array, the precision width
indicates the maximum width of the output.

354

MSL C Reference Version 10

stdio.h
Standard input/output

A minimum width and a precision width can also be specified with an asterisk (*) instead
of a decimal digit string. An asterisk indicates that there is a matching argument,
preceding the conversion argument, specifying the minimum width or precision width.

The terminating character, the conversion type, specifies the conversion applied to the
conversion specification's matching argument. Table 35.37 describes the conversion type
characters.

Table 35.35 and Table 35.38 also include other modifiers for formatted output functions.

MSL AltiVec Extensions for Printf

The AltiVec extensions to the standard printf family of functions is supported in Main
Standard Libraries.

Separator arguments after % and before any specifier may be any character or may be the
@ symbol. The @ symbol is a non-Motorola extension that will use a specified string as a
specifier.

In the specific case of a 'c' specifier any char may be used as a separator. For all other
specifiers -, '+, '#, ' ' may not be used.

Listing 35.23 demonstrates their use.

Table 35.35 Length Modifiers for Formatted Output Functions

Modifier Description

h The h flag followed by d, i, 0, u, x, or X
conversion specifier indicates that the
corresponding argument is a short int or
unsigned short int.

The lower case L followed by d, i, o, u, X,
or X conversion specifier indicates the
argument is a long int or unsigned long int.
The lower case L followed by a ¢
conversion specifier indicates that the
argument is of type wint_t.

The lower case L followed by an s
conversion specifier indicates that the
argument is of type wchar_t.

Il The double | followed by d, i, 0, u, x, or X
conversion specifier indicates the
argument is a long long or unsigned long
long

MSL C Reference Version 10 355

'
A

stdio.h
Standard input/output

Table 35.35 Length Modifiers for Formatted Output Functions (continued)

Modifier Description

L The upper case L followed by e, E, f, g, or
G conversion specifier indicates a long
double.

\ AltiVec: A vector bool char,

vector signed char or vector
unsigned char when followed by c,
d, i, o, u, x or X

A vector float, when followed by £ .

vh AltiVec: A vector short, vector
hv unsigned short, vector bool
short or vector pixel when
followedby c, 4, i, o, u, x or X

vl AltiVec: A vector int, vector

Iv unsigned int or vector bool int
when followed by ¢, 4, i, o, u, x
or X

Table 35.36 Flag Specifiers For formatted Output Functions

Modifier Description

- The conversion will be left justified.

+ The conversion, if numeric, will be prefixed
with a sign

(+ or -). By default, only negative numeric
values are prefixed with a minus sign (-).

space If the first character of the conversion is not a
sign character, it is prefixed with a space.
Because the plus sign flag character (+)
always prefixes a numeric value with a sign,
the space flag has no effect when combined
with the plus flag.

356 MSL C Reference Version 10

stdio.h
Standard input/output

Table 35.36 Flag Specifiers For formatted Output Functions (continued)

Modifier Description

For c, d, i, and u conversion types, the # flag
has no effect. For s conversion types, a
pointer to a Pascal string, is output as a
character string. For o conversion types, the
flag prefixes the conversion with a 0. For x
conversion types with this flag, the
conversion is prefixed with a Ox. For e, E, f,
g, and G conversions, the # flag forces a
decimal point in the output. For g and G
conversions with this flag, trailing zeroes
after the decimal point are not removed.

0 This flag pads zeroes on the left of the
conversion. It appliestod, i, 0, u, x, X, e, E, f,
g, and G conversion types. The leading
zeroes follow sign and base indication
characters, replacing what would normally
be space characters. The minus sign flag
character overrides the 0 flag character. The
0 flag is ignored when used with a precision
width for d, i, o, u, x, and X conversion

types.

@ AltiVec: This flag indicates a pointer to a
string specified by an argument. This string
will be used as a separator for vector
elements.

Table 35.37 Conversion Specifiers for Formatted Output Functions

Modifier Description

d The corresponding argument is converted to
a signed decimal.

i The corresponding argument is converted to
a signed decimal.

o The argument is converted to an unsigned
octal.

u The argument is converted to an unsigned
decimal.

MSL C Reference Version 10 357

'
A

stdio.h
Standard input/output

Table 35.37 Conversion Specifiers for Formatted Output Functions (continued)

Modifier Description

X, X The argument is converted to an unsigned
hexadecimal. The x conversion type uses
lowercase letters (abcdef) while X uses
uppercase letters (ABCDEF).

n This conversion type stores the number of
items output by printf() so far. Its
corresponding argument must be a pointer to
an int.

f, F The corresponding floating point argument
(float, or double) is printed in decimal
notation. The default precision is 6 (6 digits
after the decimal point). If the precision width
is explicitly O, the decimal point is not printed.
Forthe £ conversion specifier, a double
argument representing infinity produces [-
]inf; a double argument representing a
NaN (Not a number) produces [-]nan.
For the F conversion specifier, [-]1INF or
[-1NAN are produced instead.

e E The floating point argument (float or double)
is output in scientific notation: [-
1b.aaae*Eee. There is one digit (b)
before the decimal point. Unless indicated by
an optional precision width, the default is 6
digits after the decimal point (aaa). If the
precision width is 0, no decimal point is
output. The exponent (ee) is at least 2 digits
long.

The e conversion type uses lowercase e as
the exponent prefix. The E conversion type
uses uppercase E as the exponent prefix.

g, G The g conversion type uses the for e
conversion types and the G conversion type
uses the f or E conversion types. Conversion
type e (or E) is used only if the converted
exponent is less than -4 or greater than the
precision width. The precision width
indicates the number of significant digits. No
decimal point is output if there are no digits
following it.

358 MSL C Reference Version 10

stdio.h
Standard input/output

Table 35.37 Conversion Specifiers for Formatted Output Functions (continued)

Modifier

Description

Cc

The corresponding argument is output as a
character.

The corresponding argument, a pointer to a
character array, is output as a character
string. Character string output is completed
when a null character is reached. The null
character is not output.

The corresponding argument is taken to be a
pointer. The argument is output using the X
conversion type format.

Table 35.38 CodeWarrior Extensions for Formatted Output Functions

Modifier

Description

#s

The corresponding argument, a pointer to a
Pascal string, is output as a character string.
A Pascal character string is a length byte
followed by the number characters specified
in the length byte.

Note: This conversion type is an extension to
the ANSI C library but applied in the same
manner as for other format variations.

printf (), like fprintf (), sprintf (), viprintf (), and vprintf (), returns
the number of arguments that were successfully output. printf () returns a negative

value if it fails.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 301

—wide Lharacter and byte Lharacter stream Urientation on page SUl1

“fprintf” on page 320

“sprintf” on page 380

“viprintf” on page 387

“vprintf” on page 391

“vsprintf”” on page 395

MSL C Reference Version 10

359

4
A

stdio.h
Standard input/output

Listing 35.22 Example of printf() Usage

#include <stdio.h>

int main(void)

{
int i = 25;
char ¢ = 'M';
short int d = 'm';
static char s[] = "CodeWarrior!";
static char pas[] = "\pCodeWarrior again!";

float £ = 49.95;

double x = 1038.11005;

int count;

printf ("%$s printf () demonstration:\n%n", s, &count);

printf ("The last line contained %d characters\n", count) ;
printf ("Pascal string output: %$#20s\n", pas);

printf ("%$-4d %x %06x %-50\n", i, 1, i, 1i);
printf("$*d\n", 5, 1i);

printf ("%4c %4u %4.10d\n", c, c, c);

printf ("%4c %4hu %3.10hd\n", 4, 4, d);

printf ("$%5.2f\n", f);

printf ("%$5.2f\n%6.3f\n%7.4f\n", x, x, X);
printf("$*.*f\n", 8, 5, x);

return 0;

The output is:
CodeWarrior! printf () demonstration:
The last line contained 36 characters
Pascal string output: CodeWarrior again!
25 19 000019 31
25
M 77 0000000077
m 109 0000000109
$49.95
1038.11
1038.110
1038.1101
1038.11005

Listing 35.23 Example of AltiVec printf Extensions

#include <stdio.h>

360 MSL C Reference Version 10

g |

stdio.h
Standard input/output

int main(void)
{

vector signed char s =

(vector signed char) (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16);

vector unsigned short usl6 =

(vector unsigned short) ('a','b','c','d','e',"'£','g','h');

vector signed int sv32 =

(vector signed int) (100, 2000, 30000,
vector signed int vs32 =

(vector signed int) (0, -1, 2, 3);
vector float f1t32 =

(vector float) (1.1, 2.22, 3.3, 4.444);

printf("s = %vd\n", s);
printf("s = %,vd\n", s);
printf ("vector=%@vd\n", "\nvector=", s);

// c specifier so no space is added.
printf("usl6 = %vhc\n", usl6);

printf ("sv32 %,51vd\n", sv32);

printf("vs32 = 0x%@.81vX\n", ", 0Ox", vs32);

printf ("£f1t32 = %,5.2vf\n", £1t32);

return O;

The Result i
s =122314
s =1,2,3,4,
vector=1
vector=2
vector=3
vector=4
vector=5
vector=6
vector="7
vector=8
vector=9
vector=10
vector=11
vector=12

S:
5
5,

6 78 9 10 11 12 13 14 15 16
6,7,8,9,10,11,12,13,14,15,16

MSL C Reference Version 10

361

y
A

stdio.h
Standard input/output

vector=13
vector=14
vector=15
vector=16
usl6 = abcdefgh

sv32 = 100, 2000,30000, 4

vs32 = 0x00000000, OxFFFFFFFF, 0x00000002, 0x00000003
fl1t32 = 1.10, 2.22, 3.30, 4.44

putc

Write a character to a stream.
#include <stdio.h>

int putc(int ¢, FILE *stream);

Table 35.39 putc

[int The character to write to a
file
stream FILE * A pointer to a FILE stream
Remarks

The putc () function outputs c to stream and advances stream's file position
indicator.

The putc () works identically to the fputc () function, except that it is written
as a macro.

If the file is opened in update mode (+) the file cannot be written to and then read
from unless the write operation and read operation are separated by an operation
that flushes the stream's buffer. This can be done with the fflush() function or one
of the file positioning operations (fseek(), fsetpos(), or rewind()).

putc () returns the character written when successful and return EOF when it
fails.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 301
“fputc” on page 328

362 MSL C Reference Version 10

g |

stdio.h
Standard input/output

“putchar” on page 363

Listing 35.24 Example of putc() Usage

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
FILE *f;
static char filename[] = "checkputc";
static char test[] = "flying fish and quail eggs";
int 1i;

// create a new file for output

if ((£ = fopen(filename, "w")) == NULL) {
printf("Can't open %s.\n", filename) ;
exit (1) ;

}

// output the test character array

// one character at a time using putc()

for (i = 0; test[i] > 0; i++)
putc(test[i], £f);

// close the file
fclose(f);

return O;

Output to file checkputc
flying fish and quail eggs

putchar

Write a character to stdout.
#include <stdio.h>

int putchar (int c);

MSL C Reference Version 10 363

y
A

stdio.h
Standard input/output

Table 35.40 putchar

c int The character to write to
stdout

Remarks

The putchar () function writes character c to stdout.
putchar () returns c if it is successful and returns EOF if it fails.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 301
“fputc” on page 328

“putc” on page 362

Listing 35.25 Example of putchar() Usage

#include <stdio.h>

int main(void)

{
static char test[] = "running jumping walking tree\n";
int 1i;
// output the test character one character
// at a time until the null character is found.
for (i = 0; test[i] != '"\0'; i++)
putchar (test[i]);
return O;
}
Output:

running jumping walking tree

364 MSL C Reference Version 10

stdio.h

Standard input/output
puts
Write a character string to stdout.
#include <stdio.h>
int puts(const char *s);
Table 35.41 puts
s const char * The string written to stdout

Remarks

The puts () function writes a character string array to stdout, stopping at, but
not including the terminating null character. The function also appends a newline
("\n") to the output.

puts () returns zero if successful and returns a nonzero value if it fails.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 301
“fputs” on page 330

Listing 35.26 Example of puts() Usage

#include <stdio.h>

int main(void)

{
static char s[] = "car bus metro werks";
int 1i;
// output the string 10 times
for (i = 0; i < 10; i++)
puts(s);
return 0;
}
Output:

car bus metro werks

MSL C Reference Version 10 365

y
A

stdio.h
Standard input/output

car bus metro werks
car bus metro werks
car bus metro werks
car bus metro werks
car bus metro werks
car bus metro werks
car bus metro werks
car bus metro werks
car bus metro werks

remove

Delete a file.
#include <stdio.h>

int remove (const char *filename) ;

Table 35.42 remove

filename const char * The name of the file to be
deleted

Remarks
The remove () function deletes the named file specified by £ilename.

remove () returns O if the file deletion is successful, and returns a nonzero value
if it fails.

This function may not be implemented on all platforms.

See Also

«

wremove” on page 400

“fopen” on page 317

“rename” on page 367

Listing 35.27 Example of remove() Usage

#include <stdio.h>
#include <stdlib.h>

int main(void)

{

366 MSL C Reference Version 10

stdio.h

Standard input/output
char filename[40];
// get a filename from the user
printf ("Enter the name of the file to delete.\n");
gets (filename) ;
// delete the file
if (remove(filename) != 0) {
printf("Can't remove %s.\n", filename) ;
exit (1) ;
}
return 0;
}
rename
Change the name of a file.
#include <stdio.h>
int rename (const char *old, const char *new);
Table 35.43 rename
old const char * The old file name
new const char * The new file name

Remarks

The rename () function changes the name of a file, specified by o1d to the name
specified by new.

rename () returns a nonzero if it fails and returns zero if successful

This function may not be implemented on all platforms.

See Also

*_wrename” on page 401

“freopen” on page 333

“remove’” on page 366

MSL C Reference Version 10 367

4
A

stdio.h
Standard input/output

Listing 35.28 Example of rename() Usage

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
char oldname[50]; // current filename
char newname[50]; // new filename
// get the current filename from the user
printf ("Please enter the current filename.\n");
gets (oldname) ;
// get the new filename from the user
printf ("Please enter the new filename.\n");
gets (newname) ;
// rename oldname to newname
if (rename (oldname, newname) != 0) {
printf("Can't rename %s to %s.\n", oldname,
newname) ;
exit (1) ;
}
return 0;
}
Output:
Please enter the current filename.
boots. txt

Please enter the new filename.
sandals. txt

rewind

Reset the file position indicator to the beginning of the file.
#include <stdio.h>

void rewind(FILE *stream) ;

368 MSL C Reference Version 10

stdio.h
Standard input/output

Table 35.44 rewind

stream FILE *

A pointer to a FILE stream

Remarks

The rewind () function sets the file indicator position of stream such that the
next write or read operation will be from the beginning of the file. It also undoes
any previous call to ungetc () and clears stream's end-of-file and error status.

On embedded/ RTOS systems this function only is implemented for stdin, stdout

and stderr files.

This function may not be implemented on all platforms.

See Also

“fseek” on page 341

3

‘fsetpos” on page 343

Listing 35.29 Example of rewind() Usage

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
FILE *f;
char filename[80], buf[80];

// get a filename from the user
printf ("Enter a filename to read.\n");

gets (filename) ;

// open a file for input

if ((£ = fopen(filename, "r")) == NULL)
printf("Can't open %s.\n", filename) ;
exit (1) ;

}

printf ("Reading first line twice.\n");

{

// move the file position indicator to the beginning

// of the file
rewind (f) ;

// read the first line
fgets (buf, 80, f);

MSL C Reference Version 10

369

y
A

stdio.h
Standard input/output

printf ("Once: %s\n", buf);

// move the file position indicator to the
//beginning of the file
rewind (f) ;

// read the first line again
fgets(buf, 80, f);

printf ("Twice: %s\n", buf);

// close the file
fclose(f);

return O;

Output:

Enter a filename to read.

itwerks

Reading first line twice.

Once: flying fish and quail eggs
Twice: flying fish and quail eggs

scanf

Read formatted text.
#include <stdio.h>

int scanf (const char *format, ...);

Table 35.45 scanf

format const char * The format string

Remarks

The scanf () function reads text and converts the text read to programmer
specified types.

370 MSL C Reference Version 10

stdio.h
Standard input/output

Scanf Control String and Conversion Specifiers

The format argument is a character array containing normal text, white space
(space, tab, newline), and conversion specifications. The normal text specifies
literal characters that must be matched in the input stream. A white space character
indicates that white space characters are skipped until a non-white space character
is reached. The conversion specifications indicate what characters in the input
stream are to be converted and stored.

The conversion specifications must have matching arguments in the order they
appear in format. Because scanf () stores data in memory, the matching
conversion specification arguments must be pointers to objects of the relevant
types.

A conversion specification consists of the percent sign (%) prefix, followed by an

optional maximum width or assignment suppression, and ending with a conversion
type. A percent sign can be skipped by doubling it in format; %% signifies a single
% in the input stream.

An optional width is a decimal number specifying the maximum width of an input
field. scanf () will not read more characters for a conversion than is specified by
the width.

An optional assignment suppression character (*) can be used to skip an item by
reading it but not assigning it. A conversion specification with assignment
suppression must not have a corresponding argument.

The last character, the conversion type, specifies the kind of conversion requested.
Table 35.46 and Table 35.47 describe the length specifier and conversion type
characters.

MSL AltiVec Extensions for Scanf

The AltiVec extensions to the standard scanf family of functions is supported in
Main Standard Libraries.

Separator arguments after % and before any specifier may be any character or may
be the @ symbol. The @ symbol is a non-Motorola extension that will use a
specified string as a specifier.

In the specific case of a'c' specifier any char may be used as a separator. For all
other specifiers -', '+, '#, ' ' may not be used.

Listing 35.31 demonstrates their use.

MSL C Reference Version 10 371

'
A

stdio.h
Standard input/output

Table 35.46 Length Specifiers for Formatted Input

Modifier Description

hh The hh flag indicates that the following 4,
i, o, u, x, X or n conversion specifier
applies to an argument that is of type char
or unsigned char.

h The h flag indicates that the following 4,
i, o, u, x, X or n conversion specifier
applies to an argument that is of type short
int Or unsigned short int.

When used with integer conversion specifier,
the 1 flag indicates 1ong int oran
unsigned long int type. When used with
floating point conversion specifier, the 1 flag
indicates a double.

When used witha ¢ or s conversion
specifier, the 1 flag indicates that the
corresponding argument with type pointer to
wchar_t.

I When used with integer conversion specifier,
the Il flag indicates that the corresponding
argument is of type long long or an unsigned
long long.

L The L flag indicates that the corresponding
float conversion specifier corresponds to an
argument of type long double.

\ AltiVec: A vector bool char, vector
signed char or vector unsigned
char whenfollowedbyc, 4, i, o, u,
x or X

A vector float, when followed by £ .

vh AltiVec: vector short, vector

hv unsigned short, vector bool short
or vector pixel when followed by c,
d, i, o, u, x or X

vl AltiVec: vector long, vector
Iv unsigned long or vector bool when
followedby c, 4, i, o, u, x or X

372 MSL C Reference Version 10

stdio.h

Standard input/output
Table 35.47 Conversion Specifiers for Formatted Input
Modifier Description
d A decimal integer is read.

i A decimal, octal, or hexadecimal integer is
read. The integer can be prefixed with a plus
or minus sign (+, -), 0 for octal numbers, 0x
or 0X for hexadecimal numbers.

o An octal integer is read.

u An unsigned decimal integer is read.

X, X A hexadecimal integer is read.

e Ef,9,G A floating point number is read. The number

can be in plain decimal format (e.g.
3456.483) or in scientific notation ([-
lb.aaae[-]1dd) .

s A character string is read. The input
character string is considered terminated
when a white space character is reached or
the maximum width has been reached. The
null character is appended to the end of the
array.

[¢ A character is read. White space characters
are not skipped, but read using this
conversion specifier.

p A pointer address is read. The input format
should be the same as that output by the p
conversion type in printf().

n This conversion type does not read from the
input stream but stores the number of
characters read so far in its corresponding
argument.

[scanset] Input stream characters are read and filtered
determined by the scanset. See “Scanset”
for a full description.

scanf () returns the number of items successfully read and returns EOF if a
conversion type does not match its argument or and end-of-file is reached.

MSL C Reference Version 10 373

4
A

stdio.h
Standard input/output

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 301
“fscanf” on page 335

“sscanf” on page 381

Listing 35.30 Example of scanf() Usage

#include <stdio.h>

int main(void)

{
int 1i;
unsigned int j;
char c;
char s[40];
double x;
printf ("Enter an integer surrounded by ! marks\n");
scanf ("!%d!", &i);
printf ("Enter three integers\n");
printf ("in hexadecimal, octal, or decimal.\n");
// note that 3 integers are read, but only the last two
// are assigned to i and j
scanf ("%$*i %1 %ui", &i, &3Jj);
printf ("Enter a character and a character string.\n");
scanf ("%c %10s", &c, s);
printf ("Enter a floating point value.\n");
scanf ("$1f", &x);
return O;
}
Output:
Enter an integer surrounded by ! marks
1941

Enter three integers

in hexadecimal, octal, or decimal.

1A 6 24

Enter a character and a character string.
Enter a floating point value.

A

374 MSL C Reference Version 10

stdio.h

Standard input/output
Sounds like 'works'!
3.4
Listing 35.31 Example of AltiVec Scanf Extensions
#include <stdio.h>
int main(void)
{
vector signed char v8, vsS§;
vector unsigned short v16;
vector signed long v32;
vector float vf32;
sscanf("1 2 34 56 7 8 9 10 11 12 13 14 15 16", "%vd", &v8);
sscanf("1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16", "%,vd", &vs8);
sscanf ("abcdefgh", "%vhc", &vl16);
sscanf ("1, 4, 300, 400", "%,31vd", &v32);
sscanf ("1.10, 2.22, 3.333, 4.4444", "%,5vf", &vf32);
return O;
}
The Result is:
v =1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16;
vs8 =1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16;
Vl6: lall |b|, lcll ldll |e|, lfll ‘g', |h|
v32 = 1, 4, 300, 400
vif32 = 1.1000, 2.2200, 3.3330, 4.4444
setbuf

Change the buffer size of a stream.
#include <stdio.h>

void setbuf (FILE *stream, char *buf);

Table 35.48 setbuf

stream FILE *

A pointer to a FILE stream

buf char *

A buffer for input or output

MSL C Reference Version 10

375

y
A

stdio.h

Standard input/output

Remarks

The setbuf () function allows the programmer to set the buffer size for
stream. It should be called after stream is opened, but before it is read from or
written to.

The function makes the array pointed to by buf the buffer used by stream. The
buf argument can either be a null pointer or point to an array of size BUFSIZ

defined in stdio.h.
If buf is a null pointer, the stream becomes unbuffered.

This function may not be implemented on all platforms.

See Also

“setvbuf” on page 377

“malloc” on page 427

Listing 35.32 Example of setbuf() Usage

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
FILE *f;
char name[80];

// get a filename from the user
printf ("Enter the name of the file to write to.\n");

gets (name) ;

// create a new file for output

if ((f = fopen(name, "w")) == NULL) {
printf("Can't open file %s.\n", name);
exit (1) ;

}

setbuf (£, NULL); // turn off buffering

// this text is sent directly to the file without
// buffering

fprintf (£, "Buffering is now off\n");

fprintf (£, "for this file.\n");

// close the file
fclose(f);

376 MSL C Reference Version 10

stdio.h
Standard input/output

return 0;

Output:
Enter the name of the file to write to.
bufftest

setvbuf

Change the buffering scheme for a stream.
#include <stdio.h>
int setvbuf (FILE *stream, char *buf, int mode,

size_t size);

Table 35.49 setvbuf

stream FILE * A pointer to a FILE stream
buf char * A buffer for input and
output
mode int A buffering mode
size size_t The size of the buffer
Remarks

The setvbuf () allows the manipulation of the buffering scheme as well as the size of
the buffer used by stream. The function should be called after the stream is opened but
before it is written to or read from.

The bu £ argument is a pointer to a character array. The size argument indicates the size
of the character array pointed to by buf. The most efficient buffer size is a multiple of
BUFSIZ, defined in stdio.h.

If buf is a null pointer, then the operating system creates its own buffer of size bytes.

The mode argument specifies the buffering scheme to be used with stream. mode can
have one of three values defined in stdio.h: _TIOFBF, _IOLBF, and _IONBF.

e _TIOFBF specifies that stream be buffered.

e _TOLBF specifies that stream be line buffered.

MSL C Reference Version 10 377

4
A

stdio.h
Standard input/output

e _ IONBF specifies that stream be unbuffered
setvbuf () returns zero if it is successful and returns a nonzero value if it fails.

This function may not be implemented on all platforms.

See Also

“setbuf” on page 375
“malloc” on page 427

Listing 35.33 Example of setvbuf() Usage

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
FILE *f;
char name[80];
// get a filename from the user
printf ("Enter the name of the file to write to.\n");
gets (name) ;
// create a new file for output
if ((f = fopen(name, "w")) == NULL) {
printf("Can't open file %s.\n", name);
exit (1) ;
}
setvbuf (£, NULL, _IOLBF, 0); // line buffering
fprintf (£, "This file is now\n");
fprintf(f, "line buffered.\n");
// close the file
fclose(f);
return O;
}
Output:
Enter the name of the file to write to.
buffy

378 MSL C Reference Version 10

stdio.h
Standard input/output

snprintf

Format a character string array.
#include <stdio.h>

int snprintf(char * s, size_t n, const char * format, ...);

Table 35.50 snprintf

s char* A string to write to
n size_t Max number of chars to be
written to s
format const char * The format string
Remarks

The snprintf () function works identically to fprintf () except thatthe
output is written into the array s instead of to a stream. If n is zero nothing is
written; otherwise, any characters beyond the n-1st are discarded rather than
being written to the array and a null character is appended at the end.

For specifications concerning the output control string and conversion specifiers,

<

see “Output Control String and Conversion Specifiers” on page 321.

Snprintf () returns the number of characters that would have been assigned to
s, had n been sufficiently large, not including the null character or a
negative value if an encoding error occurred. Thus, the null-terminated output will
have been completely written if and only if the returned value is nonnegative and
less than n.

This function may not be implemented on all platforms.

Listing 35.34 Example of snprintf() Usage

#include <stdio.h>

int main()
{
int 1 = 1;
static char s[] = "Programmer";
char dest[50];
int retval;

retval = snprintf(dest, 5, "%s 1is number %d!", s, 1i);

MSL C Reference Version 10 379

y
A

stdio.h

Standard input/output
printf("n too small, dest = |%s]|, retval = %i\n", dest, retval);
retval = snprintf (dest, retval, "%s is number %d!", s, 1i);
printf("n right size, dest = |%s]|, retval = %i\n", dest, retval);
return O;

}

Output:

n too small, dest = |Prog|, retval = 23

n right size, dest = |Programmer is number 1|, retval = 23

sprintf

Format a character string array.
#include <stdio.h>

int sprintf (char *s, const char *format, ...);

Table 35.51 sprintf

s char * A string to write to
format const char * The format string
Remarks

The sprintf () function works identically to printf () with the addition of
the s parameter. Output is stored in the character array pointed to by s instead of
being sent to stdout. The function terminates the output character string with a
null character.

,For specifications concerning the output control string and conversion specifiers,
see “Output Control String and Conversion Specifiers” on page 321.

sprintf () returns the number of characters assigned to s, not including the null
character.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 301
“fprintf” on page 320

380

MSL C Reference Version 10

stdio.h
Standard input/output

“printf” on page 353

Listing 35.35 Example of sprintf() Usage

#include <stdio.h>

int main(void)

{
int 1 = 1;
static char s[] = "CodeWarrior";
char dest[50];

sprintf (dest, "%s is number %d!", s, 1i);
puts (dest) ;

return O;

Output:
CodeWarrior is number 1!

sscanf

Read formatted text into a character string.
#include <stdio.h>

int sscanf (char *s, const char *format,

Table 35.52 sscanf

L)

s char* The string to be scanned
format const char * The format string
Remarks

The sscanf () operates identically to scanf () but reads its input from the
character array pointed to by s instead of stdin. The character array pointed to s

must be null terminated.

For specifications concerning the input control string and conversion
specifications, see “Input Control String and Conversion Specifiers” on page 335.

Also see “Scanset” on page 338, for a full description of the use of scansets.

MSL C Reference Version 10

381

4
A

stdio.h
Standard input/output

scanf () returns the number of items successfully read and converted and returns
EOF if it reaches the end of the string or a conversion specification does not match
its argument.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 301
“fscanf” on page 335

“scanf” on page 370

Listing 35.36 Example of sscanf() Usage

#include <stdio.h>

int main(void)

{
static char in[] = "figs cat pear 394 road 16!";
char s1[20], s2[20], s3[20];
int 1i;
// get the words figs, cat, road,
// and the integer 16
// from in and store them in sl, s2, s3, and i,
// respectively
sscanf (in, "%s %s pear 394 %s %d!", sl, s2, s3, &i);
printf("%$s %s %s %d\n", sl, s2, s3, 1);
return O;
}
Output:

figs cat road 16

tmpfile

Open a temporary file.
#include <stdio.h>

FILE *tmpfile(void);

382 MSL C Reference Version 10

stdio.h
Standard input/output

Remarks

The tmpfile () function creates and opens a binary file that is automatically
removed when it is closed or when the program terminates.

tmpfile () returns a pointer to the FILE variable of the temporary file if it is
successful. If it fails, tmpfile () returns a null pointer (NULL).

This function may not be implemented on all platforms.

See Also

“fopen” on page 317

“tmpnam’ on page 384

Listing 35.37 Example of tmpfile() Usage

#include <stdio.h>
#include <stdlib.h>

int main(void)

{

FILE *f;

// create a new temporary file for output

if ((f = tmpfile()) == NULL) {
printf("Can't open temporary file.\n");
exit (1) ;

}

// output text to the temporary file
fprintf (f, "watch clock timer glue\n");

// close AND DELETE the temporary file
// using fclose()

fclose(f);

return O;

MSL C Reference Version 10 383

y
A

stdio.h
Standard input/output

tmpnam

Creates a unique temporary filename.
#include <stdio.h>

char *tmpnam(char *s);

Table 35.53 tmpnam

s char* A temporary file name

Remarks

The tmpnam () functions creates a valid filename character string that will not
conflict with any existing filename. A program can call the function up to
TMP_MAX times before exhausting the unique filenames tmpnam () generates.
The TMP_MAX macro is defined in stdio.h.

The s argument can either be a null pointer or pointer to a character array. The
character array must be at least I_ tmpnam characters long. The new temporary
filename is placed in this array. The I_ tmpnam macro is defined in stdio.h.

If s is NULL, tmpnam () returns with a pointer to an internal static object that can
be modified by the calling program.

Unlike tmpfile (), a file created using a filename generated by the tmpnam ()
function is not automatically removed when it is closed.

tmpnam () returns a pointer to a character array containing a unique, non-
conflicting filename. If s is a null pointer (NULL), the pointer refers to an internal
static object. If s points to a character array, tmpnam () returns the same pointer.

This function may not be implemented on all platforms.

See Also

“fopen” on page 317

“tmpfile” on page 382

Listing 35.38 Example of tmpnam() Usage

#include <stdio.h>
#include <stdlib.h>

int main(void)

{

384 MSL C Reference Version 10

stdio.h

Standard input/output

FILE *f;
char *tempname;
int c;
// get a unique filename
tempname = tmpnam("tempwerks") ;
// create a new file for output
if ((f = fopen(tempname, "w")) == NULL)

printf("Can't open temporary file %s.\n", tempname) ;

exit (1) ;
}

// output text to the file

fprintf (f, "shoe shirt tie trousers\n");

fprintf (£, "province\n");

// close the file
fclose(f);

// delete the file
remove (tempname) ;

return O;

ungetc

Place a character back into a stream.
#include <stdio.h>

int ungetc(int ¢, FILE *stream);

Table 35.54 ungetc

c int The character to returnto a
file
stream FILE * A pointer to a FILE stream

MSL C Reference Version 10

385

3
4

y
A

stdio.h
Standard input/output

Remarks

The ungetc () function places character ¢ back into stream's buffer. The next
read operation will read the character placed by ungetc (). Only one character

can be pushed back into a buffer until a read operation is performed.

The function's effect is ignored when an fseek (), fsetpos (), or rewind ()

operation is performed.
ungetc () returns c if it is successful and returns EOF if it fails.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 301

3

‘fseek” on page 341
“fsetpos” on page 343

“rewind” on page 368

Listing 35.39 Example of ungetc() Usage

#include <stdio.h>
#include <stdlib.h>

int main(void)

{

FILE *f;
int c;

// create a new file for output and input
if ((f = fopen("myfoo", "w+")) == NULL) {
printf("Can't open myfoo.\n");
exit (1) ;
}

// output text to the file
fprintf (f, "The quick brown fox\n");
fprintf (f, "jumped over the moon.\n");

// move the file position indicator
// to the beginning of the file
rewind (f) ;

printf ("Reading each character twice.\n");

// read a character
while ((¢ = fgetc(f)) != EOF) {

386

MSL C Reference Version 10

stdio.h
Standard input/output

putchar (c) ;

// put the character back into the stream
ungetc(c, f);
c = fgetc(f);// read the same character again
putchar(c) ;

}

fclose(f);

return 0;

Output

Reading each character twice.

TThhee gqguuiicckk bbrroowwnn ffooxx
jjuummppeedd oovveerr tthhee mmoooonn..

viprintf

Write formatted output to a stream.
#include <stdarg.h>
#include <stdio.h>

int vfprintf (FILE *stream, const char *format,va_list arg);

Table 35.55 vfprintf

stream FILE * A pointer to a FILE stream

format const char * The format string

arg va_list The variable argument list
Remarks

The vEprintf () function works identically to the fprintf () function.
Instead of the variable list of arguments that can be passed to fprintf (),
viprintf () accepts its arguments in the array arg of type va_1list which
must have been initialized by the va_start () macro from the stdarg.h
header file. The vfprintf () does not invoke the va_end macro.

MSL C Reference Version 10 387

y
A

stdio.h
Standard input/output

NOTE On embedded/ RTOS systems this function only is implemented for stdin,
stdout and stderr files.

For specifications concerning the output control string and conversion specifiers,
see “Output Control String and Conversion Specifiers” on page 321.

viprintf () returns the number of characters written or EOF if it failed.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 301
“fprintf” on page 320

“printf” on page 353

“Overview of stdarg.h” on page 279

Listing 35.40 Example of vfprintf() Usage

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>

int fpr(FILE *, char *, ...);

int main(void)
{
FILE *f;
static char name[] = "foo";
int a = 56, result;
double x = 483.582;

// create a new file for output

if ((£ = fopen(name, "w")) == NULL) {
printf("Can't open %s.\n", name);
exit (1) ;

}

// format and output a variable number of arguments
// to the file
result = fpr(f, "%10s %4.4f %-10d\n", name, x, a);

// close the file
fclose(f);

return 0;

388 MSL C Reference Version 10

stdio.h

Standard input/output

}
// fpr() formats and outputs a variable
// number of arguments to a stream using
// the vfprintf() function
int fpr(FILE *stream, char *format, ...)
{

va_list args;

int retval;

va_start (args, format); // prepare the arguments

retval = vfprintf (stream, format, args);

// output them

va_end (args) ; // clean the stack
return retval;

Output to file foo:
foo 483.5820 56

viscanf

Read formatted text from a stream.
#include <stdarg.h>
#include <stdio.h>

int vfscanf (FILE *stream, const char *format, va_list arg);

Table 35.56 vfscanf

stream FILE * A pointer to a FILE stream

format const char * The format string

arg va_list The variable argument list
Remarks

The vfscantf() function works identically to the fscanf() function. Instead of the
variable list of arguments that can be passed to fscanf(), vfscanf() accepts its
arguments in the array arg of type va_list, which must have been initialized by the

MSL C Reference Version 10 389

y
A

stdio.h
Standard input/output

va_start() macro from the stdarg.h header file. The vfscanf() does not invoke the
va_end macro.

On embedded/ RTOS systems this function only is implemented for stdin, stdout
and stderr files.

For specifications concerning the output control string and conversion specifiers,
see Table 35.35, Table 35.36, Table 35.37, and Table 35.38.

vfscanf() returns the number of items assigned, which can be fewer than provided
for in the case of an early matching failure. If an input failure occurs before any
conversion, vfscanf() returns EOF.

This function may not be implemented on all platforms.

See Also

“scanf” on page 370
“fscanf” on page 335

Listing 35.41 Example of vfscanf() Usage

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>

int fsc(FILE *, char *, ...);

int main(void)
{
FILE *f;
int 1i;
double x;
char c;
int numassigned;
// create a new file for output and input

if ((£ = fopen("foobar", "w+")) == NULL) {
printf("Can't create new file.\n");

exit (1) ;

}

// output formatted text to the file
fprintf (£, "%d\n%f\n%c\n", 45, 983.3923, 'M');
// go to the beginning of the file

rewind (f) ;

// read from the stream using fscanf ()

numassigned = fsc(f, "%d %$1f %c", &i, &x, &c);
// close the file
fclose(f);

printf ("The number of asssignments is %d.\n", numassigned) ;

390 MSL C Reference Version 10

stdio.h

Standard input/output
printf ("The integer read is %d.\n", 1);
printf ("The floating point value is %f.\n", x);
printf ("The character is %c.\n", c);
return 0;
}
// fsc() scans an input stream and inputs
// a variable number of arguments using
// the vfscanf () function
int fsc(FILE *stream, char *format, ...)
{
va_list args;
int retval;
va_start (args, format); // prepare the arguments
retval = viscanf (stream, format, args);
va_end (args) ; // clean the stack
return retval;
}
Output:
The number of asssignments is 3.
The integer read is 45.
The floating point value is 983.392300.
The character is M.
vprintf
Write formatted output to stdout.
#include <stdio.h>
int vprintf (const char *format, va_list arg);
Table 35.57 vprintf
format const char * The format string
arg va_list A variable argument list

Remarks

The vprintf () function works identically to the printf () function. Instead
of the variable list of arguments that can be passed to printf (), vprintf ()

MSL C Reference Version 10 391

y
A

stdio.h
Standard input/output

accepts its arguments in the array of type va_1ist processed by the
va_start () macro from the stdarg.h header file.

For specifications concerning the output control string and conversion specifiers,
see “Output Control String and Conversion Specifiers” on page 321.

vprintf () returns the number of characters written or a negative value if it
failed.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 301
“fprintf” on page 320

“printf” on page 353

“Overview of stdarg.h” on page 279

Listing 35.42 Example of vprintf() Usage

#include <stdio.h>
#include <stdarg.h>

int pr(char *, ...);

int main(void)

{
int a = 56;
double f = 483.582;
static char s[] = "Valerie";
// output a variable number of arguments to stdout
pr("%$1l5s %$4.4f %-10d*\n", s, £, a);
return O;
}
// pr() formats and outputs a variable number of arguments
// to stdout using the vprintf() function
int pr(char *format, ...)
{
va_list args;
int retval;
va_start (args, format); // prepare the arguments
retval = vprintf (format, args);
va_end (args) ; // clean the stack
return retval;
392 MSL C Reference Version 10

stdio.h
Standard input/output

Output:
Valerie 483.5820 56

vsnprintf

Format a character string array.

#include <stdarg.h>

#include <stdio.h>

int vsnprintf (char * s, size_t n,

const char * format, va_list arg);

Table 35.58 vsnprintf

s char * A string to write to
n size_t Max number of chars to be
written to s
format const char * The format string
arg va_list A variable argument list
Remarks
The vsnprintf () function works identically to snprintf (), except that

the variable list of arguments that can be passed to snprintf () isreplaced by
an array arg of type va_list, which must have been initialized by the
va_start () macro fromthe stdarg.h header file. The vsnprintf ()
does not invoke the va_end macro. If n is zero nothing is written; otherwise,
any characters beyond the n-1st are discarded rather than being written to the
array and a null character is appended at the end.

For specifications concerning the output control string and conversion specifiers,
see “Output Control String and Conversion Specifiers” on page 321.

Vsnprintf () returns the number of characters that would have been assigned
to s, had n been sufficiently large, not including the null character or a negative
value if an encoding error occurred. Thus, the null-terminated output will have

MSL C Reference Version 10 393

4
A

stdio.h
Standard input/output

been completely written if and only if the returned value is nonnegative and less
than n.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 301
“printf” on page 353

“sprintf” on page 380
“Overview of stdarg.h” on page 279

Listing 35.43 Example of vsnprintf() Usage

#include <stdarg.h>
#include <stdio.h>

int sp(char *, size_t, char *, ...);

int main()

{
int 1 = 1;
static char s[] = "Isabelle";
char dest[50];
int retval;
retval = sp(dest, 5, "%s is number %d!", s, 1i);
printf("n too small, dest = [%s retval = %i\n", dest, retval);
retval = sp(dest, retval, "%s is number %d!", s, 1);
printf("n right size, dest = |%s]|, retval = %i\n", dest, retval);
return O;
}
// sp() formats and outputs a variable number of arguments
// to a character string using the vsnprintf () function
int sp(char * s, size_t n, char *format,...)
{

va_list args;
int retval;

va_start (args, format); // prepare the arguments
retval = vsnprintf(s, n, format, args);
va_end (args) ; // clean the stack

return retval;

394 MSL C Reference Version 10

stdio.h
Standard input/output

Output:

n too small, dest = |Isab|, retval = 21

n right size, dest = |Isabelle is number 1|, retval = 21
vsprintf

Write formatted output to a string.
#include <stdio.h>
int vsprintf (char *s,

const char *format, va_list arg);

Table 35.59 vsprintf

s char* A string to write to

format const char * The format string

arg va_list A variable argument list
Remarks

The vsprintf () function works identically to the sprintf () function.
Instead of the variable list of arguments that can be passed to sprintf (),
vsprintf () accepts its arguments in the array of type va_1list processed by
the va_start () macro from the stdarg.h header file.

For specifications concerning the output control string and conversion specifiers,
see “Output Control String and Conversion Specifiers” on page 321.

vsprintf () returns the number of characters written to s not counting the
terminating null character. Otherwise, EOF on failure.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 301
“printf” on page 353

“sprintf” on page 380
“Overview of stdarg.h” on page 279

MSL C Reference Version 10 395

4
A

stdio.h
Standard input/output

Listing 35.44 Example of vsprintf() Usage

#include <stdio.h>
#include <stdarg.h>

int spr(char *, char *, ...);

int main(void)

{
int a = 56;
double x = 1.003;
static char name[] = "Charlie";
char s[50];
// format and send a variable number of arguments
// to character array s
spr(s, "%10s\n %f\n %-10d\n", name, x, a);
puts(s);
return 0;
}
// spr() formats and sends a variable number of

// arguments to a character array using the sprintf ()
// function
int spr(char *s, char *format, ...)

{
va_list args;
int retval;
va_start (args, format); // prepare the arguments
retval = vsprintf (s, format, args);
va_end (args) ; // clean the stack
return retval;
}
Output:
Charlie
1.003000
56

396 MSL C Reference Version 10

stdio.h

Standard input/output
vsscanf
Read formatted text from a character string.
#include <stdarg.h>
#include <stdio.h>
int vsscanf (const char * s,
const char * format, va_list arg);
Table 35.60 vsscanf
char* The character string to be
scanned
format char* The format string
va_list The variable argument list

Remarks

The vsscantf () function works identically to the sscanf () function.
Instead of the variable list of arguments that can be passed to sscanf (),
vsscanf () accepts its arguments in the array arg of type va_list, which
must have been initialized by the va_start () macro from the stdarg.h
header file. The vEscanf () does not invoke the va_end macro.

On embedded/ RTOS systems this function only is implemented for stdin, stdout
and stderr files.

For specifications concerning the output control string and conversion specifiers,
see Table 35.35, Table 35.36, Table 35.37, Table 35.38.

vfscanf() returns the number of items assigned, which can be fewer than provided
for in the case of an early matching failure. If an input failure occurs before any
conversion, vfscanf() returns EOF.

This function may not be implemented on all platforms.

See Also

“scanf” on page 370
“fscanf” on page 335

MSL C Reference Version 10 397

4
A

stdio.h
Standard input/output

Listing 35.45 Example of Vsscanf() Usage

#include <stdio.h>
#include <stdarg.h>

int ssc(char *, char *, ...);

int main(void)

{
static char in[] = "figs cat pear 394 road 16!";
char s1[20], s2[20], s3[20];
int 1i;
// get the words figs, cat, road,
// and the integer 16
// from in and store them in sl1, s2, s3, and i,
// respectively
ssc(in, "%s %s pear 394 %s %d!", sl, s2, s3, &i);
printf("%$s %s %s %d\n", sl, s2, s3, 1);
return O;

}

// ssc() scans a character string and inputs

// a variable number of arguments using

// the vsscanf () function

int ssc(char * s, char *format, ...)

{
va_list args;
int retval;
va_start (args, format); // prepare the arguments
retval = vsscanf (s, format, args);
va_end (args) ; // clean the stack
return retval;

}

Output:

figs cat road 16

398 MSL C Reference Version 10

stdio.h
Standard input/output

_wfopen

Open a file as a stream with a wide character file name.
#include <stdio.h>

FILE *_wfopen(const wchar_t *wfilename, const wchar_t
*wmode) ;

Table 35.61 _wfopen

wfilename const wchar_t * The wide character
filename of the file to open

wmode const wchar_t * The wide character file
opening mode

Remarks

The _wfopen () function is a wide character implementation of “fopen” on
page 317

This function may not be implemented on all platforms.

See Also

“freopen” on page 333

“fopen” on page 317

_wfreopen

Re-direct a stream to another file as a wide character version.
#include <stdio.h>
FILE *_wfreopen(const wchar_t *wfilename,

const wchar_t *wmode, FILE *stream) ;

MSL C Reference Version 10 399

'
A

stdio.h
Standard input/output

Table 35.62 _wfreopen

wfilename const wchar_t * The wide character name
of the file to re-open

wmode const wchar_t * The wide character file
opening mode

stream FILE * A pointer to a FILE stream

Remarks

The _wfreopen () function is a wide character implementation of “freopen” on
page 333

This function may not be implemented on all platforms.

See Also

“freopen” on page 333

«

wfopen” on page 399

_wremove

Delete a file.
#include <stdio.h>

int _wremove (const wchar_t *wfilename);

Table 35.63 _wremove

wfilename const wchar_t * The name of the wide
character file to be deleted

Remarks

The _fremove () function is a wide character variation of ‘“remove” on page 366

This function may not be implemented on all platforms.

See Also

“remove’” on page 366

400 MSL C Reference Version 10

stdio.h
Standard input/output

_wrename

Change the name of a file.
#include <stdio.h>

int _wrename (const char *wold, const wchar_t *wnew) ;

Table 35.64 _wrename

wold const wchar_t * The old wide character file
name
wnew const wchar_t * The new wide character
file name
Remarks

1

The _wrename () function implements a wide character variation of “rename’
on page 367.
This function may not be implemented on all platforms.

See Also
“rename” on page 367
*_wtmpnam”
_wtmpnam

Create a unique temporary filename wide character variant.
#include <stdio.h>

wchar_t *_wtmpnam(wchar_t *ws) ;

Table 35.65 _wtmpnam

ws wchar_t * A temporary wide
character file name

MSL C Reference Version 10 401

A 4
4\

stdio.h
Standard input/output

Remarks

The _wtmpnam () functions creates a valid filename wide character string that

will not conflict with any existing filename. It is implemented for a wide character
array in the same manner as “tmpnam” on page 384

This function may not be implemented on all platforms.

See Also

“fopen” on page 317

“tmpfile” on page 382

402 MSL C Reference Version 10

g |

36

stdlib.h

The stdlib.h header file provides groups of closely related functions for string
conversion, pseudo-random number generation, memory management, environment
communication, searching and sorting, multibyte character conversion, and integer
arithmetic.

Overview of stdlib.h

The stdlib.h header file provides groups of closely related functions as follows:

“String Conversion Functions” on page 403

3

‘Pseudo-random Number Generation Functions” on page 404

3

‘Memory Management Functions” on page 404

¢

“Environment Communication Functions” on page 404

3

“Searching And Sorting Functions” on page 404

3

‘Multibyte Conversion Functions” on page 405

3

‘Integer Arithmetic Functions” on page 405

String Conversion Functions

The string conversion functions are as follows:

“atof” on page 410
“atoi” on page 411
“atol” on page 412

3

‘atoll” on page 412
“strtod” on page 435

“strtof” on page 437

“strtol” on page 438

“strtold” on page 441

“strtoul” on page 443

“strtoull” on page 444

MSL C Reference Version 10 403

A 4
4\

stdlib.h
Overview of stdlib.h

Pseudo-random Number Generation
Functions
The pseudo-random number generation functions are

e “rand” on page 432

e “rand r” on page 433

e ‘“srand” on page 435

Memory Management Functions

The memory management functions are

e “calloc” on page 417

3

e “free” on page 422

¢ “malloc” on page 427

e ‘“realloc” on page 434

e “vec_calloc” on page 446

e ‘“vec_free” on page 447

¢ “yec_malloc” on page 448

e ‘“vec_realloc” on page 448

Environment Communication Functions

The environment communication functions are

e “abort” on page 405

e “atexit” on page 408

e “exit” on page 420
e “ Exit” on page 422

e “getenv” on page 423

13

e “ putenv” on page 430

e ‘“‘system’ on page 446

Searching And Sorting Functions

The searching and sorting functions are

¢ “bsearch” on page 413

e “gsort” on page 431

404 MSL C Reference Version 10

stdlib.h
Overview of stdlib.h

Multibyte Conversion Functions

The multibyte conversion functions convert UTF -8 multibyte characters to wchar_t
type characters (defined in stddef . h). The functions are

* “mblen” on page 428

* “mbstowcs” on page 428

¢ “mbtowc” on page 429

¢ “wcstombs” on page 449

¢ “wctomb” on page 450

Integer Arithmetic Functions

The integer arithmetic functions are

e “abs” on page 406
e “div” on page 419
¢ “labs” on page 424
¢ “llabs” on page 425
¢ “ldiv” on page 425

Many of the stdlib.h functions use the size_t type as well as the NULL and
MB_CUR_MAX macros, which are defined in stdlib.h. The macro MB_CUR_MAX
defines the maximum number of bytes in a single multibyte character.

abort

Abnormal program termination.
#include <stdlib.h>

void abort (void)

Remarks

The abort () function raises the STGABRT signal and quits the program to return
to the operating system.

The abort () function will not terminate the program if a programmer-installed
signal handler uses longjmp () instead of returning normally.

This function may not be implemented on all platforms.

MSL C Reference Version 10 405

4
A

stdlib.h
Overview of stdlib.h

See Also

“assert” on page 27
“longjmp” on page 244

“raise” on page 253
“signal” on page 251
“atexit” on page 408

“exit” on page 420

Listing 36.1 Example of abort() Usage

#include <stdlib.h>
#include <stdio.h>

int main(void)

{
char c;
printf ("Aborting the program.\n");
printf ("Press return.\n");
// wait for the return key to be pressed
c = getchar();
// abort the program
abort () ;
return 0;
}
Output:

Aborting the program.
Press return.

abs

Compute the absolute value of an integer.
#include <stdlib.h>

int abs(int 1);

406 MSL C Reference Version 10

stdlib.h
Overview of stdlib.h

Table 36.1 abs

i int The value being computed

abs () returns the absolute value of its argument. Note that the two's complement
representation of the smallest negative number has no matching absolute integer
representation.

This function may not be implemented on all platforms.

See Also

3

‘fabs” on page 188
“labs” on page 424

Listing 36.2 Example of abs() Usage

#include <stdlib.h>
#include <stdio.h>

int main(void)

{
int 1 = -20;
long int j = -48323;
long long k = -9223372036854773307;
printf ("Absolute value of %d is %d.\n", i, abs(i));
printf ("Absolute value of %1d is %1d.\n", j, labs(3));
printf ("Absolute value of %11d is %11d.\n", k, llabs(k));
return 0;

}

Output:

Absolute value of -20 is 20.
Absolute value of -48323 is 48323.
Absolute value of -9223372036854773307 is 9223372036854773307.

MSL C Reference Version 10 407

y
A

stdlib.h

Overview of stdlib.h

atexit

Install a function to be executed at a program's exit.

#include <stdlib.h>

int atexit (void

Table 36.2 atexit

(*func) (void)) ;

func

void *

The function to execute at
exit

Remarks

The atexit () function adds the function pointed to by func to a list. When
exit () is called, each function on the list is called in the reverse order in which
they were installed with atexit (). After all the functions on the list have been

called, exit () terminates the program.

The stdio.h library, for example, installs its own exit function using
atexit (). This function flushes all buffers and closes all open streams.

atexit () returns a zero when it succeeds in installing a new exit function and

returns a nonzero value when it fails.

This function may not be implemented on all platforms.

See Also

“exit” on page 420

Listing 36.3 Example of atexit() Usage

#include <stdlib.h>
#include <stdio.h>

// Prototypes

void first(void);
void second(void) ;
void third(void) ;

int main(void)

{

atexit (first) ;
atexit (second) ;
atexit (third) ;

408

MSL C Reference Version 10

g |

stdlib.h
Overview of stdlib.h

printf ("exiting program\n\n") ;

return O;

}

void first (void)
{

int c;

printf ("First exit function.\n");
printf ("Press return.\n");
// wait for the return key to be pressed

c = getchar();

}

void second(void)

{

int c;

printf ("Second exit function.\n");
printf ("Press return.\n");

c = getchar();

}

void third(void)

{
int c;
printf ("Third exit function.\n");
printf ("Press return.\n");
c = getchar();
}
Output:

Third exit function.
Press return.

Second exit function.
Press return.

First exit function.
Press return.

MSL C Reference Version 10

409

y
A

stdlib.h
Overview of stdlib.h

atof

Convert a character string to a numeric value of type double.
#include <stdlib.h>

double atof (const char *nptr);

Table 36.3 atof

nptr const char * The character being
converted

Remarks

The atof () function converts the character array pointed to by nptr to a
floating point value of type double. Except for its behavior on error, this function
is the equivalent of the call strtod (nptr, NULL) ;

This function sets the global variable errno to ERANGE if the converted value
cannot be expressed as a floating point value of type double.

atof () returns a floating point value of type double.

This function may not be implemented on all platforms.

See Also
“atoi” on page 411
“atol” on page 412

“errno” on page 75
“strtod” on page 435

“scanf” on page 370

Listing 36.4 Example of atof(), atoi(), atol() Usage

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
int 1i;
long int j;
float f;
static char si[] = "-493", sli[] = "63870";

410 MSL C Reference Version 10

stdlib.h
Overview of stdlib.h

static char sf[] = "1823.4034";
f = atof(sf);
i = atoi(si);
j = atol(sli);

printf ("%f

return O;

%d %ld\n", £, i, 3J);

Output:

1823.403400 -493 63870

atoi

Convert a character string to a value of type int.

#include <stdlib.h>

int atoi(const char *nptr);

Table 36.4 atoi

nptr

const char *

The string to be converted

Remarks

The atoi () function converts the character array pointed to by nptr to an
integer value. Except for its behavior on error, this function is the equivalent of the

call (int)strtol (nptr, (char **)NULL,

10);

This function sets the global variable errno to ERANGE if the converted value

cannot be expressed as a value of type int.

atoi () returns an integer value of type int.

This function may not be implemented on all platforms.

See Also

3

‘atof” on page 410
“atol” on page 412
“errno” on page 75

MSL C Reference Version 10

411

y
A

stdlib.h
Overview of stdlib.h

“strtol” on page 438

“scanf” on page 370

atol

Convert a character string to a value of type long.
#include <stdlib.h>

long int atol (const char *nptr);

Table 36.5 atol

nptr const char * The string to be converted

Remarks

The atol () function converts the character array pointed to by nptr to an
integer of type long int. Except for its behavior on error, this function is the
equivalent of the call strtol (nptr, (char **)NULL, 10);

This function sets the global variable errno to ERANGE if the converted value
cannot be expressed as a value of type long int.

atol () returns an integer value of type long int.

This function may not be implemented on all platforms.

See Also

3

‘atof” on page 410
“atoi” on page 411
“errno” on page 75

“strtol” on page 438

“scanf” on page 370

atoll

Convert a character string to a value of type long long.
#include <stdlib.h>

long long atoll (const char *nptr);

412 MSL C Reference Version 10

stdlib.h
Overview of stdlib.h

Table 36.6 atoll

nptr const char * The string to be converted

Remarks

The atoll () function converts the character array pointed to by nptr to an
integer of type long long. Except for its behavior on error, this function is the
equivalent of the call strtoll (nptr, (char **)NULL, 10);

This function sets the global variable errno to ERANGE if the converted value
cannot be expressed as a value of type long int.

atoll () returns an integer value of type long long.

This function may not be implemented on all platforms.

See Also

3

‘atof” on page 410
“atoi” on page 411

bsearch
This function uses the binary search algorithm to make an efficient search of a sorted array
for an item.
#include <stdlib.h>
void *bsearch(const void *key, const void *base,
size_t num, size t size,

int (*compare) (const void *, const void *))

Table 36.7 bsearch

key const void * Search criteria see
remarks
base const void * The array to be searched

see remarks

num size_t Number of elements see
remarks

MSL C Reference Version 10 413

y
A

stdlib.h
Overview of stdlib.h

Table 36.7 bsearch (continued)

size_t Size of an array element
see remarks

compare const void * A pointer to a function

used for comparison see
remarks

Remarks

The key argument points to the item you want to search for.

The base argument points to the first byte of the array to be searched. This array
must already be sorted in ascending order. This order is based on the comparison
requirements of the function pointed to by the compare argument.

The num argument specifies the number of array elements to search.
The size argument specifies the size of an array element.

The compare argument is a pointer to a programmer-supplied function that is used
to compare two elements of the array. That compare function takes two array
element pointers as arguments. The first argument is the key that was passed to
bsearch() as the first argument to bsearch (). The second argument is a
pointer to an element of the array passed as the second argument to bsearch ().

For explanation, we will call the arguments search_key and array_element. The
compare function compares the search_key to the array element. If the search_key
and the array_element are equal, the function will return zero. If the search_key is
less than the array_element, the function will return a negative value. If the
search_key is greater than the array_element, the function will return a positive
value.

bsearch () returns a pointer to the element in the array matching the item
pointed to by key. If no match was found, bsearch () returns a null pointer
(NULL).

This function may not be implemented on all platforms.

See Also

“gsort” on page 431

Listing 36.5 Example of bsearch Usage

// A simple telephone directory manager

// This program accepts a list of names and
// telephone numbers, sorts the list, then
// searches for specified names.

414

MSL C Reference Version 10

stdlib.h
Overview of stdlib.h

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

// Maximum number of records in the directory.

#define MAXDIR 40

typedef struct

{

lname[15];
char fname[1l5];
char phone[1l5];

} DIRENTRY;

char

int comp (const DIRENTRY *,
DIRENTRY *look(char *);
DIRENTRY directory[MAXDIR];
int reccount;

int main(void)

{
DIRENTRY *ptr;
int lastlen;
char lookstr[15];

// keyfield--see comp() function

// telephone directory record

const DIRENTRY *);

7

// the directory itself
// the number of records entered

printf ("Telephone directory program.\n") ;
printf ("Enter blank last name when done.\n");

reccount = 0;
ptr = directory;
do {

printf ("\nLast name:
gets (ptr->1lname) ;
printf ("First name:
gets (ptr->fname) ;
printf ("Phone number:
gets (ptr->phone) ;

")

")

")

if ((lastlen = strlen(ptr->lname)) > 0) {
reccount++;
ptr++;
}
} while ((lastlen > 0) && (reccount < MAXDIR));
printf ("Thank you. Now sorting. A\n") ;
// sort the array using gsort ()
gsort (directory, reccount,

MSL C Reference Version 10

415

wr
4\

stdlib.h
Overview of stdlib.h

sizeof (directory([0]), (void *)comp) ;

printf ("Enter last name to search for,\n");
printf ("blank to quit.\n");

printf ("\nLast name: ");

gets (lookstr) ;

while ((lastlen = strlen(lookstr)) > 0) {
ptr = look(lookstr);
if (ptr != NULL)

printf("%s, %s: %$s\n",

ptr->1lname,
ptr->fname,
ptr->phone) ;

else printf("Can't find %s.\n", lookstr);

printf ("\nLast name: ");

gets (lookstr) ;

}

printf ("Done.\n") ;

return 0;

}

int comp (const DIRENTRY *recl, const DIRENTRY *rec2)
{

return (strcmp((char *)recl->lname,
(char *)rec2->1name)) ;

}

// search through the array using bsearch()
DIRENTRY *look(char kI[1])

{
return (DIRENTRY *) bsearch(k, directory, reccount,
sizeof (directory[0]), (void *)comp) ;
}
Output

Telephone directory program.
Enter blank last name when done.

Last name: Mation
First name: Infor
Phone number: 555-1212

Last name: Bell
First name: Alexander

416 MSL C Reference Version 10

stdlib.h
Overview of stdlib.h

Phone number: 555-1111
Last name: Johnson
First name: Betty
Phone number: 555-1010

Last name:

First name:

Phone number:

Thank you. Now sorting.

Enter last name to search for,
blank to quit.

Mation
555-1212

Last name:
Infor, Mation:

Johnson
555-1010

Last name:
Johnson, Betty:

Last name:
Done.

calloc

Allocate space for a group of objects.
#include <stdlib.h>

void *calloc(size_t nmemb,

Table 36.8 calloc

size_t elemsize);

nmemb size_t Number of elements
elemsize size_t The size of the elements
Remarks

The calloc () function allocates contiguous space for nmemb elements of size
elemsize. The space is initialized with all bits zero.

calloc () returns a pointer to the first byte of the memory area allocated.
calloc () returns a null pointer (NULL) if no space could be allocated.

This function may not be implemented on all platforms.

MSL C Reference Version 10

417

4
A

stdlib.h
Overview of stdlib.h

See Also

“vec_calloc” on page 446

“malloc” on page 427

“realloc” on page 434

Listing 36.6 Example of calloc() Usage

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(void)

{
static char s[] = "CodeWarrior compilers";
char *sptrl, *sptr2, *sptr3;
// allocate the memory three different ways
// one: allocate a thirty byte block of
// uninitialized memory
sptrl = (char *) malloc(30);
strcpy (sptrl, s);
printf ("Address of sptrl: %p\n", sptrl);
// two: allocate twenty bytes of unitialized memory
sptr2 = (char *) malloc(20);
printf ("sptr2 before reallocation: %p\n", sptr2);
strcpy (sptr2, s);
// now re-allocate ten extra bytes (for a total of
// thirty bytes)
//
// note that the memory block pointed to by sptr2 is
// still contiguous after the call to realloc()
sptr2 = (char *) realloc(sptr2, 30);
printf ("sptr2 after reallocation: %p\n", sptr2);
// three: allocate thirty bytes of initialized memory
sptr3 = (char *) calloc(strlen(s), sizeof(char));
strcpy (sptr3, s);
printf ("Address of sptr3: %p\n", sptr3);
puts (sptrl) ;
puts (sptr2) ;
puts (sptr3) ;
// release the allocated memory to the heap
free(sptrl) ;
418 MSL C Reference Version 10

stdlib.h

Overview of stdlib.h

free(sptr2);
free(sptr3);

return 0;

Output:

Address of sptrl: 5e5432

sptr2 before reallocation: 5e5452
sptr2 after reallocation: 5e5468
Address of sptr3: 5e5488
CodeWarrior compilers
CodeWarrior compilers
CodeWarrior compilers

div
Compute the integer quotient and remainder.
#include <stdlib.h>
div_t div(int numer, int denom) ;
Table 36.9 div
numer int The numerator
denom int The denominator
Remarks

The div_t type is defined in stdlib.h as

typedef struct { int quot,rem;

div () divides denom into numer and returns the quotient and remainder as a div_t

type.

This function may not be implemented on all platforms.

See Also

“fmod” on page 191

“1div”” on page 425

3

‘div_t” on page 73

MSL C Reference Version 10

419

y
A

stdlib.h
Overview of stdlib.h

Listing 36.7 Example of div() Usage

#include <stdlib.h>
#include <stdio.h>

int main(void)

{
div_t result;
1div_t lresult;
int 4 = 10, n = 103;
long int 14 = 1000L, 1n = 1000005L;
result = div(n, 4d);
lresult = 1div(1ln, 14d);
printf("%d / %d has a quotient of %d\n",
n, d, result.quot);
printf ("and a remainder of %d\n", result.rem);
printf("%$1d / %1d has a quotient of %1d\n",
1n, 1d, lresult.quot);
printf("and a remainder of %1d\n", lresult.rem);
return O;
}
Output:

103 / 10 has a quotient of 10

and a remainder of 3

1000005 / 1000 has a quotient of 1000
and a remainder of 5

exit

Terminate a program normally.
#include <stdlib.h>

void exit (int status);

Table 36.10 exit

status int The exit error value

420 MSL C Reference Version 10

stdlib.h
Overview of stdlib.h

Remarks

The exit () function calls every function installed with atexit () in the
reverse order of their installation, flushes the buffers and closes all open streams,
then calls the Toolbox system call ExitToShell ().

exit () does not return any value to the operating system. The status
argument is kept to conform to the ANSI C Standard Library specification.

This function may not be implemented on all platforms.

See Also

“abort” on page 405

“atexit” on page 408

Listing 36.8 Example of exit() Usage

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
FILE *f;
int count;

// create a new file for output exit on failure

if ((£ = fopen("foofoo", "w")) == NULL) {
printf("Can't create file.\n");
exit (1) ;

}

// output numbers 0 to 9
for (count = 0; count < 10; count++)
fprintf (£, "%5d", count);

// close the file
fclose(f);

return 0;

MSL C Reference Version 10 421

'
A

stdlib.h
Overview of stdlib.h

_ Exit

The _Exit function causes normal program termination
#include <stdlib.h>

void _Exit (int status);

Table 36.11 _Exit

status int exit status

Remarks

This function can not return but a status value is passed back to the calling host in
the same manner as in the function “exit” on page 420.

The effects on open buffers is implementation defined.

This function may not be implemented on all platforms.

See Also

“abort’” on page 405

“atexit” on page 408

For example usage of exit(). see Listing 36.8.

free

Release previously allocated memory to heap.
#include <stdlib.h>

void free(void *ptr);

Table 36.12 free

ptr void * A pointer to the allocated
memory

Remarks

The free () function releases a previously allocated memory block, pointed to by
ptr, to the heap. The ptr argument should hold an address returned by the

422 MSL C Reference Version 10

stdlib.h
Overview of stdlib.h

memory allocation functions calloc (), malloc (), or realloc (). Once the
memory block pointed to by ptr has been released, it is no longer valid. The
ptr variable should not be used to reference memory again until it is assigned a
value from the memory allocation functions. For example usage, see Listing 36.6.

This function may not be implemented on all platforms.

See Also

“vec_free” on page 447

“calloc” on page 417

“malloc” on page 427

“realloc” on page 434

getenv

Environment list access.

#include <stdlib.h>

char

*getenv (char *name) ;

Table 36.13 getenv

name

char * A buffer for the
environment list

Remarks

For Macintosh systems, the getenv () is an empty function that always returns a
null pointer (NULL). It is included in the CodeWarrior std1lib.h header file to
conform to the ANSI C Standard Library specification.

getenv () returns NULL for the Mac. For Windows, getenv () returns zero
on failure or the environmental variable.

This function may not be implemented on all platforms.

See Also

“system” on page 446

Listing 36.9 Example of getenv() Usage

#include <stdio

.h>

MSL C Reference Version 10 423

y
A

stdlib.h
Overview of stdlib.h

#include <stdlib.h>

int main(void)

{
char *value;
char *var = "path";
if((value = getenv(var)) == NULL)
{ printf("%s is not a environmental variable", wvar);}
else
{ printf("%s = %s \n", var, value);}
return 0;
}
Result:

path = c:\program files\Freescale\codewarrior;c:\WINNT\system32

labs

Compute long integer absolute value.
#include <stdlib.h>
long int labs(long int 3J);

Table 36.14 labs

i long int

The variable to be
computed

Remarks

labs () returns the absolute value of its argument as a value of type long int

For example usage, see Listing 36.2.

This function may not be implemented on all platforms.

See Also

3

‘fabs” on page 188
“abs” on page 406

424

MSL C Reference Version 10

stdlib.h

Overview of stdlib.h

Idiv

Compute the long integer quotient and remainder.

#include <stdlib.h>

ldiv_t 1ldiv(long int numer,

Table 36.15 Idiv

long int denom) ;

numer long int The numerator
denom long int The denominator
Remarks

The 1div_t typeis defined in stdlib.h as

typedef struct {
long int quot,

} ldiv_t;

rem;

1div () divides denom into numer and returns the quotient and remainder as an
1div_t type. For example usage, see Listing 36.7.

This function may not be implemented on all platforms.

See Also

“fmod” on page 191

3

3

‘div”’ on page 41

‘Idiv_t” on page 7

“lidiv_t” on page 74

llabs

Compute long long integer absolute value.

#include <stdlib.h>

long long llabs(long long j);

MSL C Reference Version 10

425

'
A

stdlib.h
Overview of stdlib.h

Table 36.16 llabs

i long long The variable to be
computed

Remarks
1llabs () returns the absolute value of its argument as a value of type long

long. For example usage, see Listing 36.2.

This function may not be implemented on all platforms.

See Also

3

‘fabs” on page 188

3

‘abs” on page 406

lidiv

Compute the long long integer quotient and remainder.
#include <stdlib.h>

ldiv_t 1ldiv(long long numer, long long denom) ;

Table 36.17 Idiv

numer long long The numerator
denom long long The denominator
Remarks

The 11div_t type is defined in <div_t .h> as
typedef struct {

long long quot, rem;
} lldiv_t;

11div () divides denom into numer and returns the quotient and remainder as an
11div_t type.

This function may not be implemented on all platforms.

426 MSL C Reference Version 10

stdlib.h
Overview of stdlib.h

See Also

“Idiv” on page 425
“fmod” on page 191

“lidiv_t” on page 74

malloc

Allocate a block of heap memory.
#include <stdlib.h>

void *malloc(size_t size);

Table 36.18 malloc

size size_t

The size in bytes of the
allocation

Remarks

The malloc () function allocates a block of contiguous heap memory size
bytes large. If the argument for malloc () is zero, the behavior is unspecified.
Dependent upon the system, either a null pointer is returned, or the behavior is as if
the size was not zero, except that the returned pointer can not be used to access an

object. For example usage, see Listing 36.6.

malloc () returns a pointer to the first byte of the allocated block if it is

successful and return a null pointer if it fails.

This function may not be implemented on all platforms.

See Also

“vec_malloc” on page 448
“calloc” on page 417

3

‘free” on page 422
“realloc” on page 434

MSL C Reference Version 10

427

y
A

stdlib.h
Overview of stdlib.h

mblen

Compute the length of an encoded multibyte character, encoded as defined by the
LC_CTYPE category of the current locale.
#include <stdlib.h>

int mblen(const char *s, size_t n);

Table 36.19 mblen

s const char * The multibyte array to
measure
n size_t The maximum size
Remarks

The mblen () function returns the length of the multibyte character pointed to by
s. It examines a maximum of n characters.

If s is a null pointer, the mblen function returns a nonzero or zero value
signifying whether multibyte encoding do or do not have state-dependent
encoding. If s is not a null pointer, the mblen function either returns O (if s
points to the null character), or returns the number of bytes that are contained in
the multibyte.

This function may not be implemented on all platforms.

See Also

“Locale Specification” on page 165

“mbtowc” on page 429

mbstowcs

Convert a multibyte character array encoded as defined by the LC_CTYPE category of
the current locale to a wchar_t array.

#include <stddlib.h>
size_t mbstowcs (wchar_t *pwcs,

const char *s, size_t n);

428 MSL C Reference Version 10

stdlib.h

Overview of stdlib.h
Table 36.20 mbstowcs

pwcs wchar_t * The wide character
destination

s const char *s The multibyte string to
convert

n size_t The maximum wide
characters to convert

Remarks

The MSL C implementation of mbstowcs () converts a sequence of multibyte
characters encoded as defined by the LC_CTYPE category of the current locale
from the character array pointed to by s and stores not more than n of the
corresponding Unicode characters into the wide character array pointed to by
pwcs. No multibyte characters that follow a null character (which is converted
into a null wide character) will be examined or converted.

If an invalidly encoded character is encountered, mbstowcs () returns the value
(size_t) (-1) . Otherwise mbstowcs returns the number of elements of the
array pointed to by pwcs modified, not including any terminating null wide
character.

This function may not be implemented on all platforms.

See Also

“Locale Specification” on page 165

“wcstombs” on page 449

mbtowc
Translate a multibyte character, encoded as defined by the LC_CTYPE category of the
current locale, to a wchar_t type.
#include <stdlib.h>

int mbtowc (wchar_t *pwc, const char *s, size_t n);

MSL C Reference Version 10 429

y
A

stdlib.h
Overview of stdlib.h

Table 36.21 mbtowc

pwc wchar_t * The wide character
destination

s const char *s The string to convert

n size_t The maximum wide
characters to convert

Remarks

If sisnotanull pointer, the mbtowc () function examines at most n bytes
starting with the byte pointed to by s to determine whether the next multibyte
character is a complete and valid encoding of a Unicode character encoded as
defined by the LC_CTYPE category of the current locale. If so, and pwc is not a
null pointer, it converts the multibyte character, pointed to by s, to a
character of type wchar_ t, pointed to by pwc.

mbtowc () returns -1 if n is zero and s is not a null pointer or if s points to an
incomplete or invalid multibyte encoding.

mbtowc () returns O if s is a null pointer or s points to a null character (' \0 ') .

mbtowc () returns the number of bytes of s required to form a complete and
valid multibyte encoding of the Unicode character.

In no case will the value returned be greater than n or the value of the macro
MB_CUR_MAX.

This function may not be implemented on all platforms.

See Also

“Locale Specification” on page 165

“mblen” on page 428

“wctomb’ on page 450

_putenv

This functions lets you enter an argument into the environment list.
#include <stdlib.h>

char *_putenv(const char *name) ;

430 MSL C Reference Version 10

stdlib.h
Overview of stdlib.h

Table 36.22 _putenv

name const char *

The item to add to the
environment list

The function _putenv () returns NULL on success or minus one on failure to enter the

environmental variable.

This function may not be implemented on all platforms.

See Also

“getenv” on page 423

“system” on page 446

gsort

Sort an array.

#include <stdlib.h>

void gsort (void *base,size_t nmemb,size_t size,

int (*compare) (const void *, const void *))

Table 36.23 qsort

base void * A pointer to the array to be
sorted
nmemb size_t The number of elements
size size_t The size of the elements
compare void * A pointer to a comparison
function
Remarks

The gsort () function sorts an array using the quicksort algorithm. It sorts the
array without displacing it; the array occupies the same memory it had before the
call to gsort (). For example usage, see Listing 36.5.

The base argument is a pointer to the base of the array to be sorted.

The nmemb argument specifies the number of array elements to sort.

MSL C Reference Version 10

431

3
4

y
A

stdlib.h
Overview of stdlib.h

The size argument specifies the size of an array element.

The compare argument is a pointer to a programmer-supplied compare function.
The function takes two pointers to different array elements and compares them
based on the key. If the two elements are equal, compare must return a zero. The
compare function must return a negative number if the first element is less than
the second. Likewise, the function must return a positive number if the first
argument is greater than the second.

This function may not be implemented on all platforms.

See Also

3

‘bsearch” on page 413

rand

Generate a pseudo-random integer value.

#include <stdlib.h>

int rand(void) ;

Remarks

A sequence of calls to the rand () function generates and returns a sequence of
pseudo-random integer values from O to RAND_MAX. The RAND_MAX macro is
defined in stdlib.h.

By seeding the random number generator using srand (), different random
number sequences can be generated with rand ().

rand () returns a pseudo-random integer value between 0 and RAND_MAX.

This function may not be implemented on all platforms.

See Also

“srand” on page 435

Listing 36.10 Example of rand() Usage

#include <stdlib.h>

#include <stdio

int main(void)
{
int 1i;
unsigned int

.h>

seed;

432

MSL C Reference Version 10

stdlib.h
Overview of stdlib.h

for

(seed = 1;

seed <= 5;

srand (seed) ;

printf ("First five random numbers for seed %d:\n",

seed++) {

seed) ;

for (i = 0; i < 5; i++)
printf("%$10d4", rand());
printf ("\n\n"); // terminate the line
}
return 0;
}
Output:
First five random numbers for seed 1:
16838 5758 10113 17515 31051
First five random numbers for seed 2:
908 22817 10239 12914 25837
First five random numbers for seed 3:
17747 7107 10365 8312 20622
First five random numbers for seed 4:
1817 24166 10491 3711 15407
First five random numbers for seed 5:
18655 8457 10616 31877
rand_r

Reentrant function to generate a pseudo-random integer value.

#include <stdlib.h>

int rand_r (unsigned int *context) ;

Table 36.24 rand_r

context

unsigned int *

The context seed value

Remarks

The rand_r () function provides the same service as “rand” on page 432, yet it
also combines the functionality of srand () aswell. Theresultof rand_r ()

MSL C Reference Version 10

433

A 4
4\

stdlib.h
Overview of stdlib.h

is equivalent to calling srand () with a context seed value, then calling
rand () . The difference is that for rand_r (), the caller provides the storage
for the context seed value.

This function may require extra library support.

This function may not be implemented on all platforms.

See Also

“rand” on page 432
“srand” on page 435

realloc

Change the size of an allocated block of heap memory.
#include <stdlib.h>

void *realloc(void *ptr, size_t size);

Table 36.25 realloc

ptr void * A pointer to an allocated
block of memory

size size_t The size of memory to
reallocate

Remarks

The realloc () function changes the size of the memory block pointed to by
ptr to size bytes. The size argument can have a value smaller or larger than
the current size of the block ptr points to. The ptr argument should be a value
assigned by the memory allocation functions calloc () andmalloc (). For
example usage, see Listing 36.6.

If size is 0, the memory block pointed to by ptr is released. If ptr is a null
pointer, realloc () allocates size bytes.

The old contents of the memory block are preserved in the new block if the new
block is larger than the old. If the new block is smaller, the extra bytes are cut from
the end of the old block.

realloc () returns a pointer to the new block if it is successful and size is
greater than 0. realloc () returns a null pointer if it fails or size is 0.

This function may not be implemented on all platforms.

434 MSL C Reference Version 10

stdlib.h
Overview of stdlib.h

See Also

“vec_realloc” on page 448

“calloc” on page 417

“free” on page 422

“malloc” on page 427

srand

Sets the seed for the pseudo-random number generator.
#include <stdlib.h>

void srand(unsigned int start);

Table 36.26 srand

seed unsigned int A seeding value

Remarks

The srand () function sets the seed for the pseudo-random number generator to
start. Further calls of srand() with the same seed value produces the same
sequence of random numbers. For example usage, see Listing 36.10.

This function may not be implemented on all platforms.

This function may not be implemented on all platforms.

See Also
“rand” on page 432

strtod

Character array conversion to floating point value of type double.
#include <stdlib.h>

double strtod(const char *nptr, char **endptr);

MSL C Reference Version 10 435

y
A

stdlib.h
Overview of stdlib.h

Table 36.27 strtod

nptr const char * A Null terminated array to
convert
endptr char ** A pointer to a position in

nptr that is follows the
converted part.

Remarks

The strtod() function converts a character array, pointed to by nptr, to a floating
point value of type double. The character array can be in either decimal or
hexadecimal floating point constant notation (e.g. 103.578, 1.03578e+02,
or 0x1.9efef9p+6).

If the endptr argument is not a null pointer, it is assigned a pointer to a position
within the character array pointed to by nptr. This position marks the first
character that is not convertible to a value of type double.

In other than the “C” locale, additional locale-specific subject sequence forms
may be accepted.

This function skips leading white space.

strtod () returns a floating point value of type double. If nptr cannot be
converted to an expressible double value, strtod () returns HUGE_VAL, defined
inmath.h, and sets errno to ERANGE.

This function may not be implemented on all platforms.

See Also

“strtol” on page 438

“strtoul”” on page 443

“errno” on page 75
“Integral type limits” on page 163

3

‘Overview of math.h” on page 171
“scanf” on page 370

Listing 36.11 Example of strtod() and strtold() Usage

#include <stdlib.h>
#include <stdio.h>

int main(void)

436 MSL C Reference Version 10

g |

stdlib.h
Overview of stdlib.h

double f;

long double 1f;

static char sfl[] "103.578 777";
static char sf2[] "1.03578e+02 777";
static char sf3[] = "Ox1.9efef9p+6 777";
char *endptr;

f = strtod(sfl, &endptr);
printf ("Value = %f remainder of string = [%s|\n", £, endptr);

f = strtod(sf2, &endptr);
printf ("vValue = %f remainder of string = [%s|\n", £, endptr);

f = strtod(sf3, &endptr);
printf ("vValue = %f remainder of string = [%s|\n", £, endptr);

1f = strtold(sfl, &endptr);
printf ("Value = %1f remainder of string = |%s|\n", 1f, endptr);

1f = strtold(sf2, &endptr);
printf ("Value = %1f remainder of string = |%s|\n", 1f, endptr);

1f = strtold(sf3, &endptr);
printf ("Value = %1f remainder of string = |%s|\n", 1f, endptr);

return O;

777 |
777 |
777 |
777 |
777 |
777 |

Value = 103.578000 remainder of string =
Value = 103.578000 remainder of string =
Value = 103.748997 remainder of string =
Value = 103.578000 remainder of string =
Value = 103.578000 remainder of string =
Value = 103.748997 remainder of string =

strtof

Character array conversion to floating point value of type float.
#include <stdlib.h>

float strtof(const char *nptr, char **endptr);

MSL C Reference Version 10 437

y
A

stdlib.h
Overview of stdlib.h

Table 36.28 strtof

nptr const char * A Null terminated array to
convert
endptr char ** A pointer to a position in

nptr that is follows the
converted part.

Remarks

The strtof() function converts a character array, pointed to by nptr, to a floating
point value of type float. The character array can be in either decimal or
hexadecimal floating point constant notation (e.g. 103.578, 1.03578e+02,
or 0x1.9efef9p+6).

If the endptr argument is not a null pointer, it is assigned a pointer to a position
within the character array pointed to by nptr. This position marks the first
character that is not convertible to a value of type float.

In other than the “C” locale, additional locale-specific subject sequence forms
may be accepted.

This function skips leading white space.

strtof () returns a floating point value of type £1oat. If nptr cannot be
converted to an expressible float value, strtof () returns HUGE_VAL, defined
inmath.h, and sets errno to ERANGE.

This function may not be implemented on all platforms.

See Also

“strtol” on page 438

“strtod” on page 435

strtol

Character array conversion to an integral value of type long int.
#include <stdlib.h>

long int strtol (const char *nptr,char **endptr, int base);

438 MSL C Reference Version 10

stdlib.h
Overview of stdlib.h

Table 36.29 strtol

const char * A Null terminated array to
convert

endptr char ** A pointer to a position in

nptry that is not
convertible.

int A numeric base between 2
and 36

Remarks

The strtol () function converts a character array, pointed to by nptr,
expected to represent an integer expressed in radix base, to an integer value of type
long int. If the sequence pointed to by nptr is a minus sign, the value resulting
from the conversion is negated in the return value.

The base argument in strtol () specifies the base used for conversion. It must
have a value between 2 and 36, or 0. The letters a (or A) through z (or Z) are used
for the values 10 through 35; only letters and digits representing values less than
base are permitted. If base is 0, then strtol () converts the character array
based on its format. Character arrays beginning with' 0 ' are assumed to be octal,
number strings beginning with' Ox ' or' 0X' are assumed to be hexadecimal. All
other number strings are assumed to be decimal.

If the endptr argument is not a null pointer, it is assigned a pointer to a position
within the character array pointed to by nptr. This position marks the first
character that is not convertible to a long int value.

In other than the “C” locale, additional locale-specific subject sequence forms
may be accepted.

This function skips leading white space.

strtol () returns an integer value of type long int. If the converted value is
less than LONG_MIN, strtol () returns LONG_MIN and sets errno to
ERANGE. If the converted value is greater than LONG_MAX, strtol () returns
LONG_MAX and sets errno to ERANGE. The LONG_MIN and LONG_MAX
macros are defined in 1imits.h.

This function may not be implemented on all platforms.

See Also

“strtod”” on page 435

“strtoul’” on page 443

MSL C Reference Version 10 439

4
A

stdlib.h
Overview of stdlib.h

“errno” on page 75

‘Integral type limits” on page 163

“Overview of math.h” on page 171
“scanf” on page 370

Listing 36.12 Example of strtol(), strtoul(), strtoll(), and strtoull() Usage

#include <stdlib.h>

#include <stdio.h>

int main(void)

{
long int 1i;
unsigned long int j;
long long int 111i;
unsigned long long ull;
static char si[] = "4733 777";
static char sb[] = "0x10*****n,
static char sc[] = "66EQ00M???";
static char sd[] = "QON50M abcd";

char *endptr;
i = strtol(si, &endptr, 10);

printf ("%$1d remainder of string = |%s|\n", i, endptr);

i = strtol(si, &endptr, 8);

printf ("%$1d remainder of string = |%s|\n", i, endptr);

j = strtoul (sb, &endptr, 0);

printf ("%lu remainder of string = |%s|\n", j, endptr);

j = strtoul (sb, &endptr, 16);

printf ("%lu remainder of string = |%s|\n", j, endptr);

111 = strtoll(sc, &endptr, 36);

printf ("%11d remainder of string = |%s|\n", 11i, endptr);

ull = strtoull(sd, &endptr, 27);
printf ("%$11lu remainder of string =
return 0;

%$s|\n", ull, endptr);

Output:

4733 remainder of string = | 777|

2523 remainder of string = | 777|

16 remainder of string = |[*****|

16 remainder of string = |*****|
373527958 remainder of string = [??7?|
373527958 remainder of string = | abcd|

440

MSL C Reference Version 10

stdlib.h
Overview of stdlib.h

strtold

Character array conversion to floating point value of type long double.
#include <stdlib.h>

long double strtold(const char *nptr, char **endptr);

Table 36.30 strtold

nptr

const char * A Null terminated array to
convert

endptr

char ** A pointer to a position in
nptr that follows the
converted part

Remarks

The strtold() function converts a character array, pointed to by nptr, to a floating
point value of type long double. The character array can be in either decimal or
hexadecimal floating point constant notation (e.g. 103.578, 1.03578e+02,
or 0x1.9efef9p+6). For example usage, see Listing 36.11.

If the endptr argument is not a null pointer, it is assigned a pointer to a position
within the character array pointed to by nptr. This position marks the first
character that is not convertible to a value of type double.

In other than the “C” 1locale, additional locale-specific subject sequence forms
may be accepted.

This function skips leading white space.

strtold () returns a floating point value of type long double. If nptr
cannot be converted to an expressible double value, strtold () returns
HUGE_VAL, defined in math.h, and sets errno to ERANGE.

This function may not be implemented on all platforms.

See Also

3

‘strtol” on page 438

“errno” on page 75

3

‘Overview of math.h” on page 171

MSL C Reference Version 10 441

y
A

stdlib.h

Overview of stdlib.h

strtoll

Character array conversion to integer value of type long long int.
#include <stdlib.h>
unsigned long int strtoll (const char *nptr,

char **endptr, int base);

Table 36.31 strtoul

nptr const char * A Null terminated array to
convert

endptr char ** A pointer to a position in
nptry that is not
convertible.

base int A numeric base between 2
and 36

Remarks

The strtoll () function converts a character array, pointed to by nptr,
expected to represent an integer expressed in radix base to an integer value of type
long long int. If the sequence pointed to by nptr is a minus sign, the value resulting
from the conversion is negated in the return value. For example usage, see Listing
36.12.

The base argument in strtoll () specifies the base used for conversion. It
must have a value between 2 and 36, or 0. The letters a (or A) through z (or Z) are
used for the values 10 through 35; only letters and digits representing values less
than base are permitted. If base is 0, then strtoll () converts the character
array based on its format. Character arrays beginning with'0' are assumed to be
octal, number strings beginning with'0x' or'0X' are assumed to be hexadecimal. All
other number strings are assumed to be decimal.

Ifthe endptr argument is not a null pointer, it is assigned a pointer to a position
within the character array pointed to by nptr. This position marks the first
character that is not convertible to a long int value.

In other than the “C” locale, additional locale-specific subject sequence forms
may be accepted.

This function skips leading white space.

442

MSL C Reference Version 10

stdlib.h
Overview of stdlib.h

strtoll () returns an unsigned integer value of type long long int. If the
converted value is less than LLONG_MIN, strtoll () returns LLONG_MIN
and sets errno to ERANGE. If the converted value is greater than
LLONG_MAX, strtoll() returns LLONG_MAX andsets errno to
ERANGE. The LLONG_MIN and LLONG_MAX macros are defined in
limits.h

This function may not be implemented on all platforms.

See Also

“strtod” on page 435

“strtol” on page 438

“errno” on page 75

3

‘Integral type limits” on page 163

3

‘Overview of math.h” on page 171

strtoul

Character array conversion to integer value of type unsigned long int.
#include <stdlib.h>
unsigned long int strtoul (const char *nptr,

char **endptr, int base);

Table 36.32 strtoul

nptr const char * A Null terminated array to
convert

endptr char ** A pointer to a position in
nptry that is not
convertible.

base int A numeric base between 2
and 36

Remarks

The strtoul () function converts a character array, pointed to by nptr, to an
integer value of type unsigned long int, in base. If the sequence pointed to
by nptr is a minus sign, the value resulting from the conversion is negated in the
return value. For example usage, see Listing 36.12.

MSL C Reference Version 10 443

3
4

y
A

stdlib.h

Overview of stdlib.h

The base argument in strtoul () specifies the base used for conversion. It
must have a value between 2 and 36, or 0.The letters a (or A) through z (or Z) are
used for the values 10 through 35; only letters and digits representing values less
than base are permitted. If base is 0, then strtol () and strtoul () convert
the character array based on its format. Character arrays beginning with' 0 ' are
assumed to be octal, number strings beginning with' 0x' or' 0X' are assumed to
be hexadecimal. All other number strings are assumed to be decimal.

If the endptr argument is not a null pointer, it is assigned a pointer to a position
within the character array pointed to by nptr. This position marks the first
character that is not convertible to the functions' respective types.

In other than the “C” locale, additional locale-specific subject sequence forms
may be accepted.

This function skips leading white space.

The function strtoul () returns an unsigned integer value of type
unsigned long int (which may have a negative sign if the original string
was negative.) If the converted value is greater than ULONG_MAX, strtoul ()
returns ULONG_MAX and sets errno to ERANGE. The ULONG_MAX macro is
definedin 1imits.h

This function may not be implemented on all platforms.

See Also

“strtod”” on page 435

“strtol” on page 438

“errno” on page 75
“Integral type limits” on page 163

3

‘Overview of math.h” on page 171

strtoull
Character array conversion to integer value of type unsigned long long int.
#include <stdlib.h>
unsigned long int strtoul (const char *nptr,
char **endptr, int base);
444 MSL C Reference Version 10

stdlib.h
Overview of stdlib.h

Table 36.33 strtoul

const char * A Null terminated array to
convert

endptr char ** A pointer to a position in

nptry that is not
convertible.

int A numeric base between 2
and 36

Remarks

The strtoull () function converts a character array, pointed to by nptr,
expected to represent an integer expressed in radix base to an integer value of type
unsigned long long int. If the sequence pointed to by nptr is a minus
sign, the value resulting from the conversion is negated in the return value. For
example usage, see Listing 36.12.

The base argument in strtoull () specifies the base used for conversion. It
must have a value between 2 and 36, or 0. The letters a (or A) through z (or Z) are
used for the values 10 through 35; only letters and digits representing values less
than base are permitted. If base is 0, then strtoull () converts the character
array based on its format. Character arrays beginning with'0' are assumed to be
octal, number strings beginning with'0x' or'0X' are assumed to be hexadecimal. All
other number strings are assumed to be decimal.

If the endptr argumentisnota null pointer, itis assigned a pointer to a
position within the character array pointed to by nptr. This position marks the
first character that is not convertible to a long int value.

In other than the “C” locale, additional locale-specific subject sequence forms
may be accepted.

This function skips leading white space.

The function strtoull () returns anunsigned integer value of type
unsigned long long int (which may have a negative sign if the original
string was negative.) If the converted value is greater than ULLONG_MAX,
strtoull() returns ULLONG_MAX andsets errno to ERANGE. The
ULLONG_MAX macro is definedin limits.h

This function may not be implemented on all platforms.

See Also

“strtoul” on page 443

MSL C Reference Version 10 445

'
A

stdlib.h
Overview of stdlib.h

“strtoll” on page 442

system

Environment list assignment.

#include

int system(const char *string);

<stdlib.h>

NOTE The system () function is an empty function on MacOS t

Table 36.34 system

string

const char *

A OS system command

system () returns zero if successful or minus one on failure.

This function may not be implemented on all platforms.

See Also

“getenv” on page 423

vec_calloc

Clears and allocates memory on a 16 byte alignment.

#include

void *

Table 36.35 vec_calloc

<stdlib.h>

vec_calloc(size_t nmemb,

size_t size);

nmemb size_t Number of elements
size size_t The size of the elements
Remarks

The vec_calloc () function allocates contiguous space for nmemb elements of

size. The space is initialized with zeroes.

446

MSL C Reference Version 10

stdlib.h
Overview of stdlib.h

vec_calloc () returns a pointer to the first byte of the memory area allocated.
vec_calloc () returns a null pointer (NULL) if no space could be allocated.

This function may not be implemented on all platforms.

See Also

“calloc” on page 417

“vec_free” on page 447

“vec_malloc” on page 448
“vec_realloc” on page 448

vec_free

Frees memory allocated by vec_malloc, vec_calloc andvec_realloc
#include <stdlib.h>

void vec_free(void *ptr);

Table 36.36 vec_free

ptr void * A pointer to the allocated
memory

Remarks

The vec_free () function releases a previously allocated memory block,
pointed to by ptr, to the heap. The ptr argument should hold an address returned
by the memory allocation functions vec_calloc (), vec_malloc (), or
vec_realloc (). Once the memory block ptr points to has been released, it is
no longer valid. The ptr variable should not be used to reference memory again
until it is assigned a value from the memory allocation functions.

There is no return.

This function may not be implemented on all platforms.

See Also

3

‘free” on page 422
“vec_calloc” on page 446

“vec_malloc” on page 448
“vec realloc” on page 448

MSL C Reference Version 10 447

y
A

stdlib.h
Overview of stdlib.h

vec_malloc

Allocates memory on a 16 byte alignment.
#include <stdlib.h>

void * vec_malloc (size_t size);

Table 36.37 vec_malloc

size size_t The size in bytes of the
allocation

Remarks

The vec_malloc () function allocates a block of contiguous heap memory size
bytes large.

vec_malloc () returns a pointer to the first byte of the allocated block if it is
successful and return a null pointer if it fails.

This function may not be implemented on all platforms.

See Also
“malloc” on page 427

“vec_free” on page 447

“vec_calloc” on page 446

“vec_realloc” on page 448

vec_realloc

Reallocates memory on a 16 byte alignment.
#include <stdlib.h>

void * vec_realloc (void * ptr, size_t size);

448 MSL C Reference Version 10

stdlib.h
Overview of stdlib.h

Table 36.38 vec_realloc

ptr void * A pointer to an allocated
block of memory

size size_t The size of memory to
reallocate

vec_realloc () returns a pointer to the new block if it is successful and size
is greater than 0. realloc () returns a null pointer if it fails or size is 0.

This function may not be implemented on all platforms.

See Also

“realloc” on page 434

“vec_free” on page 447

“vec_calloc” on page 446

“vec_malloc” on page 448

wcstombs
Translate a wchar_t type character array to a multibyte character array encoded as
defined by the LC_CTYPE category of the current locale.
#include <stdlib.h>
size_t wcstombs (char *s, const

wchar_t *pwcs, size_t n);

Table 36.39 wcstombs

s char* A multibyte string buffer

pwcs const wchar_t * A pointer to a wide
character string to be
converted

n size_t The maximum length to
convert

MSL C Reference Version 10 449

3
4

y
A

stdlib.h

Overview of stdlib.h

Remarks

The MSL C implementation of the wcstombs () function converts a character
array containing wchar_t type Unicode characters to a character array
containing multibyte characters encoded as defined by the LC_CTYPE category of
the current locale. The wchar_t type is defined in stddef . h. Each wide
character is converted as if by a call to the wctomb () function. No more than n
bytes will be modified in the array pointed to by s.

The function terminates prematurely if anull character is reached.

wcstombs () returns the number of bytes modified in the character array
pointed to by s, not including a terminating null character, if any.

This function may not be implemented on all platforms.

See Also

“Locale Specification” on page 165, “mbstowcs” on page 428

wctomb

Translate a wchar_t type to a multibyte character encoded as defined by the
LC_CTYPE category of the current locale.

#include <stdlib.h>

int wctomb (char *s, wchar_t wchar);

Table 36.40 wctomb

s char* A multibyte string buffer
wchar wchar_t A wide character to convert
Remarks

The MSL C implementation of the wctomb () function converts a wchar_t
type Unicode character to a multibyte character encoded as defined by the
LC_CTYPE category of the current locale. If s is not a null pointer, the encoded
multibyte character is stored in the array whose first element is pointed to by s.
At most MB_ CUR_MAX characters are stored. If wchar is a null wide character, a
null byte is stored.

wctomb () returns 1 if sis not null and returns 0, otherwise it returns the
number of bytes that are contained in the multibyte character stored in the array
whose first element is pointed to by s.

450

MSL C Reference Version 10

stdlib.h
Non Standard <stdlib.h> Functions

This function may not be implemented on all platforms.

See Also

“Locale Specification” on page 165

“mbtowc” on page 429

Non Standard <stdlib.h> Functions

Various non standard functions are included in the header stdlib.h forlegacy source
code and compatibility with operating system frameworks and application programming
interfaces.

For the function
For the function
For the function
For the function
For the function
For the function
For the function

For the function

gcvt, see “gevt” on page 85 for a full description.

itoa, see “‘itoa” on page 87 for a full description.

itow, see “‘itow” on page 88 for a full description.

1ltoa, see “Itoa” on page 88 for a full description.
makepath, see “‘makepath” on page 90 for a full description.

splitpath, see “splitpath™ on page 92 for a full description.

ultoa, see “ultoa” on page 105 for a full description.

wtoi, see “wtoi” on page 115 for a full description.

MSL C Reference Version 10

451

A 4
4\

stdlib.h
Non Standard <stdlib.h> Functions

452 MSL C Reference Version 10

7
string.h

The string.h header file provides functions for comparing, copying, concatenating,
and searching character arrays and arrays of larger items.

Overview of string.h

The string.h header file provides multiple functions with and without length limits,
with and without case sensitivity for comparing, copying, concatenating, and searching
character arrays and generic arrays of larger items in memory.

The function naming convention used in string.h determines the type of data
structure(s) a function manipulates.

A function with an str prefix operates on character arrays terminated with a null
character (' \0'). The str functions are as follows:

» “strcat” on page 459 concatenates strings.

¢ “strchr” on page 460 searches by character.

e “strcmp” on page 461 compares strings.

e “strcpy” on page 464 copies strings.

» “strcoll” on page 462 compares string lexicographically.

e “strcspn” on page 465 finds a substring in a string.

» “strerror” on page 466 retrieves an error message from an errno variable.

* “strerror_r” on page 467 translates an error number into an error message (re-entrant
version of strerror).

¢ “strlen” on page 468 returns string’s length.

» “strpbrk” on page 473 looks for an occurrence of a character from one string in
another.

¢ “strrchr” on page 474 searches a string for a character.

* “strspn” on page 475 searches for a character not in one string in another.

e “strstr” on page 476 searches a string for a string.

» “strtok” on page 477 retrieves the next token or substring.

o “strxfrm” on page 479 transforms a string to a locale.

MSL C Reference Version 10 453

A 4
4\

string.h

Overview of string.h

A function with an strn prefix operates on character arrays of a length specified as a
function argument. The strn functions are:

* “strncat” on page 469 concatenates strings with length specified.

¢ “strncmp” on page 470 compares strings with length specified.

* “strncpy” on page 472 copies a specified number of characters.

A function with a mem prefix operates on arrays of items or contiguous blocks of memory.
The size of the array or block of memory is specified as a function argument. The mem
functions are:

* “memchr” on page 454 searches a memory block for a character.
* “memcmp” on page 456 compares a memory block.

* “memcpy” on page 457 copies a memory block.

* “memmove” on page 458 moves a memory block.

* “memset” on page 458 sets a value for a memory block.

The nonstandard functions with a ‘stri’ prefix operate on strings ignoring case.

memchr

Search for an occurrence of a character.
#include <string.h>

void *memchr (const void *s, int ¢, size_t n);

Table 37.1 memchr

s const void * The memory to search
c int The char to search for
n size_t The maximum length to
search
Remarks

The memchr () function looks for the first occurrence of ¢ in the first n characters
of the memory area pointed to by s.

memchr () returns a pointer to the found character, or a null pointer (NULL) if ¢
cannot be found.

This function may not be implemented on all platforms.

454

MSL C Reference Version 10

string.h
Overview of string.h

See Also

“strchr’” on page 460

“strrchr” on page 474

Listing 37.1 Example of memchr() Usage

#include <string.h>
#include <stdio.h>

#define ARRAYSIZE 100

int main(void)

{

// sl must by same length as s2 for this example!
static char sl1[ARRAYSIZE] = "laugh* giggle 231!";
static char s2[ARRAYSIZE] = "grunt sigh# snort!";
char dest[ARRAYSIZE];

char *strptr;

int lenl, len2, lendest;

// Clear destination string using memset ()
memset ((char *)dest, '\0', ARRAYSIZE) ;

// String lengths are needed by the mem functions
// Add 1 to include the terminating '\0' character

lenl = strlen(sl) + 1;

len2 = strlen(s2) + 1;

lendest = strlen(dest) + 1;

printf (" sl=%s\n s2=%s\n dest=%s\n\n", sl, s2, dest);

if (memcmp((char *)sl, (char *)s2, lenl) > 0)
memcpy ((char *)dest, (char *)sl, lenl);

else
memcpy ((char *)dest, (char *)s2, len2);

printf (" sl=%s\n s2=%s\n dest=%s\n\n", sl, s2, dest);

// copy sl onto itself using memchr () and memmove ()
strptr = (char *)memchr((char *)sl, '*', lenl);
memmove ((char *)strptr, (char *)sl, lenl);

printf (" sl=%s\n s2=%s\n dest=%s\n\n", sl, s2, dest);

return 0;

MSL C Reference Version 10 455

y
A

string.h
Overview of string.h

Output:

sl=laugh* giggle 231!
s2=grunt sigh# snort!
dest=

sl=laugh* giggle 231!
s2=grunt sigh# snort!
dest=laugh* giggle 231!

sl=laughlaugh* giggle 231!
s2=grunt sigh# snort!
dest=laugh* giggle 231!

memcmp

Compare two blocks of memory.
#include <string.h>
int memcmp (const void *sl,

const void *s2, size_t n);

Table 37.2 memcmp

s1 const void * The memory to compare
s2 const void * The comparison memory
n size_t The maximum length to
compare
Remarks

The memcmp () function compares the first n characters of s1 to s2 one character
at a time. For example usage, see Listing 37.1.

memcmp () returns a zero if all n characters pointed to by s1 and s2 are equal.

memcmp () returns a negative value if the first non-matching character pointed to
by s1 is less than the character pointed to by s2.

memcmp () returns a positive value if the first non-matching character pointed to
by s1 is greater than the character pointed to by s2.

This function may not be implemented on all platforms.

456 MSL C Reference Version 10

string.h
Overview of string.h

See Also

“strcmp” on page 461

“strncmp” on page 470

memcpy

Copy a contiguous memory block.
#include <string.h>
void *memcpy (void *dest,

const void *source, size_t n);

Table 37.3 memcpy

dest void * The destination memory
source const void * The source to copy
n size_t The maximum length to
copy
Remarks

The memcpy () function copies the first n characters from the item pointed to by
source to the item pointed to by dest. The behavior of memcpy () is undefined
if the areas pointed to by dest and source overlap. The memmove () function
reliably copies overlapping memory blocks. For example usage, see Listing 37.1.

memcpy () returns the value of dest.

This function may not be implemented on all platforms.

See Also

“memmove” on page 458
“strcpy” on page 464

“strncpy” on page 472

MSL C Reference Version 10 457

y
A

string.h
Overview of string.h

memmove

Copy an overlapping contiguous memory block.

#include <string.h>

void *memmove (void *dest, const void *source, size_t n);

Table 37.4 memmove

dest void * The Memory destination
source const void * The source to be moved
n size_t The maximum length to
move
Remarks

The memmove () function copies the first n characters of the item pointed to by
source to the item pointed to by dest. For example usage, see Listing 37.1.

Unlike memcpy (), the memmove () function safely copies overlapping memory

blocks.
memmove () returns the value of dest.

This function may not be implemented on all platforms.

See Also

“memcpy” on page 457

“memset” on page 458
“strcpy” on page 464

“strncpy” on page 472

memset

Set the contents of a block of memory to the value of a single character.
#include <string.h>

void *memset (void *dest, int ¢, size_t n);

458 MSL C Reference Version 10

string.h
Overview of string.h

Table 37.5 memset

dest void * The destination memory

c int The char to set

n size_t The maximum length to set
Remarks

The memset () function assigns c to the first n characters of the item pointed to
by dest. For example usage, see Listing 37.1.

memset () returns the value of dest.

This function may not be implemented on all platforms.

strcat

Concatenate two character arrays.
#include <string.h>

char *strcat(char *dest, const char *source);

Table 37.6 strcat

dest char* The destination string
source const char * The source to append
Remarks

The strcat () function appends a copy of the character array pointed to by
source to the end of the character array pointed to by dest. The dest and
source arguments must both point to null terminated character arrays.
strcat () null terminates the resulting character array.

strcat () returns the value of dest.

This function may not be implemented on all platforms.

See Also

“strcpy” on page 464

MSL C Reference Version 10 459

y
A

string.h
Overview of string.h

Listing 37.2 Example of strcat() Usage

#include <string.h>
#include <stdio.h>

int main(void)

{
char s1[100] = "The quick brown fox ";
static char s2[] = "jumped over the lazy dog.";
strcat(sl, s2);
puts(sl) ;
return 0;
}
Output:

The quick brown fox jumped over the lazy dog.

strchr

Search for an occurrence of a character.

#include <string.h>

char *strchr (const char *s, int c);

Table 37.7 strchr

s const char * The string to search
[¢ int The char to search for
Remarks

The strchr () function searches for the first occurrence of the character c in the
character array pointed to by s. The s argument must point to a null terminated

character array.

strchr () returns a pointer to the successfully located character. If it fails,

strchr () returns a null pointer (NULL).

This function may not be implemented on all platforms.

460

MSL C Reference Version 10

string.h
Overview of string.h

See Also

“memchr” on page 454
“strrchr” on page 474

Listing 37.3 Example of strchr() Usage

#include <string.h>
#include <stdio.h>

int main(void)

{
static char s[] = "tree * tomato eggplant garlic";
char *strptr;

strptr = strchr(s, '*');
puts (strptr) ;

return 0;

Output:
* tomato eggplant garlic

stremp

Compare two character arrays.
#include <string.h>

int strcmp (const char *sl, const char *s2);

Table 37.8 strcmp

s1 const char * The string to compare
s2 const char * The comparison string
Remarks

The strcmp () function compares the character array pointed to by s1 to the
character array pointed to by s2. Both s1 and s2 must point to null terminated
character arrays.

MSL C Reference Version 10 461

4
A

string.h
Overview of string.h

strcmp () returns a zero if s1 and s2 are equal, a negative value if s1 is less
than s2, and a positive value if s1 is greater than s2.

This function may not be implemented on all platforms.
See Also

“memcmp” on page 456

“strcoll” on page 462

“strncmp” on page 470

Listing 37.4 Example of strcmp() Usage

#include <string.h>
#include <stdio.h>

int main (void)

{
static char sl1[] = "butter", s2[] = "olive oil";
char dest[20];

if (strcmp(sl, s2) < 0)
strcpy (dest, s2);
else
strcpy (dest, sl);
printf (" sl=%s\n s2=%s\n dest=%s\n", sl, s2, dest);

return 0;

Output:
sl=butter
s2=o0live oil
dest=o0live o0il

strcoll

Compare two character arrays according to locale.
#include <string.h>

int strcoll (const char *sl, const char *s2);

462 MSL C Reference Version 10

string.h
Overview of string.h

Table 37.9 strcoll

s1 const char * The string to compare
s2 const char * The comparison string
Remarks

The strcoll () function compares two character arrays based on the
LC_COLLATE component of the current locale.

The MSL C implementation of strcoll () compares two character arrays using
strcmp (). Itis included in the string library to conform to the ANSI C Standard
Library specification.

strcoll () returns zero if s1 is equal to s2, a negative value if s1 is less than
s2, and a positive value if s1 is greater than s2.

This function may not be implemented on all platforms.

See Also

3

‘Locale Specification” on page 165

“memcmp” on page 456
“stremp’” on page 461

“strncmp” on page 470,

Listing 37.5 Example of strcoll() Usage

#include <string.h>
#include <stdio.h>

int main(void)

{
static char sl[] = "aardvark", s2[] = "xylophone";
int result;

result = strcoll(sl, s2);
if (result < 1)

printf("%$s is less than %s\n", sl, s2);
else

printf("%$s is equal or greater than %s\n", sl, s2);

return 0;

MSL C Reference Version 10 463

y
A

string.h
Overview of string.h

Output:

aardvark is less than xylophone

strcpy

Copy one character array to another.

#include <string.h>

char *strcpy(char *dest,

Table 37.10 strcpy

const char *source);

dest

char *

The destination string

source

const char *

The string being copied

Remarks

The strcpy () function copies the character array pointed to by source to the
character array pointed to dest. The source argument must point to a null
terminated character array. The resulting character array at dest is null terminated

as well.

If the arrays pointed to by dest and source overlap, the operation of
strepy () is undefined.

strcpy () returns the value of dest.

This function may not be implemented on all platforms.

See Also

“memcpy”” on page 457

“memmove” on page 458

“strncpy” on page 472

Listing 37.6 Example of strcpy() Usage

#include <string.h>

#include <stdio.h>

int main(void)

{

464

MSL C Reference Version 10

string.h
Overview of string.h

char d[30] = "";
static char s[] = "CodeWarrior";

printf (" s=
strcpy(d, s
printf (" s=

s\n d=%s\n", s, 4d);
s\n d=%s\n", s, 4d);

return O;

Output:
s=CodeWarrior
d=
s=CodeWarrior
d=CodeWarrior

strcspn

Find the first character in one string that is in another.
#include <string.h>

size_t strcspn(const char *sl, const char *s2);

Table 37.11 strcspn

s1 const char * The string to count

s2 const char * The list string of character
to search for

Remarks

The strcspn () function finds the first character in the null terminated
character string s1 thatis also in the null terminated string s2 . For this
purpose, the null terminators are considered part of the strings. The function starts
examining characters at the beginning of s1 and continues searching until a
character in s1 matches a characterin s2.

strcspn () returns the index of the first character in s1 that matches a
characterin s2.

This function may not be implemented on all platforms.

MSL C Reference Version 10 465

y
A

string.h
Overview of string.h

See Also

“strpbrk” on page 473

“strspn” on page 475

Listing 37.7 Example of strcspn() Usage

#include <string.h>
#include <stdio.h>

int main(void)

{
static char sl[] = "chocolate *cinnamon* 2 ginger";
static char s2[] = "1234*";
int 1i;
printf(" sl = %s\n s2 = %s\n", sl, s2);
i = strcspn(sl, s2);
printf ("Index returned by strcspn %d\n", 1i);
printf ("Indexed character = %c\n", sl[i]);
return 0;

}

Output:

sl = chocolate *cinnamon* 2 ginger

s2 = 1234~*

Index returned by strcspn 10

Indexed character = *

strerror

Translate an error number into an error message.
#include <string.h>

char *strerror (int errnum) ;

Table 37.12 strerror

errnum int The error number to be
translated.

466 MSL C Reference Version 10

string.h
Overview of string.h

Remarks

The strerror () function returns a pointer to a null terminated character array
that contains an error message. The array pointed to may not be modified by the
program, but may be overwritten by a subsequent call to the strerror function

strerror () returns a pointer to a null terminated character array containing an
error message that corresponds to errnum. Although normally the integer value
in errnum will come from the global variable errno, strerror () will
provide a message translation for any value of type int.

This function may not be implemented on all platforms.

Listing 37.8 Example of strerror() Usage

#include <string.h>
#include <stdio.h>

int main(void)

{
puts (strerror(8)) ;
puts (strerror (ESIGPARM)) ;
return O;

}

Output:

unknown error (8)
Signal Error

strerror_r

Translate an error number into an error message.
#include <string.h>

int strerror_r (int errnum, char *str, size_t bufflen);

Table 37.13 strerror_r

errnum int The error number to be
translated.

MSL C Reference Version 10 467

'
A

string.h

Overview of string.h

Table 37.13 strerror_r (continued)

str char* A pointer to the storage
error string
bufflen size_t The size of the storage
buffer
Remarks
The strerror_r () function provides the same service as “‘strerror” on
page 466 but is reentrant. The difference is that strerror () would return a
pointer to the error string, and that pointer was internal to the library
implementation. For strerror_x (), the caller provides the storage str and
the size of the storage buf flen.
On a successful call to strerror_r (), the function result is zero. If any error
occurs, the function result is an error code.
This function may require extra library support.
This function may not be implemented on all platforms.
See Also

“strerror” on page 466

strlen

Table 37.14 strlen

Compute the length of a character array.

#include <string.h>

size t strlen(const char *s);

s1

const char * The string to evaluate

Remark

The strlen () function computes the number of characters in a null terminated
character array pointed to by s. The null character (' \ 0 ') is not added to the
character count.

strlen () returns the number of characters in a character array not including the
terminating null character.

468

MSL C Reference Version 10

string.h
Overview of string.h

This function may not be implemented on all platforms.

Listing 37.9 Example of strlen() Usage

#include <string.h>
#include <stdio.h>

int main(void)

{
static char s[] = "antidisestablishmentarianism";
printf ("The length of %s is %1d.\n", s, strlen(s));
return O;

}

Output:

The length of antidisestablishmentarianism is 28.

strncat

Append a specified number of characters to a character array.
#include <string.h>

char *strncat (char *dest, const char *source, size_t n);

Table 37.15 strncat

dest char * The destination string
source const char * The source to append
n size_t The maximum length to
append
Remarks

The strncat () function appends a maximum of n characters from the character
array pointed to by source to the character array pointed to by dest. The dest
argument must point to a null terminated character array. The source argument
does not necessarily have to point to a null terminated character array.

MSL C Reference Version 10 469

4
A

string.h
Overview of string.h

If a null character is reached in source before n characters have been appended,

strncat () stops.
When done, strncat () terminates dest with a null character (' \0").
strncat () returns the value of dest.

This function may not be implemented on all platforms.

See Also

“strcat” on page 459

Listing 37.10 Example of strncat() Usage

#include <string.h>
#include <stdio.h>

int main(void)

{
static char s1[100] = "abcdefghijklmnopgrstuv";
static char s2[] = "wxyz0123456789";
strncat(sl, s2, 4);
puts(sl);
return 0;

}

Output:

abcdefghijklmnopgrstuvwxyz

strncmp

Compare a specified number of characters.
#include <string.h>

int strncmp (const char *sl, const char *s2, size_t n);

Table 37.16 strncmp

s1 const char * The string to compare

470 MSL C Reference Version 10

string.h
Overview of string.h

Table 37.16 strncmp (continued)

s2 const char * The comparison string

n size_t The maximum number of
characters to compare

Remarks

The strncmp () function compares n characters of the character array pointed to
by s1 to n characters of the character array pointed to by s2. Neither s1 nor s2
needs to be null terminated character arrays.

The function stops prematurely if it reaches a null character before n characters
have been compared.

strncmp () returns a zero if the first n characters of s1 and s2 are equal, a
negative value if s1 is less than s2, and a positive value if s1 is greater than s2.

This function may not be implemented on all platforms.

See Also

“memcmp” on page 456
“stremp’” on page 461

Listing 37.11 Example of strncmp() Usage

#include <string.h>
#include <stdio.h>

int main(void)

{
static char sl1[] = "12345anchor", s2[] = "12345zebra";
if (strncmp(sl, s2, 5) == 0)
printf("%$s is equal to %s\n", sl, s2);
else
printf("%$s is not equal to %$s\n", sl, s2);
return O;
}
Output:

12345anchor is equal to 12345zebra

MSL C Reference Version 10 471

y
A

string.h
Overview of string.h

strncpy

Copy a specified number of characters.
#include <string.h>

char *strncpy (char *dest, const char *source, size_t n);

Table 37.17 strncpy

dest char* The destination string
source const char * The source to copy
n size_t The maximum length to
copy
Remarks

The strncpy () function copies a maximum of n characters from the character
array pointed to by source to the character array pointed to by dest. Neither
dest nor source need necessarily point to null terminated character arrays.
Also, dest and source must not overlap.

If a null character (' \ 0 ') is reached in source before n characters have been
copied, strncpy () continues padding dest with null characters until n
characters have been added to dest.

The function does not terminate dest with a null character if n characters are
copied from source before reaching a null character.

strncpy () returns the value of dest.

This function may not be implemented on all platforms.

See Also

“memcpy”” on page 457

“memmove” on page 458
“strcpy” on page 464

Listing 37.12 Example of strncpy Usage

#include <string.h>
#include <stdio.h>

int main(void)

472 MSL C Reference Version 10

string.h
Overview of string.h

{
char d[50];
static char s[] = "123456789ABCDEFG";
strncpy (d, s, 9);
puts(d) ;
return O;
}
Output:
123456789
strpbrk

Look for the first occurrence of any one of an array of characters in another.

#include <string.h>

char *strpbrk(const char *sl,

Table 37.18 strpbrk

const char *s2);

s

const char *

The string being searched

s2

const char *

A list of characters to
search for

Remarks

The strpbrk () function searches the character array pointed to by s1 for the
first occurrence of a character in the character array pointed to by s2.

Both s1 and s2 must point to null terminated character arrays.

strpbrk () returns a pointer to the first character in s1 that matches any
character in s2, and returns a null pointer (NULL) if no match was found.

This function may not be implemented on all platforms.

See Also

“strespn’ on page 465

MSL C Reference Version 10

473

y
A

string.h
Overview of string.h

Listing 37.13 Example of strpbrk Usage

#include <string.h>
#include <stdio.h>

int main(void)

{
static char sl[] = "orange banana pineapple *plum";
static char s2[] = "*%#s";
puts (strpbrk(sl, s2));
return 0;
}
Output:
*plum
strrchr

Searches a string for the last occurrence of a character.
#include <string.h>

char *strrchr (const char *s, int c);

Table 37.19 strrchr

s const char * The string to search
c int A character to search for
Remarks

The strrchr () function searches for the last occurrence of ¢ in the character

array pointed to by s. The s argument must point to a null terminated character
array.

strrchr () returns a pointer to the character found or returns a null pointer
(NULL) if it fails.

This function may not be implemented on all platforms.

474 MSL C Reference Version 10

string.h
Overview of string.h

See Also

“memchr” on page 454
“strchr” on page 460

Listing 37.14 Example of strrchr() Usage

#include <string.h>
#include <stdio.h>

int main(void)

{
static char s[] = "Marvin Melany CodeWarrior";
puts(strrchr(s, 'M'));

return 0;

Output:
CodeWarrior

strspn

Find the first character in one string that is not in another.
#include <string.h>

size_t strspn(const char *sl, const char *s2);

Table 37.20 strspn

s1 const char * The string to search
s2 const char * A list of characters to look
for
Remarks

The strspn () function finds the first character in the null terminated character
string s1 thatis not in the null terminated string s2. The function starts
examining characters at the beginning of s1 and continues searching until a
character in s1 does not match any characterin s2.

Both s1 and s2 must point to null terminated character arrays.

MSL C Reference Version 10 475

y
A

string.h
Overview of string.h

strspn () returns the index of the first character in s1 that does not match a

characterin s2.

This function may not be implemented on all platforms.

See Also

“strpbrk” on page 473

“strcspn” on page 465

Listing 37.15 Example of strspn() Usage

#include <string.h>
#include <stdio.h>

int main(void)

{
static char sl[] = "create *build* construct";
static char s2[] = "create *";
printf (" sl = %s\n s2 = %s\n", sl, s2);
printf (" %d\n", strspn(sl, s2));
return O;
}
Output:
sl = create *build* construct
s2 = create *
8
strstr

Search for a character array within another.

#include <string.h>

char *strstr(const char *sl, const char *s2);

Table 37.21 strstr

s const char *

The string to search

s2

const char *

The string to search for

476

MSL C Reference Version 10

g |

string.h
Overview of string.h

Remarks

The strstr () function searches the character array pointed to by s1 for the first
occurrence of the character array pointed to by s2.

Both s1 and s2 must point to null terminated (' \ 0 ') character arrays.

strstr () returns a pointer to the first occurrence of s2 in s1 and returns a null
pointer (NULL) if s2 cannot be found.

This function may not be implemented on all platforms.

See Also

“memchr” on page 454
“strchr’” on page 460

Listing 37.16 Example of strstr() Usage

#include <string.h>
#include <stdio.h>

int main(void)

{
static char sl[] = "tomato carrot onion";
static char s2[] = "on";
puts (strstr(sl, s2));
return 0;
}
Output:
onion
strtok

Extract tokens within a character array.
#include <string.h>

char *strtok(char *str, const char *sep);

MSL C Reference Version 10 477

y
A

string.h

Overview of string.h

Table 37.22 strtok

str char * The string to be separate
sep const char * The separator string
Remarks

The strtok() function divides a null terminated character array pointed to by
str into separate “tokens”. The sep argument points to a null terminated
character array containing one or more separator characters. The tokens in str
are extracted by successive calls to strtok() .

Strtok () works by a sequence of calls to the strtok() function. The first
call is made with the string to be divided into tokens, as the first argument.
Subsequent calls use NULL as the first argument and returns pointers to
successive tokens of the separated string.

The first call to strtok() causes it to search for the first characterin str
that does not occur in sep. If no character other than those in the sep string can
be found, strtok() returns a null pointer (NULL). If no characters from the sep
string are found it returns a pointer to the original string. Otherwise the function
returns a pointer to the beginning of this first token.

Subsequent calls to strtok () are made witha NULL str argument causing it
to return pointers to successive tokens in the original str character array. If no
further tokens exist, strtok() returnsa null pointer.

Both str and sep must be null terminated character arrays.

The sep argument can be different for each call to strtok().
strtok () modifies the character array pointed to by str.

When first called strtok() returns a pointer to the first token in str. If nothing
but separator characters are found strtok returns a null pointer.

Subsequent calls to strtok () witha NULL str argument causes strtok () to
return a pointer to the next token or return a null pointer (NULL) when no more
tokens exist.

This function may not be implemented on all platforms.

Listing 37.17 Example of strtok() Usage

#include <string.h>
#include <stdio.h>

int main(void)

{

478

MSL C Reference Version 10

string.h
Overview of string.h

static char s[50] = " (ape+bear) * (cat+dog) ";
char *token;
char *separator = " ()+*";

/* first call to strtok() */
token = strtok(s, separator);

while(token != NULL)
{

puts (token) ;

token = strtok(NULL, separator);
}

return O;

Output:
ape
bear
cat
dog

strxfrm

Transform a locale-specific character array.
#include <string.h>

size_t strxfrm(char *dest, const char *source, size_t n);

Table 37.23 strxfrm

dest char* The destination string
source const char * The source to be
transformed
n size_t The maximum length to
transform
Remarks

The strxfrm () function copies characters from the character array pointed to by
source to the character array pointed to by dest, transforming each character as

MSL C Reference Version 10 479

3
4

y
A

string.h
Overview of string.h

specified by the LC_COLLATE component of the current locale. The strxfrm
function transforms the string pointed to by source and places the resulting string
into the array pointed to by dest. The transformation is such that if the strcmp
function is applied to two transformed strings, it returns a value greater than, equal
to, or less than zero, corresponding to the result of the strcoll function applied to
the same two original strings.

The MSL C implementation of strxfrm () copies a maximum of n characters
from the character array pointed to by source to the character array pointed to by
dest using the strncpy () function. It is included in the string library to
conform to the ANSI C Standard Library specification.

strxfrm () returns the length of dest after it has received source.

This function may not be implemented on all platforms.

See Also

3

‘Locale Specification” on page 165
“strcpy” on page 464

Listing 37.18 Example of strxfrm() Usage

#include <string.h>
#include <stdio.h>

int main(void)

{
char d[50];
static char s[] = "123456789ABCDEFG";
size_t result;
result = strxfrm(d, s, 30);
printf ("%$d characters copied: %$s\n", result, d);
return 0;
}
Output:

16 characters copied: 123456789ABCDEFG

480 MSL C Reference Version 10

string.h
Non Standard <string.h> Functions

Non Standard <string.h> Functions

Various non standard functions are included in the header string.h forlegacy source
code and compatibility with operating system frameworks and application programming
interfaces.

For the function
For the function
For the function
For the function
For the function
For the function
For the function
For the function
For the function
For the function
For the function
For the function
For the function
For the function
For the function
For the function
For the function

For the function

strdup, see “strdup” on page 95 for a full description.

stricmp, see “stricmp” on page 96 for a full description.
strlwr, see “strlwr” on page 97 for a full description.
strnicmp, see “strnicmp” on page 100 for a full description.

strnset, see “strnset” on page 101 for a full description.

strrev, see “strrev” on page 102 for a full description.

strset, see “strset” on page 102 for a full description.

strupr, see “strupr” on page 104 for a full description.

wcsdup, see “wesdup” on page 107, for a full description.
wcsicmp, see “wesicmp” on page 108, for a full description.

wcslwr, see “weslwr’” on page 109, for a full description.
wcsincmp, see “wesnicmp” on page 111, for a full description.

wcsnset, see “wcsnset” on page 112, for a full description.

wcsrevv “wesrev” on page 113, for a full description.

wcsset, see “wesset” on page 113, for a full description.

wcspnp, see “‘wesspnp” on page 114, for a full description.

wcsupr, see “wesupr” on page 114, for a full description.

wtoi, see “wtoi” on page 115, for a full description.

MSL C Reference Version 10

481

A 4
4\

string.h
Non Standard <string.h> Functions

482 MSL C Reference Version 10

38
tgmath.h

The header tgmath.h includes the header math.h and defines type-generic macros
for those math functions.

Overview of tgmath.h

The tgmath.h header file consists of type-generic macros for most math functions
listed in Table 38.1.

NOTE Main Standard Library for C does not include complex types and complex

type-generic equivalents
The macros in this header may not be implemented on all platforms.

Table 38.1 Type-Generic Macro for Math Functions

Function Type-Generic Function Type-Generic
Macro Macro

acos acos acosh acosh

asin asin asinh asinh

atan atan atan2 atan2

atanh atanh cbrt cbrt

ceil ceil copysign copysign

cos cos cosh cosh

erf erf erfc erfc

exp exp exp2 exp2

expm1 expm1 fabs fabs

fdim fdim floor floor

MSL C Reference Version 10

483

'
A

tgmath.h
Overview of tgmath.h

Table 38.1 Type-Generic Macro for Math Functions (continued)

Function Type-Generic Function Type-Generic
Macro Macro
acos acos acosh acosh
fma fma fmax fmax
fmin fmin fmod fmod
frexp frexp hypot hypot
ilogb ilogb Idexp Idexp
lgamma lgamma lIrint lIrint
liround liround log log
log10 log10 log1p log1p
log2 log2 logb logb
Irint Irint Iround Iround
nearbyint nearbyint nextafter nextafter
nexttoward nexttoward pow pow
remainder remainder remquo remquo
rint rint round round
scalbln scalbin scalbn scalbn
sin sin sinh sinh
sqrt sqrt tan tan
tanh tanh tgamma tgamma
trunc trunc

484 MSL C Reference Version 10

time.h

The time.h header file provides access to the computer system clock, date and time
conversion functions, and time-formatting functions.

Overview of time.h

This header file defines the facilities as follows:

e “struct tm” on page 487 is a structure for storing time data.

* “tzname” on page 488 contains an array that stores the time zone abbreviations.

¢ “asctime” on page 488 converts a tm structure type to a char array.

e ‘“asctime r” on page 489 is a reentrant version of asctime.

¢ “clock” on page 490 determines the relative time since the system was started.

* ‘“ctime” on page 492 converts a time_t type to a char array.

e “ctime r” on page 493 is a reentrant version of ctime.

o “difftime” on page 494 determines the difference between two times.

* “gmtime” on page 495 determines Greenwich Mean Time.
e “omtime r” on page 496 is a reentrant version of gmtime.

¢ “localtime” on page 497 determines the local time.

¢ “localtime r” on page 497 is a reentrant version of localtime.
* “mktime” on page 498 convert a tm structure to time_t type.

» “strftime” on page 499 formats time as a C string.

¢ “time” on page 505 determines a number of seconds from a set time.
* “tzset” on page 506 internalizes the time zone to that of the application.

Date and time

The time.h header file provides access to the computer system clock, date and time
conversion functions, and formatting functions.

Three data types are defined in time.h: clock_t, time_t, and tm.

MSL C Reference Version 10 485

y
A

time.h
Date and time

Type clock_t

The clock_t type is a numeric, system dependent type returned by the clock ()
function.

Type time_t

The time_t type is a system dependent type used to represent a calendar date and time.

Remarks

The type time_t’s range and precision are defined in the C standard as
implementation defined. The MSL C implementation uses an unsigned long for
time_t and it represents the number of UTC seconds since 1900 January 1. If his
value exceeds the size of the maximum value for unsigned long (ULONG_MAX =
4,294,967,295) the result is undefined. A value of greater than 136 for tm_year will
exceed this limit. Similarly, since time_t is unsigned, negative values for tm_year
are also out of range.

The ANSI/ISO C Standard does not specify a start date, therefore an arbitrarily
chosen Jan. 1, 1970 is used for the MSL C Library. These routines are not meant to
be intermixed with any specific API time functions. However some conversion
constants are available in the OS specific headers (e.g. time.mac.h).

486

MSL C Reference Version 10

time.h
Date and time

struct tm

The struct tm type contains a field for each part of a calendar date and time.

#include <time.h>
struct tm {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

Y

Remarks
See Table 39.1 for the tm structure members.

The tm_1isdst flag is positive if Daylight Savings Time is in effect, zero if it is
not, and negative if such information is not available.

This structure may not be implemented on all platforms.

Table 39.1 tm Structure Members

Field Description Range, min - max
int tm_sec Seconds after the minute 0-59

int tm_min Minutes after the hour 0-59

int tm_hour Hours after midnight 0-23

int tm_mday Day of the month 1-31

int tm_mon Months after January 0-11

int tm_year Up to 136 years after 1900 | 1900 - 2036

int tm_wday Days after Sunday 0-6

MSL C Reference Version 10 487

'
A

time.h

Date and time

Table 39.1 tm Structure Members (continued)

Field Description Range, min - max
int tm_yday Days after January 1 0-365
int tm_isdst Daylight Savings Time flag

tzname

The _tzname_ array contains the names (abbreviations) of the time zones for local
standard time and DST.

This function may not be implemented on all platforms.
#include <time.h>
extern char *tzname[2];

This function may not be implemented on all platforms.

See Also

“tzset” on page 506

asctime

Convert a tm structure to a character array.
#include <time.h>

char *asctime(const struct tm *timeptr);

Table 39.2 asctime

timeptr const struct tm * A pointer to a tm structure
that holds the time
information
Remarks

The asctime () function converts a tm structure, pointed to by t imeptr, to a
character array. The asctime () and ctime () functions use the same calendar

488

MSL C Reference Version 10

g |

time.h
Date and time

time format. This format, expressed as a strftime () format string is “%a %b
%e $H:%M: %S %$Y”.For example: Tue Apr 4 15:17:23 2000.

asctime () returns a null terminated character array pointer containing the
converted tm structure.

This function may not be implemented on all platforms.

See Also

“ctime” on page 492

“strftime” on page 499

Listing 39.1 Example of asctime() Usage

#include <time.h>
#include <stdio.h>

int main(void)

{
time_t systime;
struct tm *currtime;
systime = time (NULL) ;
currtime = localtime (&systime) ;
puts (asctime (currtime)) ;
return O;
}
Output:

Tue Nov 30 12:56:05 1993

asctime r

Reentrant function to convert a tm structure to a character array.
#include <time.h>

char * asctime_r (const struct tm * tm, char * s);

MSL C Reference Version 10 489

y
A

time.h
Date and time

Table 39.3 asctime_r

tm const struct tm * A pointer to a tm structure
that holds the time
information
s char* Storage for the time string
Remarks
The asctime_r () function provides a reentrant version of “asctime” on
page 488. The difference is that asctime () will return a pointer to the time
string, and that pointer is internal to the library implementation. For
asctime_xr (), the caller provides the storage for string s and the size of the
storage must be at least 26 characters long.
The asctime_r () function always returns the value of s.
This function may require extra library support.
This function may not be implemented on all platforms.
See Also

“‘asctime” on page 488

“ctime” on page 492

“strftime” on page 499

clock
A program relative invocation of the system time.
#include <time.h>
clock_t clock(void) ;
Remarks
This function is used to obtain values of type clock_t which may be used to
calculate elapsed times during the execution of a program. To compute the elapsed
time in seconds, divide the clock_t value by CLOCKS_PER_SEC, a macro
defined in time.h.
The programmer should be aware that clock_t, definedin time.h, hasa
finite size that varies depending upon the target system.
490

MSL C Reference Version 10

time.h
Date and time

The clock () function returns a clock_t type value representing the
approximation of time since the system was started. There is no error value

returned if an error occurs.

This function may not be implemented on all platforms.

Listing 39.2 Example of clock() Usage

#include <time.h>
#include <stdio.h>

int main()

{
clock_t start, end;
double secs = 0;
int stop = 0;

fprintf(stderr, "Press enter to start");
getchar () ;
start = clock();

while(stop != 'x'")

{

fprintf(stderr, "Press enter to terminate");

getchar () ;
end = clock();

secs = (double) (end - start) /CLOCKS_PER_SEC;
secs) ;

fprintf(stderr, "Elapsed seconds = %f \n",

fprintf (stderr, "Press enter to start again ");

fprintf (stderr, "or enter x to terminate: "y ;

stop = getchar () ;
start = clock();

}

printf ("\n** Program has terminated ** \n");
return O;

Output:

Press enter to start <enter>
Press enter to terminate <enter>
Elapsed seconds = 1.200000

Press enter to start again or enter x to terminate:

Press enter to terminate <enter>
Elapsed seconds = 1.033333

Press enter to start again or enter x to terminate:

<enter>

<x enter>

MSL C Reference Version 10

491

y
A

time.h
Date and time

** Program has terminated **

ctime

Convert a time_t type to a character array.
#include <time.h>

char *ctime(const time_t *timer) ;

Table 39.4 ctime

timer const time_t * The address of the time_t
variable

Remarks

The ctime () function converts a time_t type to a character array with the
same format as generated by asctime ().

ctime () returns a null terminated character array pointer containing the
converted time_t value.

This function may not be implemented on all platforms.

See Also

“‘asctime” on page 488

“strftime” on page 499

Listing 39.3 Example of ctime() Usage

#include <time.h>
#include <stdio.h>

int main(void)
{

time_t systime;

systime = time (NULL) ;
puts (ctime (&systime)) ;

return O;

492 MSL C Reference Version 10

time.h
Date and time

Output:
Wed Jul 20 13:3

2:17 1994

ctime_r

Convert a time_t type to a character array but reentrant safe.

#include <time.h>

char * ctime_r(const time_t * timer,

Table 39.5 ctime_r

char * s);

timer const time_t * The address of the time_t
variable
s char * The storage string
Remarks

The ctime_r () function provides the same service as “ctime” on page 492.
The difference is that ctime () would return a pointer to the time string, and
that pointer was internal to the library implementation. For ctime_xr (), the
caller provides the storage for string s and the size of the storage must be at least

26 characters long.

The ctime_xr () function always returns the value of s.

This function may require extra library support.

This function may not be implemented on all platforms.

See Also

“asctime” on page 488

“ctime” on page 492

“strftime” on page 499

MSL C Reference Version 10

493

y
A

time.h
Date and time

difftime

Compute the difference between two time_t types.

#include <time.h>

double difftime(time_t t1,

Table 39.6 difftime

time_t t2);

t1 time_t A time_t variable to
compare
t2 time_t A time_t variable to

compare

difftime () returns the difference of t1 minus t2 expressed in seconds.

This function may not be implemented on all platforms.

Listing 39.4 Example of difftime Usage

#include <time.h>
#include <stdio.h>

int main(void)

{
time_t tl1, t2;
struct tm *currtime;
double midnight;

time (&tl) ;

currtime = localtime (&tl);
currtime->tm_sec = 0;
currtime->tm min = 0;
currtime->tm_hour = 0;

currtime->tm_mday++;
t2 = mktime (currtime) ;

midnight = difftime(tl, t2);

printf ("There are %$f seconds until midnight.\n",

return O;

midnight) ;

494

MSL C Reference Version 10

time.h
Date and time

Output:
There are 27892.000000 seconds until midnight.

gmtime

Convert a time_ t value to Coordinated Universal Time (UTC), which is the new name
for Greenwich Mean Time.

#include <time.h>

struct tm *gmtime(const time_t *timer);

Table 39.7 gmtime

timer const time_t * The address of the time_t
variable

Remarks

The gmt ime function converts the calendar time pointed to by timer into a
broken-down time, expressed as UTC.

The gmtime () function returns a pointer to that object.

This function may not be implemented on all platforms.

See Also
“gmtime_r” on page 496

3

“localtime” on page 497

Listing 39.5 Example of gmtime Usage

#include <time.h>
#include <stdio.h>

int main(void)

{
time_t systime;
struct tm *utc;

systime = time (NULL) ;

MSL C Reference Version 10 495

y
A

time.h
Date and time

utc = gmtime (&systime) ;

printf ("Universal Coordinated Time:\n");
puts (asctime (utc)) ;

return O;

Output:
Universal Coordinated Time:
Thu Feb 24 18:06:10 1994

gmtime_r

Convert a time_t value to Coordinated Universal Time (UTC), which is the new name
for Greenwich Mean Time but is reentrant safe.

#include <time.h>

struct tm * gmtime_r (const time_t * timer, struct tm * tm);

Table 39.8 gmtime_r

timer const time_t * The address of the time_t
variable

tm struct tm * A storage location for the
converted time

Remarks

The gmtime_r () function provides the same service as “gmtime” on page 495.
The difference is that gmtime () would return a pointer to the converted time,
and that pointer was internal to the library implementation. For gmtime_xr (),
the caller provides the storage for the tm struct.

The gmtime_xr () function always returns the value of tm.
This function may require extra library support.

This function may not be implemented on all platforms.

See Also
“egmtime” on page 495

496 MSL C Reference Version 10

time.h
Date and time

localtime

Convert a time_t typetoa struct tm type.
#include <time.h>

struct tm *localtime(const time_t *timer);

Table 39.9 localtime

timer const time_t * The address of the time_t
variable

Remarks

The localtime () function converts a time_t type, pointed to by timer, and
returns it as a pointer to an internal struct tmtype. The struct tm pointer is
static;itis overwritten each time localtime () is called. For example usage,
see Listing 39.4.

localtime () converts timer and returns a pointer to a struct tm.
This function may not be implemented on all platforms.
See Also

“mktime” on page 498

localtime r

Convert a time_t typetoa struct tm type butis reentrant.

#include <time.h>

struct tm * localtime_r (const time_t * timer, struct tm * tm);

Table 39.10 localtime_r

timer const time_t * The address of the time_t
variable
tn struct tm * The storage location

MSL C Reference Version 10 497

3
4

y
A

time.h
Date and time

Remarks

The localtime_r () function provides the same service as “localtime” on
page 497 but is reentrant. The difference is that localtime () would return a
pointer to the converted time, and that pointer was internal to the library
implementation. For 1localtime_r (), the caller provides the storage for the tm
struct.

The localtime_r () function always returns the value of tm.
This function may require extra library support.

This function may not be implemented on all platforms.

See Also

3

‘localtime” on page 497
“mktime” on page 498

mktime

Convert a struct tmitem toa time_t type.

#include <time.h>

time_t mktime (struct tm *timeptr);

Table 39.11 mktime

timeptr struct tm * The address of the tm

structure

Remarks

The mktime () function converts a struct tmtype andreturnsitasa time_t
type. For example usage, see Listing 39.4.

The function also adjusts the fields in timeptr if necessary. The tm_sec,
tm_min, tm_hour, and tm_day are processed such that if they are greater than
their maximum, the appropriate carry-overs are computed. For example, if
timeptr->tm_minis 65, timeptr->tm_hour will be incremented by 1 and
timeptr->min will be set to 5.

The function also computes the correct values for timeptr->tm_wday and
timeptr->tm_yday.

mktime () returns the converted tm structure as a time_ t type.

This function may not be implemented on all platforms.

498

MSL C Reference Version 10

time.h
Date and time

See Also

3

‘localtime” on page 497

strftime

Format a tm structure.

#include <time.h>

size_t strftime(char *s, size_t maxsize,
const char *format,

const struct tm *timeptr) ;

Table 39.12 strftime

s char * A string to hold the
formatted time

maxsize size_t Max length of formatted
string

format const char * The format string

timeptr const struct tm* The address of the time
structure

Remarks

The strftime () function converts a tm structure to a character array using a
programmer supplied format.

The s argument is a pointer to the array to hold the formatted time.

The maxsize argument specifies the maximum length of the formatted character
array.

The timeptr argument points to a tm structure containing the calendar time to
convert and format.

The format argument points to a character array containing normal text and format
specifications similar toaprintf () function format string. Format specifiers are
prefixed with a percent sign (%). Doubling the percent sign ($%) will output a
single %.

If any of the specified values are outside the normal range, the characters stored are
unspecified.

MSL C Reference Version 10 499

y
A

time.h
Date and time

In the “C” locale, the E and O modifiers are ignored. Also, some of the formats are
dependent on the LC_TIME component of the current locale.

See Table 39.13 for a list of format specifiers.

Table 39.13 strftime() Conversion Characters

Character Description

a Locale’s abbreviated weekday name.
A Locale’s full weekday name.

b Locale’s abbreviated month name.

B Locale’s full month name.

[¢ The locale's appropriate date and time

representation equivalent to the format
string of “%A %B %d T %Y”.

C The year divided by 100 and truncated to
an integer, as a decimal number [00 - 99]

d Day of the month as a decimal number [01
- 311

D The month date year, equivalent to '%m/
%d/%y"

e The day of the month as a decimal
number; a single digit is preceded by a
space.

F The year, month and day separated by
hyphens, the equivalent to "%Y-%m-%d"

g The last 2 digits of the week-based year
asa

decimal number. For example: 03 99

G The week-based year as a decimal
number

h The month name, equivalent to "%b"

H The hour (24-hour clock) as a decimal

number from 00 to 23.

| The hour (12-hour clock) as a decimal
number from 01 to 12

500 MSL C Reference Version 10

time.h
Date and time

Table 39.13 strftime() Conversion Characters (continued)

Character Description

i The day of the year as a decimal number
from 001 to 366

m The month as a decimal number from 01
to 12.

M The minute as a decimal number from 00
to 59.

n A newline character

p Locale's equivalent of "am" or
"pm,

r The locale's 12-hour clock time, equivalent
of “%l:%M:%S %p”

R The hour, minute, equivalent to "%H:%M

S The second as a decimal number from 00
to 59.

t A horizontal-tab character

T The hour minute second, equivalent to
"%H:%M:%S'

u The weekday as a decimal number 1 to 7,
where Monday is 1.

U The week number of the year as a decimal
number from 00 to 53. Sunday is
considered the first day of the week.

w The weekday as a decimal number from 0
to 6. Sunday is (0) zero.

w The week of the year as a decimal number
from 00 to 51. Monday is the first day of
the week.

X The date representation of the current
locale, equivalent to “%A %B %d %Y”

X The time representation of the current
locale, equivalent to “%T”

MSL C Reference Version 10

501

y
A

time.h
Date and time

Table 39.13 strftime() Conversion Characters (continued)

Character Description

y The last two digits of the year as a decimal
number.

Y The year as a four digit decimal number.

z The time zone offset from UTC. for

example, -0430 is 4 hours 30 minutes
behind UTC. Or nothing if the time zone is
unknown.

Z The locale's time zone name or
abbreviation, or by no characters if no time
zone is unknown.

% The percent sign is displayed.

The strftime () function returns the total number of characters in the argument
‘s if the total number of characters including the null character in the string
argument ‘s’ is less than the value of ‘maxlen’ argument. If it is greater,
strftime () returns 0.

This function may not be implemented on all platforms.

Listing 39.6 Example of strftime() Usage

#include <time.h>
#include <stdio.h>
#include <string.h>

int main(void)

{

time_t lclTime;

struct tm *now;

char ts[256]; /* time string */

lclTime = time (NULL) ;
now = localtime (&lclTime) ;

strftime(ts, 256,
"Today's abr.name is %a", now) ;
puts(ts) ;

strftime(ts, 256,
"Today's full name is %A", now) ;

502 MSL C Reference Version 10

time.h
Date and time

puts(ts);

strftime(ts, 256,
"Today's aabr.month name is %b",
puts(ts) ;

strftime(ts, 256,
"Today's full month name is $%B",
puts(ts) ;

strftime(ts, 256,

now) ;

now) ;

"Today's date and time is %c",now) ;

puts(ts);

strftime(ts, 256,

"The day of the month is %d", now) ;
puts(ts) ;

strftime(ts, 256,

"The 24-hour clock hour is %H",now)
puts(ts) ;

strftime(ts, 256,

"The 12-hour clock hour is %H", now) ;
puts(ts) ;

strftime(ts, 256,

"Today's day number is %3j", now) ;
puts(ts) ;

strftime(ts, 256,

"Today's month number is %m", now);

puts(ts) ;

strftime(ts, 256,

"The minute is %$M", now) ;
puts(ts) ;

strftime(ts, 256,

"The AM/PM is %p", now);
puts(ts);

strftime(ts, 256,

"The second is %S", now);

puts(ts) ;

strftime(ts, 256,
"The week number of the year,\
starting on a Sunday is %U", now) ;

MSL C Reference Version 10

503

4
A

time.h
Date and time

puts(ts);

strftime(ts, 256,
"The number of the week is
puts(ts) ;

strftime(ts, 256, "The week
starting on a Monday is %W",
puts(ts);

strftime(ts, 256, "The date
puts(ts) ;

strftime(ts, 256, "The time
puts(ts);

strftime(ts, 256,

"The last two digits of the year are %y",

puts(ts) ;

strftime(ts, 256, "The year
puts(ts) ;

strftime(ts, 256, "%z",

if (strlen(ts) ==
printf ("The time
else

printf ("The time

0)

zone is

return O;

[
sW,

%s\n",

now) ;

number of the year,\
now) ;

is %x", now) ;

is %X", now) ;

now) ;

is %Y", now);

now) ;

zone cannot be determined\n") ;

ts);

Results
Today's
Today's
Today's
Today's
Today's
The day of the month is 05
The 24-hour clock hour is 10
The 12-hour clock hour is 10
Today's day number is 096
Today's month number is 04
The minute is 50

The AM/PM is am

The second is 44

The

abr.name is Wed

full name is Wednesday

aabr.month name is Apr

full month name is April

date and time is Wednesday April 05 10:50:44 2000

week number of the year,starting on a Sunday is 14

504

MSL C Reference Version 10

time.h
Date and time

The number of the week is 3
The week number of the year,starting on a Monday is

The date is Wednesday April 05 2000

The time is 10:50:44

The last two digits of the year are 00

The year is 2000

The time zone cannot be determined

14

time

Return the current system calendar time.

#include <time.h>

time_t time(time_t *timer);

Table 39.14 time

timer

time_t *

The address of the time_t
variable

Remarks

The time () function returns the computer system's calendar time. If timer is
not a null pointer, the calendar time is also assigned to the item it points to.

time () returns the system current calendar time.

This function may not be implemented on all platforms.

Listing 39.7 Example of time() Usage

#include <time.h>
#include <stdio.h>

int main(void)

{
time_t systime;
systime = time (NULL) ;

puts (ctime (&systime)) ;

return 0;

MSL C Reference Version 10

505

y
A

time.h
Non Standard <time.h> Functions

Output:
Tue Nov 30 13:06:47 1993

tzset

The function tzset() reads the value of the “TZ” environment variable and internalizes it
into the time zone functionality of the program.
#include <time.h>

void tzset (void);

Remarks

The function tzset() reads the value of the “TZ” environment variable and
internalizes it into the time zone functionality of the program.

This function may not be implemented on all platforms.
See Also

“tzname” on page 488

Non Standard <time.h> Functions

Various non standard functions are included in the header time.h for legacy source

code and compatibility with operating system frameworks and application programming
interfaces.

* For the function strdate see “strdate” on page 94. for a full description

e ‘“asctime r” on page 489 is a reentrant version of asctime

e ‘“ctime r” on page 493 is a reentrant version of ctime

e “omtime r” on page 496 is a reentrant version of gmtime

¢ “localtime r” on page 497 is a reentrant version of localtime

506 MSL C Reference Version 10

40
timeb.h

The timeb.h header file provides access to the computer system clock, date and time
conversion functions, and time formatting functions. Currently, this header is
implemented for Windows only.

Overview of timeb.h

This header file defines the facilities as follows:

e “struct timeb’” on page 507 lists the elements of the timeb structure.

* “ftime” on page 508 stores the current time in a buffer that the programmer can
allocate.

This struct is Windows x86 only at this time.

NOTE If you’re porting a UNIX or DOS program, you might also need the functions
in other UNIX compatibility headers.

See Also
“MSL Extras Library Headers” on page 4 for information on POSIX naming
conventions.

struct timeb

The timeb struct is used to store the time of a milliseconds timer, timezone, and timezone
flag.

Table 40.1 timeb Structure Members

Field Description

time_t time A type used to represent calendar date and
time See “Type time_t" on page 486

unsigned short millitm Current time in milliseconds

MSL C Reference Version 10 507

'
A

timeb.h
Overview of timeb.h

Table 40.1 timeb Structure Members (continued)

Field Description

short timezone The difference, in minutes, between local
time and Greenwich Mean time

short dstflag True if daylight savings time is in effect

Remarks

The dstflag flag is true if the daylight savings time is in effect

This structure may not be implemented on all platforms.

ftime
The function ftime and _ftime gets the current time and stores it in a struct that is allocated
by the programmer.
#include <timeb.h>
void ftime(struct timeb * timebptr);

void _ftime(struct timeb * timebptr) ;

Table 40.2 ftime

timebptr struct timeb * A pointer to a timeb
structure that holds the
time information

Remarks
The elements of the struct timeb are listed in Table 40.1.

This function may not be implemented on all platforms.

See Also

“ctime” on page 492.

Listing 40.1 Example of ftime Usage

#include <sys\timeb.h>
#include <stdio.h>

508 MSL C Reference Version 10

g |

timeb.h
Overview of timeb.h

int main()

{
struct timeb tbuf;
ftime(&tbuf) ;

printf ("Time is %s",

return O;

ctime (&tbuf.time)) ;

MSL C Reference Version 10

509

A 4
4\

timeb.h
Overview of timeb.h

510 MSL C Reference Version 10

41
unistd.h

The header file unistd.h contains several functions that are useful for porting a
program from UNIX.

Overview of unistd.h

The header file unistd.h contains several functions that are useful for porting a
program from UNIX. These functions are similar to the functions in many UNIX libraries.
However, since the UNIX and other operating systems have some fundamental
differences, they cannot be identical. The descriptions of the functions explain the
differences.

This header file defines the facilities as follows:

* “access” on page 512 determines the files accessibility.

* ‘“chdir” on page 513 changes the directory.

¢ “close” on page 515 closes a file opened with open.

e ‘“cuserid” on page 518 retrieves the current user’s ID.

¢ “cwait” on page 519 instructs to wait for a process to end.

3

* “dup” on page 520 duplicates a file handle.

* “dup2” on page 520 duplicates a file handle unto an existing handle.

» ‘“exec functions” on page 521 executes programs from within a program.

* “getcwd” on page 523 gets the current working directory.

» ‘“getlogin” on page 524 returns a login name.

* “getpid” on page 525 returns the process ID.

e ‘““isatty” on page 526 determines if a file ID is attached to a terminal.

¢

* “Iseek” on page 527 seeks a position on a file stream.
* “read” on page 528 reads when opened with open.

¢ “rmdir” on page 529 removes a directory or folder.

* “sleep” on page 532 pauses a program.

* “spawn functions” on page 533 spawns a child process.

e “ttyname” on page 534 determines a terminal ID.

MSL C Reference Version 10 511

3
4

'
A

unistd.h

Overview of unistd.h

* “unlink” on page 535 deletes a file.
» ‘“write” on page 536 writes to a binary file stream.

unistd.h and UNIX Compatibility

Generally, you don’t want to use these functions in new programs. Instead, use their
counterparts in the native APL

NOTE If you’re porting a UNIX or DOS program, you might also need the functions
in other UNIX compatibility headers.

See Also

Table 1.1 for information on POSIX naming conventions.

access

Determines the files accessibility.
#include <unistd.h>

int access (const char *fname, int mode) ;

Table 41.1 access

fname const char * The file to check
mode int The file mode to test for
Remarks

If the access is allowed then zero is returned. A negative number is returned if the
access is not allowed.

This function may not be implemented on all platforms.

Table 41.2 lists the file modes that may be tested.

512

MSL C Reference Version 10

unistd.h

Overview of unistd.h
Table 41.2 Access Test Modes
Macro Description
F_OK Test for existence of file
R_OK Test for read permission
W_OK Test for write permission
X_OK Test for execute permission
See Also
“creat, _wcreate” on page 118
“open. _wopen’ on page 121
“close” on page 515
chdir
Change the current directory.
#include <unistd.h>
int chdir (const char *path);
int _chdir (const char *path);
Table 41.3 chdir
path char* The new pathname

Remarks

The function chdir () is used to change from one directory to a different
directory or folder. For example usage, see Listing 41.1.

chdir () returns zero, if successful. If unsuccessful chdir () returns negative
one and sets errno.

This function may not be implemented on all platforms.

See Also
“errno” on page 75

MSL C Reference Version 10 513

y
A

unistd.h
Overview of unistd.h

Listing 41.1 Example of chdir() Usage

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <stat.h>

#define SIZE FILENAME_MAX
#define READ_OR_WRITE 0x0 /* fake a UNIX mode */

int main(void)

{

char folder[SIZE];
char curFolder[SIZE];
char newFolder [SIZE];
int folderExisted = 0;

/* Get the name of the current folder or directory */
getcwd(folder, SIZE);
printf ("The current Folder is: %s", folder);

/* create a new sub folder */
/* note mode parameter ignored on Mac */
sprintf (newFolder, "$s%s", folder, "Sub");
if(mkdir (newFolder, READ_OR_WRITE) == -1)
{
printf ("\nFailed to Create folder");
folderExisted = 1;
}

/* change to new folder */

if(chdir(newFolder))

{
puts ("\nCannot change to new folder");
exit (EXIT_FAILURE) ;

}

/* show the new folder or folder */
getcwd (curFolder, SIZE);
printf ("\nThe current folder is: %s", curFolder);

/* go back to previous folder */

if(chdir(folder))

{
puts ("\nCannot change to old folder");
exit (EXIT_FAILURE) ;

514 MSL C Reference Version 10

g |

unistd.h

Overview of unistd.h

/* show the new folder or folder */
getcwd (curFolder, SIZE);
printf ("\nThe current folder is again: %s", curFolder);

if (!'folderExisted)
{
/* remove newly created directory */
if (rmdir (newFolder))
{
puts ("\nCannot remove new folder");
exit (EXIT_FAILURE) ;
}
else
puts ("\nNew folder removed") ;

/* attempt to move to non-existant directory */
if (chdir (newFolder))
puts ("Cannot move to non-existant folder");
}

else puts ("\nPre-existing folder not removed");

return 0;

Output

The current Folder is: Macintosh HD:C Reference:

The current folder is: Macintosh HD:C Reference:Sub:

The current folder is again: Macintosh HD:C Reference:

New folder removed

Cannot move to non-existant folder

For Windows, refer to “Example of rmdir() Usage” on page 530.

close

Close an open file.
#include <unistd.h>

int close(int fildes) ;

Table 41.4 close

fildes int The file descriptor

MSL C Reference Version 10

515

y
A

unistd.h

Overview of unistd.h

Listing 41.2 Example of close() Usage

Remarks

The close () function closes the file specified by the argument. This argument is
the value returned by open () . For example usage, see Listing 41.2.

If successful, close () returns zero. If unsuccessful, close () returns negative

one and sets errno.

This function may not be implemented on all platforms.

See Also

“open. _wopen” on page 121

“fclose” on page 304

“errno” on page 75

#include
#include
#include
#include
#include

#define SIZE FILENAME_MAX

<stdio.h>
<stdlib.h>
<fcntl.h>
<string.h>
<unistd.h>

#define MAX 1024

char fname[SIZE] =

int main(void)

{

int fdes;
char temp [MAX];

char *Don =

char *Quixote =

gentlemen,

/* NULL terminate temp array for printf */
memset (temp,

/* open a file */

"DonQ. txt";

"\O"',

"In a certain corner of la Mancha, the name of\n\
which I do not choose to remember, ...
"there lived\none of those country\
who adorn their\nhalls with rusty lance\
and worm-eaten targets.";

if((fdes = open(fname, O_RDWR | O_CREAT))== -1)

{

perror ("Error

516

MSL C Reference Version 10

unistd.h
Overview of unistd.h

printf ("Can not open %s", fname);
exit(EXIT_FAILURE) ;
}

/* write to a file */

if(write(fdes, Don, strlen(Don)) == -1)
{
printf("%$s Write Error\n", fname);
exit(EXIT_FAILURE);
}
/* move back to over write ... characters */
if(lseek(fdes, -3L, SEEK _CUR) == -1L)
{
printf ("Seek Error");
exit (EXIT _FAILURE);
}

/* write to a file */
if(write(fdes, Quixote, strlen(Quixote)) == -1)
{
printf ("Write Error");
exit(EXIT_FAILURE);
}

/* move to beginning of file for read */
if(lseek(fdes, 0L, SEEK_SET) == -1L)
{

printf ("Seek Error");

exit(EXIT_FAILURE);
}

/* read the file */
if(read(fdes, temp, MAX) == 0)
{
printf ("Read Error");
exit (EXIT _FAILURE) ;
}

/* close the file */
if(close(fdes))
{
printf ("File Closing Error");
exit(EXIT_FAILURE);

puts (temp) ;

MSL C Reference Version 10 517

y
A

unistd.h
Overview of unistd.h

return 0;

Result

In a certain corner of la Mancha, the name of
which I do not choose to remember, there lived
one of those country gentlemen, who adorn their
halls with rusty lance and worm-eaten targets.

cuserid

Retrieve the current user’s ID.
#include <unistd.h>

char *cuserid(char *string) ;

Table 41.5 cuserid

string char* The user ID as a string

Remarks

The function cuserid () returns the user name associated with the current
process. If the string argument is NULL, the file name is stored in an internal
buffer. If it is not NULL, it must be at least FILENAME_MAX large. For example

usage, see Listing 41.3.

For the MacOS, the login name is returned.

cuserid () returns a character pointer to the current user’s ID.
For the MacOS, the users name is set using the sharing control panel

This function may not be implemented on all platforms.

Listing 41.3 Example of cuserid() Usage

#include <stdio.h>
#include <unistd.h>

int main(void)

{

char *c_id = NULL;

printf ("The current user ID is %s\n",cuserid(c_id));

518 MSL C Reference Version 10

unistd.h
Overview of unistd.h

return O;

Result
The current user ID is CodeWarror

cwait

Wait for a process to terminate.
#include <unistd.h>
int cwait(int *termstat, int pid, int action);

int _cwait(int *termstat, int pid, int action);

Table 41.6 cwait

termstat int The termination status

pid int Process ID

action int The action is ignored
Remarks

The process exit code is returned.

Windows compatible function.

See Also

“exec functions” on page 521

“spawn functions” on page 533

MSL C Reference Version 10

519

'
A

unistd.h
Overview of unistd.h

dup

Duplicates a file handle.
#include <io.h>
int dup(int _a);

int _dup(int _a);

Table 41.7 dup

a int A file handle to duplicate

Remarks

Creates a new file handle for an open file with the same attributes as the original
file handle.

Anew file handle is returned upon success or a negative one otherwise.

This function may not be implemented on all platforms.

See Also

“dup2” on page 520

dup2

Duplicates a file handle unto an existing handle.
#include <io.h>
int dup2(int _a, int _b);

int _dup2(int _a, int _b);

Table 41.8 dup2

_a int A file handle to duplicate

_b int An existing file handle

520 MSL C Reference Version 10

unistd.h
Overview of unistd.h

Remarks

Associates a file handle for an open file with the same attributes as the original file
handle. If the file associated with the second argument is open when _dup?2 is
called, the old file is closed.

Zero is returned upon success and a negative one upon failure.

This function may not be implemented on all platforms.

See Also
“dup” on page 520

exec functions

Load and execute a child process within the current program memory.

The suffix on the exec name determines the method that the child process operates.
* P will search the path variable
¢ L is used for known argument lists number
* Vis for an unknown argument list number

* E allows you to alter an environment for the child process

exec

#include <unistd.h>
int exec (const char *path, ...);

int _exec(const char *path, ...);

execl

int execl (const char *path, ...);

int _execl (const char *path, ...);

execle

int execle(const char *path, ...);

int _execle(const char *path, ...);

MSL C Reference Version 10 521

y
A

unistd.h
Overview of unistd.h

execlp

int execlp(const char *path, ...);

int _execlp(const char *path, ...);

execv

int execv(const char *path, ...);

int _execv(const char *path, ...);

execve

int execve(const char *path, ...);
int _execve(const char *path, ...);
excevp

int excevp (const char *path, ...);

int _excevp (const char *path, ...);

Table 41.9 excevp

path const char * The commandline
pathname to execute

A variable list of arguments

Remarks

Launches the application named and then quits upon successful launch. For
example usage, see Listing 41.4.

If successful exec () returns zero. If unsuccessful exec () returns negative one
and sets errno according to the error.

These functions may not be implemented on all platforms.

See Also

“Overview of errno.h” on page 75

Listing 41.4 Example of exec() Usage

#include <stdio.h>

522 MSL C Reference Version 10

unistd.h
Overview of unistd.h

#include <unistd.h>

#define SIZE FILENAME_MAX
char appName[SIZE] = "SimpleText";

int main(void)

{
printf ("Original Program\n") ;
exec (appName) ;
printf ("program terminated"); /* not displayed */
return O;
}
result

Display "Original Program"
after the close of the program the SimpleText application is launched

getcwd

Get the current directory.
#include <unistd.h>
char *getcwd(char *buf, int size);

char *_getcwd(char *buf, int size);

Table 41.10 getcwd

buf char A buffer to hold the
pathname of the current
working directory

size int The size of the buffer

Remarks

The function getcwd () takes two arguments. One is a buffer large enough to
store the full directory pathname, the other argument is the size of that buffer. For
example usage, see Listing 41.1.

If successful, getcwd () returns a pointer to the buffer. If unsuccessful,
getcwd () returns NULL and sets errno.

MSL C Reference Version 10 523

4
A

unistd.h
Overview of unistd.h
This function may not be implemented on all platforms.
See Also
“Overview of errno.h” on page 75
getlogin

Retrieve the username that started the process.
#include <unistd.h>

char *getlogin(void) ;

Remarks

The function getlogin () retrieves the name of the user who started the
program. For example usage, see Listing 41.5.

The Mac doesn't have a login, so this function returns the Owner Name from the
File Sharing Setup Control Panel

getlogin () returns a character pointer.

This function may not be implemented on all platforms.

Listing 41.5 Example of getlogin() Usage

#include <stdio.h>
#include <unistd.h>

int main(void)

{
printf ("The login name is %s\n", getlogin());
return O;
}
result

The login name is CodeWarrior

524 MSL C Reference Version 10

unistd.h

Overview of unistd.h
getpid
Retrieve the process identification number.
#include <unistd.h>
Table 41.11 getpid() Macros
Macro Represents
#define getpid() Process ID

#define getppid()

Parent process ID

#define getuid()

Real user ID

#define geteuid()

Effective user ID

#define getgid()

Real group ID

#define getegid()

Effective group 1D

#define getpgrp()

Process group ID

Remarks

The getpid () function returns the unique number (Process ID) for the
calling process. For example usage, see Listing 41.6.

getpid () returns an integer value.

These various related getpid () type functions don't really have any meaning on
the Mac. The values returned are those that would make sense for a typical user

process under UNIX.

getpid () always returns a value. There is no error returned.

This function may not be implemented on all platforms.

Listing 41.6 Example of getpid() Usage

#include <stdio.h>
#include <unistd.h>

int main(void)

{

printf ("The process ID is %d\n", getpid());

MSL C Reference Version 10

525

y
A

unistd.h

Overview of unistd.h

return 0;

Result

The process ID is 9000

isatty

Determine a specified file_id
#include <unistd.h>
int isatty(int fildes) ;

int _isatty(int fildes);

Table 41.12 isatty

fildes int The file descriptor

Remarks

The function isatty () determines if a specified £ile_1id is attached to the
console, or if re-direction is in effect. For example usage, see Listing 41.7.

isatty () returns a non-zero value if the file is attached to the console. It returns
zero if Input/Output redirection is in effect.

This function may not be implemented on all platforms.

See Also

“ccommand” on page 41

Listing 41.7 Example of isatty() ttyname() Usage

#include
#include
#include
#include

<console.h>
<stdio.h>
<unistd.h>
<unix.h>

int main(int argc, char **argv)

{

int 1i;

int file_id;

526

MSL C Reference Version 10

unistd.h
Overview of unistd.h

argc = ccommand (&argv) ;

file_id = isatty(fileno(stdout)) ;
if(!file_id)
{
for (i=0; 1 < argc; 1i++)
printf ("command line argument [%d] = %s\n",
i, argvl[il);
}

else printf ("Output to window") ;

printf ("The associated terminal is %s",
ttyname (file_id));

return O;

Result if file redirection is chosen using the command line arguments
Freescale CodeWarrior.
Written to file selected:

command line argument [0] = CRef
command line argument [1] = Freescale
command line argument [2] CodeWarrior
The associated terminal is SIOUX

Iseek

Seek a position on a file stream.
#include <unistd.h>

long lseek(int fildes, long offset, int origin);

Table 41.13 Iseek

fildes int The file descriptor

offset long The offset to move in bytes

origin int The starting point of the
seek

MSL C Reference Version 10 527

'
A

unistd.h
Overview of unistd.h

Remarks

The function 1seek () sets the file position location a specified byte offset from a
specified initial location. For example usage, see Listing 41.2.

The origin of the offset must be one of the positions listed in Table 41.14

Table 41.14 The Iseek Offset Positions

Macro Meaning
SEEK_SET Beginning of file
SEEK_CUR Current Position
SEEK_END End of File

If successful, 1seek () returns the absolute offset as the number of bytes from
the beginning of the file after the seek has occurred. If unsuccessful, it returns a
value of negative one long integer.

This function may not be implemented on all platforms.

See Also

“fseek” on page 341

3

‘ftell” on page 344

“open. _wopen” on page 121

read

Read from a file stream that has been opened in binary mode for unformatted Input/
Output.
#include <unistd.h>

int read(int fildes, char *buf, int count);

Table 41.15 read

fildes int The file descriptor

528 MSL C Reference Version 10

unistd.h

Overview of unistd.h
Table 41.15 read (continued)
buf char * A buffer to store the data
read
count int The maximum size in bytes
to read

Remarks

The function read () copies the number of bytes specified by the count argument,
from the file to the character buffer. File reading begins at the current position. The
position moves to the end of the read position when the operation is completed.

NOTE This function should be used in conjunction with unistd.h:write (), and
fentl.h:open () only.

read () returns the number of bytes actually read from the file. In case of an error
a value of negative one is returned and errno is set.

This function may not be implemented on all platforms.

See Also

“fread” on page 331

“open. _wopen” on page 121

For example of read() usage, see Listing 41.2.

rmdir

Delete a directory or folder.
#include <unistd.h>

int rmdir (const char *path);

Table 41.16 rmdir

path const char * The pathname of the

directory being removed

Remarks

The rmdir () function removes the directory (folder) specified by the argument.

MSL C Reference Version 10 529

y
A

unistd.h
Overview of unistd.h

If successful, rmdir () returns zero. If unsuccessful, rmdir () returns negative
one and sets errno.

This function may not be implemented on all platforms.

See Also

“mkdir” on page 275
“errno” on page 75

Listing 41.8 Example of rmdir() Usage

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <stat.h>

#define SIZE FILENAME_MAX
#define READ_OR_WRITE 0x0 /* fake a UNIX mode */

int main(void)

{

char folder[SIZE];
char curFolder[SIZE];
char newFolder [SIZE];
int folderExisted = 0;

/* Get the name of the current folder or directory */
getcwd(folder, SIZE);
printf ("The current Folder is: %s", folder);

/* create a new sub folder */
/* note mode parameter ignored on Mac */
sprintf (newFolder, "$s%s", folder, ".\\Sub");
if(mkdir (newFolder, READ_OR_WRITE) == -1)
{
printf ("\nFailed to Create folder");
folderExisted = 1;
}

/* change to new folder */

if(chdir(newFolder))

{
puts ("\nCannot change to new folder");
exit (EXIT_FAILURE) ;

}

/* show the new folder or folder */

530 MSL C Reference Version 10

g |

unistd.h
Overview of unistd.h

getcwd (curFolder, SIZE);
printf ("\nThe current folder is: %s", curFolder);

/* go back to previous folder */

if(chdir(folder))

{
puts ("\nCannot change to old folder");
exit (EXIT_FAILURE) ;

}

/* show the new folder or folder */
getcwd (curFolder, SIZE);
printf ("\nThe current folder is again: %s", curFolder);

if (!'folderExisted)
{
/* remove newly created directory */
if (rmdir (newFolder))
{
puts ("\nCannot remove new folder");
exit (EXIT_FAILURE) ;
}
else
puts ("\nNew folder removed") ;

/* attempt to move to non-existant directory */
if (chdir (newFolder))
puts ("Cannot move to non-existant folder");

}

else puts ("\nPre-existing folder not removed");

return O;
}
Output
The current Folder is: C:\Programming\CW\Console
The current folder is: C:\Programming\CW\Console\Sub
The current folder is again: C:\Programming\CW\Console
New folder removed
Cannot move to non-existant folder
For Macintosh, refer to“Example of chdir Usage” on page 514.

MSL C Reference Version 10 531

y
A

unistd.h
Overview of unistd.h

sleep

Delay program execution for a specified number of seconds.
#include <unistd.h>

unsigned int sleep(unsigned int sleep);

Table 41.17 sleep

sleep unsigned int The length of time in
seconds

Remarks

The function sleep () delays execution of a program for the time indicated by
the unsigned integer argument. For the Macintosh system there is no error value
returned. For example usage, see Listing 41.9.

The function sleep () returns zero.

This function may not be implemented on all platforms.

Listing 41.9 Example of sleep() Usage

#include <stdio.h>
#include <unistd.h>

int main(void)

{
printf ("Output to window\n");
fflush(stdout); /* needed to force output */
sleep(3);
printf ("Second output to window") ;
return 0;

}

Result

Output to window
< there is a delay now >

532 MSL C Reference Version 10

unistd.h
Overview of unistd.h

Second output to window

spawn functions

The spawn family of functions create and run other processes (child processes). The
suffix on the spawn name determines the method that the child process operates.

¢ P will search the path variable

¢ L is used for known argument lists number

¢ Vs for an unknown argument list number

* E allows you to alter an environment for the child process

spawnl

int spawnl (int,const char *, ...);

int _spawnl (int,const char *, ...);

spawnv

int spawnv (int,const char *,const char *const*);

int _spawnv (int,const char *,const char *const*);

spawnle

int spawnle(int,const char *,...);

int _spawnle(int,const char *,...);

spawnve

int spawnve (int,const char *,const char *const*, const char
const) ;

int _spawnve (int,const char *,const char *const*, const char
const™) ;

spawnlp

int spawnlp (int,const char *,...);

int _spawnlp(int,const char *,...);

MSL C Reference Version 10 533

y
A

unistd.h

Overview of unistd.h

spawnvp

int spawnvp (int,const char *,const char *const *);

int _spawnvp (int,const char *,const char *const *);

spawnlpe

int spawnlpe (int,const char *, ...

int _spawnlpe (int,const char *,...

spawnvpe

int spawnvpe (int,const char *,const char *const *, const char

const) ;

int _spawnvpe (int,const char *,const char *const *, const char

const) ;

Remarks

All spawn functions take a variable argument list as a parameter.

The child process’s exit status is returned.

These functions may not be implemented on all platforms.

See Also

“exec functions” on page 521

ttyname

Retrieve the name of the terminal associated with a file ID.

#include <unistd.h>

char *ttyname (int fildes);

Table 41.18 ttyname

fildes

int

The file descriptor

534

MSL C Reference Version 10

unistd.h
Overview of unistd.h

Remarks

The function ttyname () retrieves the name of the terminal associated with the
file ID. For example usage, see Listing 41.7.

ttyname () returns a character pointer to the name of the terminal associated
with the file ID, or NULL if the file ID doesn't specify a terminal.

This function may not be implemented on all platforms.

unlink

Delete (unlink) a file.
#include <unistd.h>

int unlink (const char *path);

Table 41.19 unlink

path const char * A pathname of the file to
remove

Remarks

The function unlink () removes the specified file from the directory. For
example usage, see Listing 41.10.

If successful, unlink () returns zero. If unsuccessful, it returns a negative one.

This function may not be implemented on all platforms.

See Also

“rmdir” on page 529

“mkdir” on page 275

Listing 41.10 Example of unlink() Usage

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#define SIZE FILENAME_MAX

int main(void)

{

MSL C Reference Version 10 535

wr
4\

unistd.h
Overview of unistd.h

FILE *fp;
char fname[SIZE] = "Test.txt";

/* create a file */

if((fp =fopen(fname,"w")) == NULL)

{
printf ("Can not open %s for writing", fname);
exit(EXIT_FAILURE) ;

}

else printf("%$s was opened for writing\n", fname) ;

/* display it is available */
if(!fclose(fp)) printf("%s was closed\n", fname) ;

/* delete file */

if (unlink(fname))

{
printf ("%$s was not deleted", fname) ;
exit (EXIT _FAILURE);

}

/* show it can't be re-opened */
if((fp =fopen(fname,"r")) == NULL)
{
printf ("Can not open %s for reading it was deleted",
fname) ;
exit(EXIT_FAILURE) ;
}

else printf("%$s was opened for reading\n", fname) ;

return 0;

Result

Test.txt was opened for writing

Test.txt was closed

Can not open Test.txt for reading it was deleted

write

Write to a file stream that has been opened in binary mode for unformatted output.
#include <unistd.h>

int write(int fildes, const char* buf, size_t count)

536 MSL C Reference Version 10

unistd.h

Overview of unistd.h
Table 41.20 write
fildes int The file descriptor
buf const char * The address of the buffer

being written

count size_t The size of the buffer being
written

Remarks

The function write () copies the number of bytes in the count argument from
the character array buffer to the file £i1des. The file position is then incremented
by the number of bytes written. For example usage, see Listing 41.2.

This function should be used in conjunction with “read” on page 528, and “open,
wopen” on page 121 only.

write () returns the number of bytes actually written.

This function may not be implemented on all platforms.

See Also

“fwrite” on page 347

“read” on page 528
“open. _wopen” on page 121

MSL C Reference Version 10 537

A 4
4\

unistd.h
Overview of unistd.h

538 MSL C Reference Version 10

42

unix.h

The unix.h header file contains two global variables.

Overview of unix.h

The header file unix . h contains two global variables that are useful for console interface
programs for setting a Mac OS file creator and file type.

The globals variables in unix.h are as follows:

e fcreator” on page 539 sets a Macintosh file creator.

e “ ftype” on page 540 sets a Macintosh file type.

UNIX Compatibility

Generally, you don’t want to use these functions in new programs. Instead, use their
counterparts in the native APL

NOTE If you're porting a UNIX or DOS program, you might also need the functions
in other UNIX compatibility headers.

_fcreator

To specify a Macintosh file creator.
#include <unix.h>

extern long _fcreator

Remarks

Use the global _fcreator to set the creator type for files created using the
Standard C Libraries. For example usage, see Listing 42.1.

This global identifier is Macintosh Only

MSL C Reference Version 10 539

y
A

unix.h
Overview of unix.h

_ftype

To specify a Macintosh file type.
#include <unix.h>

extern long _ftype;

Remarks

Use the global _ftype to set the creator type for files created using the Standard C
Libraries. For example usage, see Listing 42.1.

The value assigned to _fcreate and _ftype is a ResType (i.e. four character
constant).

This global identifier is Macintosh only

Listing 42.1 Usage of Global Variables to Set file Creator and Type

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unix.h>

#define oFile "test file"
const char *str = "CodeWarrior Software at Work";

int main(void)

{
FILE *fp;
_fcreator = 'ttxt';
_ftype = 'TEXT';

// create a new file for output and input
if ((fp = fopen(oFile, "w+")) == NULL)
{
printf("Can't create file.\n");
exit (1) ;
}

fwrite(str, sizeof(char), strlen(str), fp);
fclose (fp) ;

return O;

540 MSL C Reference Version 10

g |

unix.h
Overview of unix.h
// output to the file using fwrite()
CodeWarrior Software at Work
MSL C Reference Version 10 541

A 4

4\
unix.h
Overview of unix.h
542

MSL C Reference Version 10

43

utime.h

The utime.h header file contains several functions that are useful for porting a program
from UNIX.

Overview of utime.h

The header file utime . h contains several functions that are useful for porting a program
from UNIX. These functions are similar to the functions in many UNIX libraries.
However, since the UNIX and Macintosh operating systems have some fundamental
differences, they cannot be identical. The descriptions of the functions tell you what the
differences are.

This header file defines the facilities as follows:
e “utime” on page 543 sets a file modification time.

e ‘“‘utimes” on page 546 sets a series of file modification times.

utime.h and UNIX Compatibility

Generally, you don’t want to use these functions in new programs. Instead, use their
counterparts in the native APL

NOTE If you’re porting a UNIX or DOS program, you might also need the functions
in other UNIX compatibility headers.

See Also

Table 1.1 for information on POSIX naming conventions.

utime

Sets a file’s modification time.
#include <utime.h>

int utime(const char *path, /* Mac */ const struct utimbuf

MSL C Reference Version 10 543

'
A

utime.h

Overview of utime.h

Table 43.1 utime

*buf) ;
int utime (const char *path, /* Windows */ struct utimbuf
*buf) ;
path const char * The pathname as a string
buf const struct utimbuf * The address of a struct
struct utimbuf that will hold a file’s time
information
Remarks

This function sets the modification time for the file specified in path. Since the
Macintosh does not have anything that corresponds to a file’s access time, it
ignores the actime field in the utimbuf structure.

If buf is NULL, utime () sets the modification time to the current time. If buf
points to a ut imbuf structure, utime () sets the modification time to the time
specified in the modt ime field of the structure.

The utimbuf structures contains the fields in Table 43.2.

Table 43.2 The utimbuf Structure

This field... is the...

time_t actime Access time for the file.
Since the Macintosh has
nothing that corresponds
to this, utime () ignores
this field.

time_t modtime The last time this file was
modified.

If it is successful, utime () returns zero. If it encounters an error, utime ()
returns -1 and sets errno.

This function may not be implemented on all platforms.

See Also

“ctime” on page 492

“mktime” on page 498

544

MSL C Reference Version 10

utime.h
Overview of utime.h

3

“fstat” on page 273
“stat” on page 276
“utimes” on page 546

Listing 43.1 Example for utime() Usage

#include <stdio.h>
#include <stdlib.h>
#include <unix.h>

int main(void)

{

struct utimbuf timebuf;
struct tm date;
struct stat info;

FILE * fp;
fp = fopen("mytest", "w");
if (! fp)

{
fprintf (stderr, "Could not open file");
exit (EXIT_FAILURE) ;

}
fprintf (fp, "test");
fclose (fp) ;

/* Create a calendar time for
Midnight, Apr. 4, 1994. */

date.tm_sec=0; /* Zero seconds */
date.tm_min=0; /* Zero minutes */
date.tm_hour=0; /* Zero hours */
date.tm_mday=4; /* 4th day */
date.tm_mon=3; /* .. of April */
date.tm_year=94; /* ...in 1994 */
date.tm_isdst=-1; /* Not daylight savings */
timebuf.modtime=mktime (&date) ;

/* Convert to calendar time. */

/* Change modification date to *

* midnight, Apr. 4, 1994. */
utime ("mytest", &timebuf);
stat ("mytest", &info);
printf ("Mod date is %s", ctime(&info.st_mtime));

/* Change modification date *
* to current time */

utime ("mytest", NULL) ;

stat ("mytest", &info);

MSL C Reference Version 10 545

'
A

utime.h
Overview of utime.h

printf ("Mod date is %s", ctime(&info.st_mtime));

return O;

This program might display the following to standard output:
Mod date is Mon Apr 4 00:00:00 1994
Mod date is Mon Jul 10 17:45:17 2000

utimes

Sets a file’s modification time
#include <utime.h>

int utimes (const char *path, struct timeval buf[2]);

Table 43.3 utimes

path const char * The pathname as a string

buf timeval struct array An array of time values
used to set the
modification dates

Remarks

This function sets the modification time for the file specified in path to the second
element of the array bu £. Each element of the array buf is a timeval structure,
which has the fields in Table 43.4.

Table 43.4 The timeval Structure

This field is the
intt tv_sec Seconds
int tv_usec Microseconds. Since the

Macintosh does not use
microseconds, utimes ()
ignores this.

The first element of buf is the access time.

546 MSL C Reference Version 10

utime.h
Overview of utime.h

Since the Macintosh does not have anything that corresponds to a file’s access
time, it ignores that element of the array.

If it is successful, utimes () returns 0. If it encounters an error, utimes ()
returns -1 and sets errno.

This function may not be implemented on all platforms.

See Also
“utime” on page 543

“ctime” on page 492
“mktime” on page 498
“fstat” on page 273
“stat” on page 276

Listing 43.2 Example for utimes() Usage

#include <stdio.h>
#include <unix.h>
#include <time.h>

int main(void)

{
struct tm date;
struct timeval buf[2];
struct stat info;

/* Create a calendar time for
Midnight, Sept. 9, 1965.%*/

date.tm_sec=0; /* Zero seconds */
date.tm_min=0; /* Zero minutes */
date.tm_hour=0; /* Zero hours */
date.tm_mday=9; /* 9th day */
date.tm_mon=8; /* .. of September */
date.tm_year=65; /* ...in 1965 */
date.tm_isdst=-1; /* Not daylight savings */
buf[1l].tv_sec=mktime (&date) ;

/* Convert to calendar time. */

/* Change modification date to *

* midnight, Sept. 9, 1965. */
utimes ("mytest", buf);
stat ("mytest", &info);
printf ("Mod date is %s", ctime(&info.st_mtime));

MSL C Reference Version 10

547

y
A

utime.h
Overview of utime.h

return 0;

This program prints the following to standard output:
Mod date is Thu Sep 9 00:00:00 1965

548 MSL C Reference Version 10

44

utsname.h

The ut sname . h header file contains several functions that are useful for porting a
program from UNIX.

Overview of utsname.h

These ut sname . h functions are similar to the functions in many UNIX libraries.
However, since the UNIX and Macintosh operating systems have some fundamental
differences, they cannot be identical. The descriptions of the functions tell you the
differences.

The header utsname.h has one function: “uname” on page 549, which retrieves
information on the system you are using.

utsname.h and UNIX Compatibility

Generally, you don’t want to use these functions in new programs. Instead, use their
counterparts in the Macintosh Toolbox.

NOTE If you’re porting a UNIX or DOS program, you might also need the functions
in other UNIX compatibility headers.

See Also

Table 1.1 for information on POSIX naming conventions.

uname

Gets information about the system you are using.
#include <utsname.h>

int uname (struct utsname *name) ;

MSL C Reference Version 10 549

'
A

utsname.h
Overview of utsname.h

Table 44.1 uname

name struct utsname * A struct to store system
information

Remarks

This function gets information on the Macintosh you’re using and puts the
information in the structure that name points to. The structure contains the fields
listed in Table 44.2. All the fields are null-terminated strings.

Table 44.2 The utsname Structure

This field... is...

sysnam The operating system

nodename The sharing node name.

release The release number of system software.

version The minor release numbers of the system
software version.

machine The type of the machine that you are
using.

If it is successful, uname () returns zero. If it encounters an error, uname ()
returns -1 and sets errno.

This function may not be implemented on all platforms.

See Also
“fstat” on page 273
“stat” on page 276

Listing 44.1 Example of uname() Usage

#include <stdio.h>
#include <utsname.h>

int main(void)
{

struct utsname name;

550 MSL C Reference Version 10

g |

utsname.h
Overview of utsname.h

uname (&name) ;

printf ("Operating System: %s\n", name.sysname) ;
printf ("Node Name: %$s\n", name.nodename) ;
printf ("Release: %$s\n", name.release) ;
printf ("Version: %s\n", name.version) ;
printf ("Machine: %s\n", name.machine) ;
return O;

This application could print the following:
Operating System: MacOS

Node Name: Ron's G4

Release: 9

Version: 3

Machine: Power Macintosh

This machine is a Power Macintosh running Version 9 of the MacOS. The
Macintosh Name field of the File Sharing control panel contains "Ron'’s
ca"

MSL C Reference Version 10 551

A 4
4\

utsname.h
Overview of utsname.h

552 MSL C Reference Version 10

45

wchar.h

The header file wchar.h contains defines and functions to manipulate wide character sets.

Overview of wchar.h

This header file defines the facilities as follows:

Input and Output Facilities

* “fgetwc” on page 558 behaves like fgetc for wide character arrays.

* “fgetws” on page 559 behaves like fgets for wide character arrays.

» “fputwc” on page 559 behaves like fputc for wide character arrays.

¢ “fputws” on page 560 behaves like fputs for wide character arrays.

» “fwprintf” on page 561 behaves like fprintf for wide character arrays.

* “fwscanf” on page 562 behaves like £scanf for wide character arrays.

» “getwc” on page 563 behaves like getc for wide character arrays.

* “getwchar” on page 563 behaves like getchar for wide character arrays.

* “putwc” on page 568 behaves like putc for wide character arrays.

¢ “putwchar” on page 568 behaves like putchar for wide character arrays.

* “swprintf” on page 569 behaves like sprintf for wide character arrays.

¢ “swscanf” on page 570 behaves like sscanf for wide character arrays.

* “wprintf” on page 605 behaves like print £ for wide character arrays.

¢ “wscanf” on page 610 behaves like scanf for wide character arrays.

o “vfwprintf” on page 574, behaves like vEfprintf for wide character arrays.

o “vfwscanf” on page 571 behaves like vEscanf for wide character arrays.

* “vswscanf” on page 572 behaves like vsscanf for wide character arrays.

o “vwprintf” on page 576 behaves like vprint f for wide character arrays.

* “vswprintf” on page 575 behaves like £getc vsprintf for wide character arrays.

¢ “vwscanf” on page 573 behaves like vscanf for wide character arrays.

MSL C Reference Version 10 553

A 4
4\

wchar.h
Overview of wehar.h

Time Facilities

* “wesftime” on page 582 behaves like csftime for wide character arrays.

* “wctime” on page 600 behaves like ct ime for wide character arrays.

String Facilities

» ‘“watof” on page 576 behaves like atof for wide characters array.

¢ “wcscat” on page 578 behaves like strcat for wide character arrays.

* “wcschr” on page 579 behaves like strchr for wide character arrays.

¢ “wcscmp” on page 579 behaves like strcmp for wide character arrays.

* “wcscspn” on page 581 behaves like strspn for wide character arrays.

¢ “wcscoll” on page 580 behaves like strcoll for wide character arrays.

e “wescpy” on page 581 behaves like strcpy for wide character arrays.

* “wcslen” on page 583 behaves like strlen for wide character arrays.

* ‘“wecsncat” on page 584 behaves like strncat for wide character arrays.

* “wcsnemp” on page 585 behaves like st rncmp for wide character arrays.

* “wcesncpy” on page 585 behaves like strncpy for wide character arrays.

* “wcspbrk” on page 586 behaves like strbrk for wide character arrays.

» “wesrchr” on page 587 behaves like strrchr for wide character arrays.

* “wcsspn” on page 589 behaves like strspn for wide character arrays.

e “wesstr” on page 589 behaves like strstr for wide character arrays.

* “wecstod” on page 590 behaves like strtod for wide character arrays.

* “wecstof” on page 591 behaves like strtod for wide character arrays.

* “westok” on page 592 behaves like strtok for wide character arrays.

* ‘“westol” on page 593 behaves like strtol for wide character arrays.

* “wcstold” on page 594 behaves like strtold for wide character arrays.

* ‘“westoll” on page 595 behaves like strtoll for wide character arrays.

* “wcstoul” on page 596 behaves like strtoul for wide character arrays.

* “westoull” on page 598 behaves like strtoull for wide character arrays.

¢ “wcsxfrm” on page 599 behaves like st rxfrm for wide character arrays.

¢ “wmemchr” on page 601 behaves like memchr for wide character arrays.
¢ “wmemcpy” on page 603 behaves like memcpy for wide character arrays.
¢ “wmemcmp” on page 602 behaves like memcmp for wide character arrays.

554 MSL C Reference Version 10

wchar.h
Overview of wehar.h

¢ “wmemmove” on page 603 behaves like memmove for wide character arrays.
* “wmemset” on page 604 behaves like memset for wide character arrays.

Multibyte Character Functions

* “mbrlen” on page 564 behaves like strlen for multibyte character arrays

* “mbrtowc” on page 565 converts multibyte characters to wide character arrays

* “mbsinit” on page 566 determines the multibyte conversion status

* “mbsrtowcs” on page 567 converts multibyte strings to wide character strings

* “wertomb” on page 577 converts wide characters to multibyte character arrays.

* “wcsrtombs” on page 587 converts wide character strings to multibyte strings.

Conversion Functions

* “btowc” on page 557 converts byte characters to wide character arrays

* “wctob” on page 600 converts wide characters to byte character arrays

Wide Character and Byte Character Stream Orientation

There are two types of stream orientation for input and output, a wide character (wchar_t)
oriented and a byte (char) oriented. A stream is un-oriented after that stream is associated
with a file, until a byte or wide character input/output operation occurs.

Once any input/output operation is performed on that stream, that stream becomes
oriented by that operation to be either byte oriented or wide character oriented and remains
that way until the file has been closed and reopened.

Table 45.1 Byte Oriented Functions in Stdio.h

fgetc fgets fprintf fputc fputs
fread fscanf fwrite getc getchar
gets printf putc putchar puts
scanf ungetc viprintf vfscanf vprintf

MSL C Reference Version 10

555

y
A

wchar.h

Overview of wehar.h

Table 45.2 Wide Character Oriented Functions

fgetwe fgetws fwprintf fputwe fputws fwscanf
getwc getwchar putwc putwchar swprintf swscanf
towctrans viwscanf vswscanf vwscanf viwprintf vswprintf
vwprintf wasctime watof wcscat weschr wcscmp
wescoll wescespn wcscpy wcslen wcesncat wesnemp
wesnepy wespbrk wesspn wesrchr wcesstr westod
westok wcesftime wesxfrm wctime wctrans wmemchr
wmememp wmemcpy wmemmov wmemset wprintf wscanf

e

After a stream orientation is established, any call to an input/output function of the other
orientation is not applied. For example, a byte-oriented input/output function does not
have an effect on a wide-oriented stream.

Unicode

Unicode, also known as UCS-2 (Universal Character Set containing 2 bytes) is a fixed-
width encoding scheme that uses 16 bits per character. Characters are represented and
manipulated in MSL as wide characters of type wchar_t and can be manipulated with
the wide character functions defined in the C Standard.

Multibyte Characters

A Unicode character may be encoded as a sequence of one or more 8-bit characters, this is
a multibyte character. There are two types of multibyte encoding, modal and non-modal.
With modal encoding, a conversion state is associated with a multibyte string; this state is
akin to the shift state of a keyboard. With non-modal encoding, no such state is involved
and the first character of a multibyte sequence contains information about the number of
characters in the sequence. The actual encoding scheme is defined in the LC_CTYPE
component of the current locale.

In MSL, two encoding schemes are available, a direct encoding where only a single byte is
used and the non-modal UTF-8 (UCS Transformation Format -8) encoding scheme is
used where each Unicode character is represented by one to three 8-bit characters. For
Unicode characters in the range 0x0000 to 0x007F the encoding is direct and only a single
byte is used.

556

MSL C Reference Version 10

wchar.h
Overview of wehar.h

Stream Orientation and Standard Input/Output

The three predefined associated streams, stdin, stdout, and stderr are un-oriented at
program startup. If any of the standard input/output streams are closed it is not possible to
reopen and reconnect that stream to the console. However, it is possible to reopen and
connect the stream to a named file.

The C and C++ input/output facilities share the same stdin, stdout and stderr streams.

Definitions

The header wchar.h includes specific definitions for use with wide character sets.

Table 45.3 Wide Character Definitions

Defines Definitions

mbstate_t A value that can hold the conversion state
for mode-dependent multibyte encoding

WCHAR_MIN Minimum value of a wide char
WCHAR_MAX Maximum value of a wide char
WEOF A value that differs from any member of

the wide character set and is used to
denote end of file

win_t An int type that can hold any wide
character representation and WEOF

btowc

The function btowc () converts a single byte character to a wide character.
#include <wchar.h>

wint_t btowc (int c¢);

Table 45.4 btowc

int c The character to be
converted

MSL C Reference Version 10 557

A 4
4\

wchar.h
Overview of wehar.h

Returns

The function btowc() returns the wide character representation of the argument or
WEOF is returned if ¢ has the value EOF or if the current locale specifies that
UTF -8 encoding is to be used and unsigned char ¢ does not constitute a valid
single-byte UTF -8 encoded character.

This function may not be implemented on all platforms.

See Also

“wctob” on page 600

fgetwc

Gets a wide character from a file stream.
#include <wchar.h>

wchar_t fgetwc (FILE * file);

Table 45.5 fgetwc

file FILE * The input stream to
retrieve from

Remarks
Performs the same task as fgetc for wide character

On embedded/ RTOS systems this function only is implemented for stdin, stdout
and stderr files.

Returns the wide character or WEOF for an error

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 555
“fgetc” on page 312

558 MSL C Reference Version 10

wchar.h
Overview of wehar.h

fgetws

The function fgetws () reads a wide character string from a file stream.
#include <wchar.h>

wchar_t *fgetws (wchar_t * s, int n, FILE * file);

Table 45.6 fgetws

s wchar_t * A wide char string to
receive input

n int Maximum number of wide
characters to be read

file FILE * A pointer to the input file
stream

Remarks
Behaves like fgets () for wide characters.

On embedded/ RTOS systems this function only is implemented for stdin, stdout
and stderr files.

Returns a pointer to s if successful or NULL for a failure.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 555

3

‘fgets” on page 316

fputwe

Inserts a single wide character into a file stream.
#include <wchar.h>

wchar_t fputwe (wchar_t ¢, FILE * file);

MSL C Reference Version 10 559

'
A

wchar.h
Overview of wehar.h

Table 45.7 fputwc

[wchar_t The wide character to
insert
file FILE * A pointer to the output file
stream
Remarks

Performs the same task as fputc () for a wide character type.

On embedded/ RTOS systems this function only is implemented for stdin, stdout
and stderr files.

Returns the wide character written if it is successful, and returns WEOF if it fails.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 555

“fputc” on page 328

fputws

Inserts a wide character array into a file stream
#include <wchar.h>

int fputws (const wchar_t * s, FILE * file);

Table 45.8 fputws

s wchar_t * The string to insert
file FILE * A pointer to the output file
stream
Remarks

Performs the same task as fputs for a wide character type.

If the file is opened in update mode (+) the file cannot be written to and then read
from unless the write operation and read operation are separated by an operation

that flushes the stream's buffer. This can be done with the f£flush() function

560 MSL C Reference Version 10

wchar.h
Overview of wehar.h

or one of the file positioning operations (fseek (), fsetpos(), or
rewind()) .

On embedded/ RTOS systems this function only is implemented for stdin, stdout
and stderr files.

Returns a zero if successful, and returns a nonzero value when it fails.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 555
“fputs” on page 330

fwprintf

Formatted file insertion

#include <wchar.h>

int fwprintf (FILE * file, const wchar_t * format, ...);

Table 45.9 fwprintf

file FILE * A pointer to the output file
stream
format wchar_t * The format string
Variable arguments
Remarks

Performs the same task as fprintf () for a wide character type.

The fwprintf () function writes formatted text to a wide character
stream and advances the file position indicator. Its operation is the same as
wprintf () with the addition of the stream argument.

Refer to the *wprintf” on page 605 function for details of the format
string.

On embedded/ RTOS systems this function only is implemented for stdin, stdout
and stderr files.

Returns the number of arguments written or a negative number if an error occurs

This function may not be implemented on all platforms.

MSL C Reference Version 10 561

y
A

wchar.h
Overview of wchar.h
See Also
“Wide Character and Byte Character Stream Orientation” on page 555
“wprintf” on page 605
fwscanf

Reads formatted text from a stream.
#include <wchar.h>

int fwscanf (FILE * file, const wchar_t * format, ...);

Table 45.10 fwscanf

file FILE * The input file stream

format wchar_t * The format string

Variable arguments

Remarks
Performs the same task as fscanf function for the wide character type.

The fwscanf () function reads programmer-defined, formatted text from a wide
character stream. The function operates identically to the wscanf () function
with the addition of the stream argument indicating the stream to read from.

Refer to the *wscanf” on page 610 function for details of the format string.

NOTE On embedded/ RTOS systems this function only is implemented for stdin,
stdout and stderr files.

Returns the number of items read, which can be fewer than provided for in the
event of an early matching failure. If the end of file is reached before any
conversions are made, EOF is returned.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 555
“wscanf” on page 610

562 MSL C Reference Version 10

wchar.h
Overview of wehar.h

getwc

Reads the next wide character from a wide character stream.

#include <wchar.h>

wchar_t getwc (FILE * file);

Table 45.11 getwc

file FILE * The file stream
Remarks
Performs the same task as getc for a wide character type.
Returns the next wide character from the stream or returns WEOF if the end-of-file
has been reached or a read error has occurred.
This function may not be implemented on all platforms.
See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 555
“getc” on page 348

getwchar

Returns a wide character type from the standard input.

#include <wchar.h>

wchar_t getwchar (void) ;

Has no parameters.

Remarks

Performs the same task as getchar for a wide character type.

Returns the value of the next wide character from stdin as an int if it is
successful. getwchar () returns WEOF if it reaches an end-of-file or an error
occurs.

This function may not be implemented on all platforms.

MSL C Reference Version 10 563

y
A

wchar.h
Overview of wchar.h
See Also
“Wide Character and Byte Character Stream Orientation” on page 555
“getwchar” on page 563
mbrlen

Computes the length of a multibyte character encoded as specified in the LC_CTYPE
component of the current locale. This function is essentially the same as mblen ()
except that it has an additional parameter of type mbstate_t*, which is ignored if the
encoding scheme is non-modal.

#include <stdlib.h>

int mbrlen (const char *s,

Table 45.12 mbrlen

size_t n, mbstate_t * ps);

s const char ** The multibyte array to
measure
n size_t The Maximum size
ps mbstate_t ** The current state of
translation between
multibyte and wide
character, ignored if the
encoding scheme is non-
modal.
Remarks
The mbrlen () function returns the length of the multibyte character pointed to
by s. It examines a maximum of n characters.
The MSL C implementation supports the “*C” locale with UTF -8 encoding only
and returns the value of mbrtowc (NULL, n, pc).
mbrlen () returns the value of mbrtowc (NULL, s, n, pc).
This function may not be implemented on all platforms.
See Also

“wcslen” on page 583

“strlen” on page 468

564

MSL C Reference Version 10

wchar.h
Overview of wehar.h

mbrtowc

Translate a multibyte character to a wchar_ t type according to the encoding specified in
the LC_CTYPE component of the current locale. This function is essentially the same as
mbtowcs () except that it has an additional parameter of type mbstate_t*, whichis
ignored if the encoding scheme is non-modal.

#include <stdlib.h>

int mbrtowc (wchar_t *pwc,

const char *s, size_t n, mbstate_t * ps);

Table 45.13 mbrtowc

pwc wchar_t * The wide character
destination

s const char * The string to convert

n size_t The maximum wide
characters to convert

ps mbstate_t * The current state of
translation between
multibyte and wide
character, ignored if the
encoding scheme is non-
modal.

Remarks

If s a null pointer, this call is equivalent to mbrtowcs(NULL, “”, 1, ps);

If sisnot anull pointer, the mbrtowc () function examines at most n bytes
starting with the byte pointed to by s to determine how many bytes are needed to
complete a valid encoding of a Unicode character. If this is less than or equal to n
and pwc is not a null pointer, it converts the multibyte character, pointed to by
s, to acharacter of type wchar_t, pointed to by pwc using the encoding
scheme specified in the LC_CTYPE component of the current locale.

mbrtowc () returns the first of the following values that applies:
Zero, if s points to a null character, which is the value stored.

Greater than zero, if s points to a complete and valid multibyte character of n or
fewer bytes, the corresponding Unicode wide character is stored (if pwc is not

MSL C Reference Version 10 565

y
A

wchar.h

Overview of wehar.h

NULL) and the value returned is the number of bytes in the complete multibyte
character.

(size_t) (-2) if the next n bytes pointed to by s constitute an incomplete but
potentially valid multibyte character. No value is stored.

(size_t) (-1) if the next n or fewer bytes pointed to by s do not constitute a
complete and valid multibyte character. The value of EILSEQ is stored in errno
but no wide character value is stored.

This function may not be implemented on all platforms.

See Also

“mbsrtowcs” on page 567

“wertomb” on page 577

“wesrtombs” on page 587

mbsinit

Determines if the multi-byte state is the initial conversion state or not.
#include <wchar.h>

int mbsinit (const mbstate_t *ps);

Table 45.14 mbsinit

ps const mbstate_t * A pointer to a mbstate_t
object

Remarks

If the status of the object pointed tois a null pointer oris in the initial
converstion state a true values is returned otherwise zero is returned.

This function may not be implemented on all platforms.

See Also

“mbsrtowcs” on page 567

“wertomb” on page 577

“wesrtombs” on page 587

566

MSL C Reference Version 10

wchar.h
Overview of wehar.h

mbsrtowcs

Convert a multibyte character array to a wchar_t array. This function is essentially the
same as mbstowcs () except that it has an additional parameter of type mbstate_t*,
which is ignored if the encoding scheme is non-modal.

#include <stddlib.h>

size_t mbsrtowcs (wchar_t *pwcs,

const char **s, size_t n, mbstate_t * ps);

Table 45.15 mbsrtowcs

pwcs

wchar_t * The wide character
destination

const char ** Indirect pointer to the string
to convert

size_t The maximum wide
characters to convert

ps

mbstate_t * The current state of
translation between
multibyte and wide
character, ignored if the
encoding scheme is non-
modal.

Remarks

The MSL C implementation of mbsrtowcs () converts a sequence of multibyte
characters encoded according to the scheme specified in the LC_CTYPE
component of the current locale from the wide character array indirectly pointed to
by s and, if pwcs is not a null pointer, stores not more than n of the corresponding
Unicode characters into the wide character array pointed to by pwcs. The function
terminates prematurely if a null character is reached, in which case the null wide
character is stored. or if an invalid multibyte encoding is detected. If conversion
stops because a terminating null character is reached, a null pointer is assigned to
the object pointed to by s, otherwise a pointer to the address just beyond the last
multibyte character converted, if any.

If an invalidly encoded wide character is encountered, mbsrtowcs () stores the
value of EILSEQ in errno and returns the value (size_t) (-1). Otherwise

MSL C Reference Version 10 567

y
A

wchar.h
Overview of wchar.h
mbsrtowcs () returns the number of multibyte characters successfully
converted, not including any terminating null wide character.
This function may not be implemented on all platforms.
See Also
“wesrtombs” on page 587
“mbrtowc” on page 565
putwc

Write a wide character type to a stream.
#include <wchar.h>

wchar_t putwc (wchar_t ¢, FILE * file);

Table 45.16 putwc

[wchar_t The wide character to
output
file FILE The output stream
Remarks

Performs the same task as putc for a wide character type.
Returns the wide character written when successful and returns WEOF when it fails

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 555
“putc” on page 362

putwchar

Writes a wide character to standard output.
#include <wchar.h>

wchar_t putwchar (wchar_t c);

568 MSL C Reference Version 10

wchar.h
Overview of wehar.h

Table 45.17 putwchar

c wchar_t The wide character to
write.

Remarks
Performs the same task as putchar for a wide character type.
Returns c if it is successful and returns WEOF if it fails

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 555
“putchar” on page 363

swprintf

Formats text in a wide character type string.
#include <wchar.h>

int swprintf (wchar_t * S, size_t N, const wchar_t * format,

2)

Table 45.18 swprintf

S wchar_t* The string buffer to hold
the formatted text

n size_t Number of characters
allowed to be written

format wchar_t* The format string

Variable arguments

Remarks

Performs the same task as sprintf for a wide character type with an additional
parameter for the maximum number of wide characters to be written. No more than
n wide characters will be written including the terminating NULL wide
character, which is always added unless the n is zero.

MSL C Reference Version 10 569

3
4

y
A

wchar.h
Overview of wchar.h
Refer to the *wprintf” on page 605 function for details of the format
string.
Returns the number of characters assigned to S, not including the null character,
or a This function may not be implemented on all platforms.
negative number if n or more characters were requested to be written.
See Also
“Wide Character and Byte Character Stream Orientation” on page 555
“fwprintf” on page 561
“sprintf” on page 380
swscanf

Reads a formatted wide character string.

#include <wchar.h>

int swscanf (const wchar_t * s, const wchar_t * format, ...);

Table 45.19 swscanf

S

wchar_t* The string being read

format wchar_t* The format string

Variable arguments

Remarks

Performs the same task as sscanf for a wide character type.

Returns the number of items successfully read and converted, which can be fewer
than provided for in the event of an early matching failure. If the end of the input
string is reached before any conversions are made, EOF is returned.

Refer to the *wscanf” on page 610 function for details of the format string.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 555

“scanf” on page 370

570

MSL C Reference Version 10

wchar.h
Overview of wehar.h

viwscanf

Read formatted text from a wide character stream.
#include <wchar.h>
int vfwscanf (FILE * file,

const wchar_t * format_str, va_list arg);

Table 45.20 vfwscanf

file FILE * The stream being read

format_str const wchar_t* The format string

Variable arguments

Remarks

Performs the same task as fscanf for a wide character type.

Refer to the *wscanf” on page 610 function for details of the format string.

NOTE On embedded/ RTOS systems this function only is implemented for stdin,
stdout and stderr files.

viwscanf () returns the number of items assigned, which can be fewer than
provided for in the case of an early matching failure. If an input failure occurs
before any conversion, vfwscanf () returns EOF.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 555
“fscanf” on page 335

MSL C Reference Version 10 571

y
A

wchar.h
Overview of wehar.h

vswscanf

Reads formatted text from a wide character string.
#include <wchar.h>
int _ vswscanf (const wchar_t * s,

const wchar_t * format, va_list arg);

Table 45.21 _ vswscanf

s wchar_t* The string being read

format wchar_t* The format string

.arg va_list A variable argument list
Remarks

The vswscantf () function works identically to the swscanf () function.
Instead of the variable list of arguments that can be passed to swscanf (),
vswscanf () accepts its arguments in the array arg of type va_list,
which must have been initialized by the va_start () macro (and possibly
subsequent va_arg calls) from the stdarg.h header file. The vswscanf ()
function does not invoke the va_end macro.

Refer to the *wscanf” on page 610 function for details of the format string.

NOTE Onembedded/ RTOS systems this function only is implemented for stdin,
stdout and stderr files.

vswscanf () returns the number of items assigned, which can be fewer than
provided for in the case of an early matching failure. If an input failure occurs
before any conversion, vswscanf () returns EOF.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 555
“sscanf” on page 381

572 MSL C Reference Version 10

wchar.h
Overview of wehar.h

vwscanf

Reads formatted text from wide character oriented stdin.
#include <wchar.h>

int vwscanf (const wchar_t * format, va_list arg);

Table 45.22 vwscanf

s wchar_t* The string being read

format wchar_t* The format string

Variable arguments

Remarks

The vwscantf () function works identically to the wscanf () function.
Instead of the variable list of arguments that can be passed to wscanf (),
vwscanf () accepts its arguments in the array arg oftype va_list, which
must have been initialized by the va_start () macro (and possibly subsequent
va_arg calls) from the stdarg.h header file. The vwscanf () function does
not invoke the va_end macro.

Refer to the *wscanf” on page 610 function for details of the format string.

The vwscanf () function returns the number of items assigned, which can be
fewer than provided for in the case of an early matching failure. If an input failure
occurs before any conversion, vwscanf () returns EOF .

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 555
“vfwscanf” on page 571

“scanf” on page 370

MSL C Reference Version 10 573

y
A

wchar.h
Overview of wehar.h

viwprintf

Write a formatted text to a file stream.
#include <wchar.h>
int vfwprintf (FILE * file,

const wchar_t * format_str, va_list arg);

Table 45.23 viwprintf

file FILE * The stream being written

format_str wchar_t* The format string

arg va_list A variable argument list
Remarks

The vifwprintf () function works identically to the fwprintf () function.
Instead of the variable list of arguments that can be passed to fwprintf (),
viwprintf () accepts its arguments in the array arg of type va_list, which
must have been initialized by the va_start () macro (and possibly subsequent
va_arg calls) from the stdarg.h header file. The vEwprintf () function does
not invoke the va_end macro.

Refer to the *wprintf” on page 605 function for details of the format
string.

NOTE On embedded/ RTOS systems this function only is implemented for stdin,
stdout and stderr files.

Returns the number of wide characters written or a negative number if it failed.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 555

“vfprintf” on page 387

574 MSL C Reference Version 10

wchar.h

Overview of wchar.h
vswprintf
Write a formatted output to a wide character string.
#include <stdio.h>
#include <wchar.h>
#include <stdarg.h>
int vswprintf (wchar_t * restrict s, size_t n,
const wchar_t * restrict format, va_list arg);
Table 45.24 vswprintf
S wchar_t* The string being read
n size_t Number of char to print
format wchar_t* The format string
arg Variable arguments

Remarks

The vswprintf () function works identically to the swprintf ()
function. Instead of the variable list of arguments that can be passed to
swprintf (), vswprintf () acceptsitsarguments inthe array arg of type
va_list, which must have been initialized by the va_start () macro (and
possibly subsequent va_arg calls) from the stdarg.h header file. The
viwprintf () function does not invoke the va_end macro.

Refer to the *wprintf” on page 605 function for details of the format
string.

The vswprintf function does not invoke the va_end macro.

Returns the number of characters written not counting the terminating null wide
character. Otherwise a negative value if a failure occurs.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 555
“swprintf” on page 569

“vsnprintf” on page 393

MSL C Reference Version 10 575

y
A

wchar.h
Overview of wehar.h

vwprintf

Write a formatted text to a wide character oriented stdout
#include <wchar.h>

int vwprintf (const wchar_t * format, va_list arg);

Table 45.25 vwprintf

format wchar_t* The format string

Variable arguments

Remarks

The vwprintf () function works identically to the wprintf () function.
Instead of the variable list of arguments that can be passed to wprintf (),
vwprintf () accepts its arguments in the array arg of type va_list, which
must have been initialized by the va_start () macro (and possibly subsequent
va_arg calls) from the stdarg.h header file. The vwprintf () function does
not invoke the va_end macro.

Refer to the *wprintf” on page 605 function for details of the format
string.

Returns the number of characters written or a negative value if it failed.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 555

“vprintf” on page 391

watof

Convert a wide character string to a double type
#include <wchar.h>

double watof (wchar_t * str);

576 MSL C Reference Version 10

wchar.h
Overview of wehar.h

Table 45.26 watof

str wchar_t The wide character string
to be converted

Remarks
Performs the same task as atof for a wide character type.
Returns the converted value or, if no conversion could be performed, zero.
This function may not be implemented on all platforms.

See Also

“atof”” on page 410

wcrtomb

Translate a wchar_t type to a multibyte character according to the encoding scheme
specified in the LC_CTYPE component of the current locale. This function is essentially
the same as wctomb () except that it has an additional parameter of type mbstate_t*,
which is ignored if the encoding scheme is non-modal.

#include <stdlib.h>

int wcrtomb (char *s, wchar_t wchar, mbstate_t * ps);

Table 45.27 wcrtomb

s char * A multibyte string buffer
wchar wchar_t A wide character to convert
ps mbstate_t * The current state of

translation between
multibyte and wide
character, ignored if the
encoding scheme is non-
modal.

Remarks

If s a null pointer, this call is equivalent to wcrtomb (buf, L'\0', ps)
where buf is an internal buffer.

MSL C Reference Version 10 577

3
4

y
A

wchar.h
Overview of wchar.h
If s is not a null pointer, wcrtomb () determines the length of the UTF-8
multibyte string that corresponds to the wide character wchar and stores that
string in the multibyte string pointed to by s. At most MB_CUR_MAX bytes are
stored.
wcrtomb () returns the number of bytes stored in the string s .
This function may not be implemented on all platforms.
See Also
“mbrtowc” on page 565
“wesrtombs” on page 587
wcscat

Wide character string concatenation
#include <wchar.h>

wchar_t * wcscat (wchar_t * dst, const wchar_t * src);

Table 45.28 wcscat

dst wchar_t * The destination string
src wchar_t * The source string
Remarks

Performs the same task as strcat for a wide character type.
Returns a pointer to the destination string

This function may not be implemented on all platforms.

See Also

“strcat” on page 459

578 MSL C Reference Version 10

wchar.h
Overview of wehar.h

wceschr

Search for an occurrence of a wide character.

#include <wchar.h>

wchar_t * wcschr (const wchar_t * str,

Table 45.29 wcschr

const wchar_t chr);

str

wchar_t *

The string to be searched

chr

wchar_t

The wide character to
search for

Remarks

Performs the same task as strchr for a wide character type.

Returns a pointer to the successfully located wide character. If it fails, wcschr ()
returns a null pointer (NULL).

This function may not be implemented on all platforms.

See Also

“strchr’” on page 460

wcscmp

Compare two wide character arrays.

#include <wchar.h>

int wcscmp (const wchar_t * stril,

Table 45.30 wcscmp

const wchar_t * str2);

strit

wchar_t *

Comparison string

str2

wchar_t *

Comparison string

Remarks

Performs the same task as strcmp for a wide character type.

MSL C Reference Version 10

579

y
A

wchar.h
Overview of wehar.h

Returns a zero if strl and str2 are equal, a negative value if str1 is less than
str2, and a positive value if strl is greater than str2.

This function may not be implemented on all platforms.

See Also

“strcmp” on page 461

“wmemcmp” on page 602

wcescoll

Compare two wide character arrays according to the collating sequence defined in the
LC_COLLATE component of the current locale.
#include <wchar.h>

int wcscoll (const wchar_t *strl, const wchar_t * str2);

Table 45.31 wcscoll

str1 wchar_t * First comparison string
str2 wchar_t * Second comparison string
Remarks

Performs the same task as strcoll for a wide character type.

Returns zero if strl is equal to str2, a negative value if strl is less than
str2, and a positive value if strl is greater than str2.

This function may not be implemented on all platforms.

See Also

“strcoll” on page 462

“wcscmp” on page 579
“wmemcmp” on page 602

580 MSL C Reference Version 10

wchar.h
Overview of wehar.h

wcscspn

Find the first wide character in one wide character string that is also in another.

#include <wchar.h>

size_t wcscspn(const wchar_t * str, const wchar_t * set);

Table 45.32 wcscspn

str

wchar_t * The string to be searched

set

wchar_t * The set of characters to be
searched for

Remarks

The wcscspn () function finds the first wide character in the null terminated
wide character string s1 thatis also inthe null terminated wide character
string s2. for this purpose, the null terminators are considered part of the
strings. The function starts examining characters at the beginning of s1 and
continues searching until a wide character in s1 matches a wide character in
s2.

wcscspn () returns the index of the first wide character in s1 that matches a
wide character in s2.

This function may not be implemented on all platforms.

See Also

“strespn’ on page 465

wcscpy

Copy one wide character array to another.

#include <wchar.h>

wchar_t * (wcscpy) (wchar_t * dst, const wchar_t * src);

MSL C Reference Version 10 581

'
A

wchar.h
Overview of wehar.h

Table 45.33 wcscpy

dst wchar_t * The destination string
src wchar_t * The source being copied
Remarks

The wcscpy () function copies the wide character array pointed to by src to
the wide character array pointed to dst. The src argument must point to a null
terminated wide character array. The resulting wide character array at dest is
null terminated as well.

If the arrays pointed to by dest and source overlap, the operation of strcpy()
is undefined.

Returns a pointer to the destination string.

This function may not be implemented on all platforms.

See Also

“strcpy” on page 464

wcsftime

Formats a wide character string for time.
#include <wchar.h>
size_t wcsftime(wchar_t * str, size_t max_size,

const wchar_t * format_str, const struct tm * timeptr);

Table 45.34 wcsftime

str wchar_t * The destination string
max_size size_t Maximum string size
format_str const wechar_t * The format string

timeptr

const struct tm *

The time structure
containing the calendar
time

582

MSL C Reference Version 10

wchar.h
Overview of wehar.h

Remarks

Performs the same task as strftime for a wide character type.

The wcsftime function returns the total number of characters in the argument
str if the total number of characters including the null character in the string
argument str is less than the value of max_size argument. If it is greater,
wcsftime returns O

This function may not be implemented on all platforms.

See Also

“strftime” on page 499

wcslen

Compute the length of a wide character array.

#include <wchar.h>

size_t (wcslen) (const wchar_t * str);

Table 45.35 wcslen

str wchar_t * The string to compute

Remarks
The wcslen () function computes the number of characters in a null terminated
wide character array pointed to by str. The null character (L'\0') isnot
added to the wide character count.
Returns the number of characters in a wide character array not including the
terminating null character.
This function may not be implemented on all platforms.

See Also

“strlen” on page 468

MSL C Reference Version 10 583

y
A

wchar.h

Overview of wehar.h

wcsncat

Append a specified number of characters to a wide character array.

#include <wchar.h>

wchar_t * wecsncat (wchar_t * dst, const wchar_t * src, size_t

n);

Table 45.36 wcsncat

dst

wchar_t * The destination string

src

wchar_t * The string to be appended

n

size_t The number of characters
to copy

Remarks

The wcsncat () function appends a maximum of n characters from the wide
character array pointed to by source to the wide character array pointed to by
dest. The dest argument must point to a null terminated wide character
array. The src argument does not necessarily have to point to a null terminated
wide character array.

If a null wide character is reached in src before n characters have been
appended, wcsncat () stops.

When done, wesncat () terminates dest with a null wide character (L'\0"') .
Returns a pointer to the destination string.

This function may not be implemented on all platforms.

See Also

“strncat” on page 469

584

MSL C Reference Version 10

wchar.h
Overview of wehar.h

wecsncmp

Compare not more than a specified number of wide characters.
#include <wchar.h>
int csncmp (const wchar_t * strl,

const wchar_t * str2, size_t n);

Table 45.37 csncmp

str1 wchar_t * First comparison string

str2 wchar_t * Second comparison string

n size_t Maximum number of
characters to compare

Remarks
Performs the same task as strncmp for a wide character type.

Returns a zero if the first n characters of strl and str2 are equal, a negative
value if strl is less than str2, and a positive value if strl is greater than
str2.

This function may not be implemented on all platforms.

See Also
“strncmp” on page 470

wcsncpy

Copy a specified number of wide characters.
#include <wchar.h>
wchar_t * wcsncpy (wchar_t * dst,

const wchar_t * src, size_t n);

MSL C Reference Version 10 585

'
A

wchar.h
Overview of wehar.h

Table 45.38 wcsncpy

dst wchar_t * Destination string
src wchar_t * Source to be copied
n size_t Number of characters to
copy
Remarks

Performs the same task as strncpy for a wide character type.
Returns a pointer to the destination string.

This function may not be implemented on all platforms.

See Also

“strncpy” on page 472

“wescpy’” on page 581

wcspbrk

Look for the first occurrence of an element of an array of wide characters in another.

#include <wchar.h>

wchar_t * wcspbrk(const wchar_t * str, const wchar_t * set);

Table 45.39 wcspbrk

str wchar_t* The string being searched
set wchar_t * The search set
Remarks

Performs the same task as strpbrk for a wide character type.

Returns a pointer to the first wide character in str that matches any wide
character in set, and returns a null pointer (NULL) if no match was found.

This function may not be implemented on all platforms.

586 MSL C Reference Version 10

wchar.h
Overview of wehar.h

See Also

“strpbrk” on page 473

wcesrchr

Search a wide character string for the last occurrence of a specified wide character.

#include <wchar.h>

wchar_t * wcsrchr (const wchar_ t * str,

Table 45.40 wcsrchr

wchar_t chr);

str const wchar_t * The string being searched
chr wchar_t The wide character to
search for
Remarks
Performs the same task as strrchr for a wide character type.
Returns a pointer to the wide character found or returns a null pointer (NULL) if it
fails.
This function may not be implemented on all platforms.
See Also
“strchr”” on page 460
wcsrtombs

Translate a wchar_t type character array to a multibyte character array. This function is
essentially the same as wcstombs () except that it has an additional parameter of type
mbstate_t*, which isignored if the encoding scheme is non-modal.

#include <wchar.h>

size_t wecsrtombs (char *dst,

mbstate_t * ps);

const wchar_t **src, size_t n,

MSL C Reference Version 10

587

y
A

wchar.h

Overview of wehar.h

Table 45.41 wcsrtombs

dst

char * The character string
destination

src

const wchar_t * Indirect pointer to the wide
character string to be
converted

size_t The maximum length to
convert

ps

mbstate_t * The current state of
translation between
multibyte and wide
character, ignored if the
encoding scheme is non-
modal.

Remarks

The MSL implementation of the wecsrtombs () function converts a character
array containing wchar_t type Unicode characters indirectly pointed to by src to
a character array containing UTF -8 multibyte characters. If dst is not a null
pointer, these multibyte characters are stored in the array pointed to by dst.
Conversion continues until either a terminating null wide character is encountered
or (if dst is not a null pointer) if the translation of the next wide character would
cause the total number of bytes to be stored to exceed n.

If dst is not a null pointer, the wchar_t * object pointed to by src is assigned
eitheranull pointer if conversion ended because a null wide character
was reached or the address just past the last wide character converted.

wcsrtombs () returns the number of bytes modified in the character array
pointed to by s, not including a terminating null character, if any.

This function may not be implemented on all platforms.

See Also

“wertomb” on page 577

“mbsrtowcs” on page 567

588

MSL C Reference Version 10

wchar.h
Overview of wehar.h

wcsspn

Count the number of wide characters in one wide character array that are in another.

#include <wchar.h>

size_t wecsspn(const wchar_t * str,

Table 45.42 wcsspn

const wchar_t * set);

str

wchar_t *

The searched string

set

const wchar_t *

The search set

Remarks

Performs the same task as strspn for a wide character type.

Returns the number of characters in the initial segment of str that contains only
characters that are elements of set.

This function may not be implemented on all platforms.

See Also

“strspn” on page 475

wcsstr

Search for a wide character array within another.

#include <wchar.h>

wchar_t * wcsstr (const wchar_t * str,

Table 45.43 wcsstr

const wchar_t * pat);

str

const wchar_t *

The string to search

pat

const wchar_t *

The string being searched
for

Remarks

Performs the same task as strstr for a wide character type.

MSL C Reference Version 10

589

A 4
4\

wchar.h

Overview of wehar.h

Returns a pointer to the first occurrence of s2 in s1 and returns a null pointer
(NULL) if s2 cannot be found.

This function may not be implemented on all platforms.

See Also

“strstr’” on page 476

“wcschr’” on page 579

wcestod

Converts a wide character array to double values.

#include <wchar.h>

double wcstod(wchar_t * str, char ** end);

Table 45.44 wcstod

str wchar_t * The string being converted
end char ** If not null, a pointer to the
first position not
convertible.
Remarks

The wcstod () function converts a wide character array, pointed to by nptr, to a
floating point value of type double. The wide character array can be in either
decimal or hexadecimal floating point constant notation (e.g. 103.578,
1.03578e+02, or 0x1.9efef9p+6).

If the endptr argument is not a null pointer, it is assigned a pointer to a position
within the wide character array pointed to by nptr. This position marks the first
wide character that is not convertible to a value of type double.

In other than the “C” 1locale, additional locale-specific subject sequence forms
may be accepted.

This function skips leading white space.

Returns a floating point value of type double. If str cannot be converted to an
expressible double value, wcstod () returns HUGE_VAL, defined in math.h,
and sets errno to ERANGE

This function may not be implemented on all platforms.

590

MSL C Reference Version 10

wchar.h
Overview of wehar.h

See Also

“westof” on page 591

“strtod” on page 435

“westold” on page 594

“errno” on page 75

wcstof

Wide character array conversion to floating point value of type float.
#include <wchar.h>
float wcstof (const wchar_ t * restrict nptr,

wchar_t ** restrict endptr);

Table 45.45 wcstof

const wchar_t * A Null terminated wide
character array to convert

endptr wchar_t ** A pointer to a position in

nptr that follows the
converted part.

Remarks

The wcstof () function converts a wide character array, pointed to by nptr, to a
floating point value of type float. The wide character array can be in either decimal
or hexadecimal floating point constant notation (e.g. 103.578,
1.03578e+02, or 0x1.9efef9p+6).

If the endptr argument is not a null pointer, it is assigned a pointer to a position
within the wide character array pointed to by nptxr. This position marks the first
wide character that is not convertible to a value of type float.

In other than the “C” locale, additional locale-specific subject sequence forms
may be accepted.

This function skips leading white space.

wcstof () returns a floating point value of type £1oat. If nptr cannot be
converted to an expressible float value, wcstof () returns HUGE_VAL, defined in
math.h, and sets errno to ERANGE.

This function may not be implemented on all platforms.

MSL C Reference Version 10 591

A 4
4\

wchar.h
Overview of wehar.h
See Also
“westod” on page 590
“westold” on page 594
“strtof”” on page 437
“errno” on page 75
wcestok

Extract tokens within a wide character array.

#include <wchar.h>

wchar_t * wcstok(wchar_t * str,

const wchar_t * set, wchar_t ** ptr););

Table 45.46 wcstok

str wchar_t * The string to be modified
set wchar_t * The list of wide character
to find
ptr wchar_t * Continuation information
Remarks

Performs the same task as strtok for a wide character type however, it makes
use of a third argument to contain sufficient information to continue the
tokenization process.

When first called, the first argument is non-null. westok () returns a pointer to
the first token in str or returns a null pointer if no token can be found.

Subsequent calls to wcstok () witha NULL str argument causes wcstok()
to return a pointer to the next token or return a null pointer (NULL) when no more
tokens exist. When called with a NULL str argument, the value of the ptr argument
must have been set by a previous call to wcstok () .

The wcstok function returns a pointer to the first wide character of a token, or a
null pointer if there is no token.

This function may not be implemented on all platforms.

592

MSL C Reference Version 10

wchar.h
Overview of wehar.h

See Also

“strtok’ on page 477

“errno” on page 75

wcstol

Wide character array conversion to floating point value of type long int.

#include <wchar.h>

long int wcstol (const wchar_t * restrict

wchar_t ** restrict endptr,

Table 45.47 wcstol

int base);

nptr,

nptr

const wchar_t *

A Null terminated wide
character array to convert

endptr

wchar_t **

A pointer to a position in

nptr that follows the
converted part

int A numeric base between 2
and 36

Remarks

The wcstol () function converts a wide character array, pointed to by nptr, to
an integer value of type long. The base argument in wcstold () specifies the
base used for conversion. It must have a value between 2 and 36, or 0. The letters a
(or A) through z (or Z) are used for the values 10 through 35; only letters and digits
representing values less than base are permitted. If base is 0, then wcstold()
converts the wide character array based on its format. Wide character arrays
beginning with' 0 ' are assumed to be octal, number strings beginning with ' 0x "
or' 0X' are assumed to be hexadecimal. All other number strings are assumed to
be decimal.

If the endptr argument is not a null pointer, it is assigned a pointer to a position
within the wide character array pointed to by nptxr. This position marks the first
wide character that is not convertible to a value of type long int.

In other than the “C” locale, additional locale-specific subject sequence forms
may be accepted.

This function skips leading white space.

MSL C Reference Version 10 593

3
4

y
A

wchar.h
Overview of wchar.h
wcstol () returns an signed integer value of type long int. If the converted
value is less than LONG_MIN, wcstol () returns LONG_MIN and sets
errno to ERANGE. If the converted value is greater than LONG_MAX,
wcstol () returns LONG_MAX and sets errno to ERANGE. The
LONG_MIN and LONG_MAX macros are definedin limits.h
This function may not be implemented on all platforms.
See Also
“strtol” on page 438
“errno” on page 75
“wcstoll” on page 595
“wcstoul” on page 596
wcstold

A wide character array conversion to an floating point value of type long double.

#include <wchar.h>

long double wcstold(const wchar_t * restrict nptr,

wchar_t ** restrict endptr);

Table 45.48 wcstold

nptr const wechar_t * A Null terminated wide
character array to convert
endptr wchar_t ** A pointer to a position in
nptry that is not
convertible.
Remarks

The wcstold () function converts a wide character array, pointed to by nptr,
expected to represent an integer expressed in radix base, to an integer value of type
long int. A plus or minus sign (+ or -) prefixing the number string is optional.
The wide character array can be in either decimal or hexadecimal floating point
constant notation (e.g. 103.578, 1.03578e+02, or 0x1.9efef9p+6).

If the endptr argument is not a null pointer, it is assigned a pointer to a position
within the wide character array pointed to by nptr. This position marks the first
wide character that is not convertible to a double value.

594

MSL C Reference Version 10

wchar.h
Overview of wehar.h

In other than the “C” 1locale, additional locale-specific subject sequence forms

may be accepted.

This function skips leading white space.

Returns a floating point value of type long double. If nptr cannot be converted
to an expressible double value, wcstold () returns HUGE_VAL, defined in
math.h, and sets errno to ERANGE

This function may not be implemented on all platforms.

See Also

“wcestod” on page 590

“westof” on page 591

“strtold”” on page 441

wcstoll

Wide character array conversion to integer value of type long long int.

#include <wchar.h>

long long int wcstoll (const wchar_t * restrict nptr,

wchar_t ** restrict endptr,

Table 45.49 wcstoll

int base);

nptr const wchar_t * A Null terminated wide
wide character array to
convert

endptr wchar_t ** A pointer to a position in
nptry that is not
convertible.

base int A numeric base between 2
and 36

Remarks

The wcstoll () function converts a wide character array, pointed to by nptr,
expected to represent an integer expressed in radix base to an integer value of type
long long int. A plus or minus sign (+ or -) prefixing the number string is optional.

MSL C Reference Version 10

595

3
4

y
A

wchar.h

Overview of wehar.h

The base argument in wcstoll () specifies the base used for conversion. It
must have a value between 2 and 36, or 0. The letters a (or A) through z (or Z) are
used for the values 10 through 35; only letters and digits representing values less
than base are permitted. If base is 0, then wcstoll () converts the wide
character array based on its format. Wide character arrays beginning with'0" are
assumed to be octal, number strings beginning with'0Ox' or'0X" are assumed to be
hexadecimal. All other number strings are assumed to be decimal.

If the endptr argument is not a null pointer, it is assigned a pointer to a position
within the wide character array pointed to by nptr. This position marks the first
wide character that is not convertible to a long long int value.

In other than the “C” locale, additional locale-specific subject sequence forms
may be accepted.

This function skips leading white space.

wcstoll () returns an integer value of type long long int. If the
converted value is less than LLONG_MIN, wcstoll () returns LLONG_MIN
and sets errno to ERANGE. If the converted value is greater than
LLONG_MAX, wcstoll () returns LLONG_MAX and sets errno to
ERANGE. The LLONG_MIN and LLONG_MAX macros are defined in
limits.h

This function may not be implemented on all platforms.

See Also

“strtoll” on page 442

“westol” on page 593

“wcstoul” on page 596

“errno” on page 75

wcstoul

Wide character array conversion to integer value of type unsigned long int.
#include <wchar.h>
unsigned long int wcstoul (const wchar_t * restrict nptr,

wchar_t ** restrict endptr, int base);

596

MSL C Reference Version 10

wchar.h
Overview of wehar.h

Table 45.50 wcstoul

const wchar_t * A Null terminated wide
character array to convert

endptr wchar_t ** A pointer to a position in
nptry that is not
convertible.
int A numeric base between 2
and 36

Remarks

The wcstoul () function converts a wide character array, pointed to by nptr,
to an integer value of type unsigned long int, in base. A plus or minus sign
prefix is ignored.

The base argument in wcstoul () specifies the base used for conversion. It
must have a value between 2 and 36, or 0.The letters a (or A) through z (or Z) are
used for the values 10 through 35; only letters and digits representing values less
than base are permitted. If base is 0, then strtol () and wcstoul () convert
the wide character array based on its format. Wide character arrays beginning
with' 0 ' are assumed to be octal, number strings beginning with' Ox' or' 0X"' are
assumed to be hexadecimal. All other number strings are assumed to be decimal.

If the endptr argument is not a null pointer, it is assigned a pointer to a position
within the wide character array pointed to by nptr. This position marks the first
wide character that is not convertible to the functions' respective types.

In other than the “C” locale, additional locale-specific subject sequence forms
may be accepted.

This function skips leading white space.

wcstoul () returns an unsigned integer value of type unsigned long int.
If the converted value is greater than ULONG_MAX, wcstoul () returns
ULONG_MAX and sets errno to ERANGE. The ULONG_MAX macro is defined in
limits.h

This function may not be implemented on all platforms.

See Also

“westol” on page 593

“westoll” on page 595

“westoull” on page 598

“strtoul” on page 443

MSL C Reference Version 10 597

y
A

wchar.h
Overview of wehar.h

“errno” on page 75
wcestoull

Wide character array conversion to integer value of type unsigned long long int.

#include <wchar.h>

unsigned long long int wcstoull (

const wchar_t * restrict nptr,

wchar_t ** restrict endptr,

Table 45.51 wcstoull

int base);

nptr

const wchar_t *

A Null terminated wide
character array to convert

endptr

wchar_t **

A pointer to a position in

nptry that is not
convertible.

int A numeric base between 2
and 36

Remarks

The wcstoull () function converts a wide character array, pointed to by
nptr, expected to represent an integer expressed in radix base to an integer
value of type unsigned long long int. A plus or minus sign prefix is
ignored.

The base argument in wcstoull () specifies the base used for conversion. It
must have a value between 2 and 36, or 0. The letters a (or A) through z (or Z) are
used for the values 10 through 35; only letters and digits representing values less
than base are permitted. If base is 0, then wcstoull () converts the wide
character array based on its format. Wide character arrays beginning with'0" are
assumed to be octal, number strings beginning with'0x' or'0X' are assumed to be
hexadecimal. All other number strings are assumed to be decimal.

If the endptr argumentisnota null pointer, it is assigned a pointer to a
position within the wide character array pointed to by nptr. This position
marks the first wide character that is not convertible toa long long value.

In other than the “C” 1locale, additional locale-specific subject sequence forms
may be accepted.

598

MSL C Reference Version 10

wchar.h
Overview of wehar.h

This function skips leading white space.

wcstoull () returns an unsigned integer value of type unsigned
long long int. If the converted value is greater than ULLONG_MAX,
wcstoull () returns ULLONG_MAX and sets errno to ERANGE. The
ULLONG_MAX macro is definedin 1imits.h

This function may not be implemented on all platforms.

See Also

“westol” on page 593

“wecstoll” on page 595

“wcstoul” on page 596

“strtoul” on page 443

“errno” on page 75

wesxfrm

Transform a wide character array as specified in the LC_COLL component of the current

locale.

#include <wchar.h>

size_t wesxfrm(wchar_t * strl, const wchar_t * str2, size_t

n);

Table 45.52 wcsxfrm

str1 wchar_t * The destination string
str2 wchar_t * The source string
n size_t Maximum number of
characters
Remarks

Performs the same task as strxfrm for a wide character type.

Returns the length of the transformed wide stringin strl, notincluding the
terminating null wide character. If the value returned is n or greater, the
contents of strl are indeterminate.

This function may not be implemented on all platforms.

MSL C Reference Version 10 599

'
A

wchar.h
Overview of wehar.h
See Also
“strxfrm” on page 479
wctime

Convert a time_t type to a wide character array
#include <wchar.h>

wchar_t * wctime(const time_t * timer);

Table 45.53 wctime

timer const time_t * The Calendar Time

Remarks
Performs the same task as ctime for a wide character type.
Returns a pointer to wide character array containing the converted t ime_t type

This function may not be implemented on all platforms.

See Also

“ctime” on page 492

wctob

The function wctob () converts a wide character to a byte character.
#include <wchar.h>

int wctob(wint_t wc);

Table 45.54 wctob

int wchar_t * The wide character to be
converted

600 MSL C Reference Version 10

wchar.h
Overview of wehar.h

Returns

The function wctob () returns the single byte representation of the argument
wc as an unsigned char converted to an int or EOF is returned if wc does not
correspond to a valid multibyte character.

This function may not be implemented on all platforms.

See Also

“wertomb” on page 577

wmemchr

Search for an occurrence of a specific wide character.
#include <wchar.h>

void * wmemchr (const void * src, int val, size_t n);

Table 45.55 wmemchr

src const void * The string to be searched
val int The value to search for
n size_t The maximum length of a
search
Remarks

Performs the same task as memchr () for a wide character type.

Returns a pointer to the found wide character, or a null pointer (NULL) if val
cannot be found.

This function may not be implemented on all platforms.

See Also

“memchr” on page 454
“wcschr’” on page 579

MSL C Reference Version 10 601

y
A

wchar.h
Overview of wehar.h

wmemcmp

Compare two blocks of memory, treated as wide characters.
#include <wchar.h>

int wmemcmp (const void * srcl, const void * src2, size_t n);

Table 45.56 wmemcmp

srci const void * First memory block to
compare

src2 const void * Second memory block to
compare

n size_t Maximum number of wide
characters to compare

Remarks
Performs the same task as memcmp () for a wide character type.

The function wmemcmp returns a zero if all n characters pointed to by src1l and
src2 are equal.

The function wmemcmp returns a negative value if the first non-matching wide
character pointed to by src1l is less than the wide character pointed to by src2.

The function wmemcmp returns a positive value if the first non-matching wide
character pointed to by src1l is greater than the wide character pointed to by
src2.

This function may not be implemented on all platforms.

See Also

“memcmp” on page 456
“wcscmp” on page 579

602 MSL C Reference Version 10

wchar.h
Overview of wehar.h

wmemcpy

Copy a contiguous memory block.
#include <wchar.h>

void * (wmemcpy) (void * dst, const void * src, size_t n);

Table 45.57 wmemcpy

dst void * The destination string

src const void * The source string

n size_t Maximum length to copy
Remarks

Performs the same task as memcpy () for a wide character type.
Returns a pointer to the destination string.

This function may not be implemented on all platforms.

See Also
“memcpy” on page 457

wmemmove

Copy an overlapping contiguous memory block.

#include <wchar.h>

void * (wmemmove) (void * dst, const void * src, size_t n);

Table 45.58 wmemmove

dst void * The destination string

src const void * The source string

n size_t The maximum length to
copy

MSL C Reference Version 10

603

y
A

wchar.h
Overview of wehar.h

Remarks
Performs the same task as memmove () for a wide character type.
Returns a pointer to the destination string.

This function may not be implemented on all platforms.

See Also

“memmove” on page 458
“wesepy” on page 581

wmemset

Clear the contents of a block of memory.
#include <wchar.h>

void * wmemset (void * dst, int val, size_t n);

Table 45.59 wmemset

dst void * The destination string

val int The value to be set

n size_t The maximum length
Remarks

Performs the same task as memset () for a wide character type.
Returns a pointer to the destination string

This function may not be implemented on all platforms.

See Also
“memset” on page 458

604 MSL C Reference Version 10

wchar.h
Overview of wehar.h

wprintf

Send formatted wide character text to a standard output.

#include <wchar.h>

int wprintf (const wchar_t * format, ...);

Table 45.60 wprintf

format

wchar_t*

The format string

Variable arguments

Remarks

Performs the same task as printf () for a wide character type.

Returns the number of arguments written or a negative number if an error occurs.

Table 45.61 Length Modifiers for Formatted Output Functions

Modifier Description

h The h flag followed by d, i, 0, u, x, or X
conversion specifier indicates that the
corresponding argument is a short int or
unsigned short int.

The lower case L followed by d, i, o, u, X,
or X conversion specifier indicates the
argument is a long int or unsigned long int.
The lower case L followed by a ¢
conversion specifier indicates that the
argument is of type wint_t.

The lower case L followed by an s
conversion specifier indicates that the
argument is of type wchar_t.

I The double | followed by d, i, 0, u, X, or X
conversion specifier indicates the
argument is a long long or unsigned long
long

L The upper case L followed by e, E, f, g, or
G conversion specifier indicates a long
double.

MSL C Reference Version 10

605

'
A

wchar.h
Overview of wchar.h

Table 45.61 Length Modifiers for Formatted Output Functions (continued)

Modifier

Description

\'

AltiVec: A vector bool char,
vector signed char or vector
unsigned char when followed by c,
d, i, o, u, x or X

A vector float, when followed by £ .

vh
hv

AltiVec: A vector short, vector
unsigned short, vector bool
short or vector pixel when
followed by ¢, 4, i, o, u, x or X

vl

AltiVec: A vector int, vector
unsigned int or vector bool int
when followed by ¢, 4, i, o, u, x
or X

Table 45.62 Flag Specifiers for Formatted Output Functions

Modifier

Description

The conversion will be left justified.

The conversion, if numeric, will be prefixed
with a sign

(+ or -). By default, only negative numeric
values are prefixed with a minus sign (-).

space

If the first character of the conversion is not a
sign character, it is prefixed with a space.
Because the plus sign flag character (+)
always prefixes a numeric value with a sign,
the space flag has no effect when combined
with the plus flag.

606

MSL C Reference Version 10

wchar.h
Overview of wchar.h

Table 45.62 Flag Specifiers for Formatted Output Functions (continued)

Modifier Description

For c, d, i, and u conversion types, the # flag
has no effect. For s conversion types, a
pointer to a Pascal string, is output as a
character string. For o conversion types, the
flag prefixes the conversion with a 0. For x
conversion types with this flag, the
conversion is prefixed with a Ox. For e, E, f,
g, and G conversions, the # flag forces a
decimal point in the output. For g and G
conversions with this flag, trailing zeroes
after the decimal point are not removed.

0 This flag pads zeroes on the left of the
conversion. It appliestod, i, 0, u, x, X, e, E, f,
g, and G conversion types. The leading
zeroes follow sign and base indication
characters, replacing what would normally
be space characters. The minus sign flag
character overrides the 0 flag character. The
0 flag is ignored when used with a precision
width for d, i, o, u, x, and X conversion

types.

@ AltiVec: This flag indicates a pointer to a
string specified by an argument. This string
will be used as a separator for vector
elements.

Table 45.63 Conversion Specifiers for Formatted Output Functions

Modifier Description

d The corresponding argument is converted to
a signed decimal.

i The corresponding argument is converted to
a signed decimal.

o The argument is converted to an unsigned
octal.

u The argument is converted to an unsigned
decimal.

MSL C Reference Version 10 607

'
A

wchar.h
Overview of wehar.h

Table 45.63 Conversion Specifiers for Formatted Output Functions (continued)

Modifier Description

X, X The argument is converted to an unsigned
hexadecimal. The x conversion type uses
lowercase letters (abcdef) while X uses
uppercase letters (ABCDEF).

n This conversion type stores the number of
items output by printf() so far. Its
corresponding argument must be a pointer to
an int.

f, F The corresponding floating point argument
(float, or double) is printed in decimal
notation. The default precision is 6 (6 digits
after the decimal point). If the precision width
is explicitly O, the decimal point is not printed.
Forthe £ conversion specifier, a double
argument representing infinity produces [-
]inf; a double argument representing a
NaN (Not a number) produces [-]nan.
For the F conversion specifier, [-]1INF or
[-1NAN are produced instead.

e E The floating point argument (float or double)
is output in scientific notation: [-
1b.aaae*Eee. There is one digit (b)
before the decimal point. Unless indicated by
an optional precision width, the default is 6
digits after the decimal point (aaa). If the
precision width is 0, no decimal point is
output. The exponent (ee) is at least 2 digits
long.

The e conversion type uses lowercase e as
the exponent prefix. The E conversion type
uses uppercase E as the exponent prefix.

g, G The g conversion type uses the for e
conversion types and the G conversion type
uses the f or E conversion types. Conversion
type e (or E) is used only if the converted
exponent is less than -4 or greater than the
precision width. The precision width
indicates the number of significant digits. No
decimal point is output if there are no digits
following it.

608 MSL C Reference Version 10

wchar.h
Overview of wchar.h

Table 45.63 Conversion Specifiers for Formatted Output Functions (continued)

Modifier Description

[¢ The corresponding argument is output as a
character.

s The corresponding argument, a pointer to a

character array, is output as a character
string. Character string output is completed
when a null character is reached. The null
character is not output.

p The corresponding argument is taken to be a
pointer. The argument is output using the X
conversion type format.

Table 45.64 CodeWarrior Extensions for Formatted Output Functions

Modifier Description

#s The corresponding argument, a pointer to a
Pascal string, is output as a character string.
A Pascal character string is a length byte
followed by the number characters specified
in the length byte.

Note: This conversion type is an extension to
the ANSI C library but applied in the same
manner as for other format variations.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 555
“printf” on page 353

“fwprintf”” on page 561

MSL C Reference Version 10 609

'
A

wchar.h
Overview of wehar.h

wscanf

Reads a wide character formatted text from standard input
#include <wchar.h>

int wscanf (const wchar_t * format, ...);

Table 45.65 wscanf

format wchar_t* The format string

Variable arguments

Remarks
Performs the same task as scanf () for a wide character type.

Returns the number of items successfully read and returns WEOF if a conversion
type does not match its argument or and end-of-file is reached.

Table 45.66 Length Specifiers for Formatted Input

Modifier Description

hh The hh flag indicates that the following 4,
i, o, u, x, X or n conversion specifier
applies to an argument that is of type char
or unsigned char.

h The h flag indicates that the following 4,
i, o, u, x, X or n conversion specifier
applies to an argument that is of type short
int Or unsigned short int.

When used with integer conversion specifier,
the 1 flag indicates 1long int oran
unsigned long int type. When used with
floating point conversion specifier, the 1 flag
indicates a double.

When used witha ¢ or s conversion
specifier, the 1 flag indicates that the
corresponding argument with type pointer to
wchar_t.

610 MSL C Reference Version 10

wchar.h
Overview of wehar.h

Table 45.66 Length Specifiers for Formatted Input (continued)

Modifier Description

I When used with integer conversion specifier,
the Il flag indicates that the corresponding
argument is of type long long or an unsigned
long long.

L The L flag indicates that the corresponding
float conversion specifier corresponds to an
argument of type long double.

\ AltiVec: A vector bool char, vector
signed char or vector unsigned
char when followedbyc, 4, i, o, u,
x or X

A vector float, when followed by £ .

vh AltiVec: vector short, vector

hv unsigned short, vector bool short
or vector pixel when followed by c,
d, i, o, u, x or X

vl AltiVec: vector long, vector
Iv unsigned long or vector bool when
followedby c, 4, i, o, u, x or X

Table 45.67 Conversion Specifiers for Formatted Input

Modifier Description

d A decimal integer is read.

i A decimal, octal, or hexadecimal integer is
read. The integer can be prefixed with a plus
or minus sign (+, -), 0 for octal numbers, 0x
or 0X for hexadecimal numbers.

o An octal integer is read.
u An unsigned decimal integer is read.
X, X A hexadecimal integer is read.

MSL C Reference Version 10 611

'
A

wchar.h
Overview of wehar.h

Table 45.67 Conversion Specifiers for Formatted Input (continued)

Modifier Description

e Ef,9, G A floating point number is read. The number
can be in plain decimal format (e.g.
3456.483) or in scientific notation ([-
1b.aaae[-]1dd) .

s If the format specifier s is preceded with an |
(el) length modifier, then the corresponding
argument must be a pointer to an array of
wchar_t. This array must be large enough to
accept the sequence of wide_characters
being read, including the terminating null
character, automatically appended.

If there is no preceding | length modifier then
the corresponding argument must be an
array of characters. The wide-characters
read from the input field will be converted to
a sequence of multibyte characters before
being assigned to this array. That array must
be large enough to accept the sequence of
multibyte characters including the
terminating null character automatically
appended.

[¢ A character is read. White space characters
are not skipped, but read using this
conversion specifier.

p A pointer address is read. The input format
should be the same as that output by the p
conversion type in printf().

n This conversion type does not read from the
input stream but stores the number of
characters read so far in its corresponding
argument.

[scanset] Input stream characters are read and filtered
determined by the scanset. See “wscanf”
for a full description.

This function may not be implemented on all platforms.

See Also

3

‘Wide Character and Byte Character Stream Orientation” on page 555

612 MSL C Reference Version 10

wchar.h
Non Standard <wchar.h> Functions

“scanf” on page 370

“fwscanf” on page 562

Non Standard <wchar.h> Functions

Various non standard functions are included in the header wchar.h for legacy source
code and compatibility with operating system frameworks and application programming
interfaces.

For the function
For the function
For the function
For the function
For the function
For the function
For the function
For the function
For the function

For the function

wcsdup, see “wesdup” on page 107 for a full description.

wcsicmp, see “wesicmp” on page 108 for a full description.

wcslwr, see “weslwr” on page 109 for a full description.

wcsincmp, see “wesnicmp” on page 111 for a full description.

wcsnset, see “wesnset” on page 112 for a full description.

wcsrev, see “‘wesrev” on page 113 for a full description.

wcsset, see “wesset” on page 113 for a full description.

wcspnp, see “‘wesspnp” on page 114 for a full description.

wcsupr, see “wesupr” on page 114 for a full description.

wtoi, see “wtoi” on page 115 for a full description.

MSL C Reference Version 10

613

A 4
4\

wchar.h
Non Standard <wchar.h> Functions

614 MSL C Reference Version 10

4
wctype.h

The ctype . h header file supplies macros and functions for testing and manipulation of
wide character type.

Overview of wctype.h

This header file defines the facilities as follows:

¢ “wctype.h Types” on page 616 defines two types used for wide character values.

* “iswalnum” on page 616 tests for alpha-numeric wide characters.
* “iswalpha” on page 616 tests for alphabetical wide characters.

» “iswblank” on page 617 tests for a blank space or space holder.

* “iswentrl” on page 618 tests for control wide characters.

» “iswdigit” on page 618 tests for digital wide characters.

* “iswgraph” on page 619 tests for graphical wide characters.

e “iswlower” on page 619 tests for lower wide characters.

¢ “iswprint” on page 620 tests for printable wide characters.

» “iswpunct” on page 620 tests for punctuation wide characters.

* “iswspace” on page 621 tests for whitespace wide characters.

» “iswupper” on page 621 tests for uppercase wide characters.

* “iswxdigit” on page 622 tests for a hexadecimal wide character type.

e “towlower” on page 623 converts wide characters to lower case.

¢ “towupper” on page 624 converts wide characters to upper case.

Mapping Facilities

* “towctrans” on page 623 maps a wide character type to another wide character type.

¢ “wctrans” on page 624 constructs a value that represents a mapping between wide
characters.

MSL C Reference Version 10 615

'
A

wctype.h
Overview of wetype.h

Types

The wctype.h header file contains two types described in Table 46.1 used for wide
character manipulations.

Table 46.1 wctype.h Types

wctrans_t A scalar type which can represent locale
specific character mappings

wctype_t A scalar type that can represent locale
specific character classifications

iswalnum

Tests for alpha-numeric wide characters.
#include <wctype.h>

int iswalnum(wchar_t wc) ;

Table 46.2 iswalnum

wce wchar_t The wide character to test

Remarks
Provides the same functionality as isalnum for wide character type.

Inthe “C” locale true isreturned for an alphanumeric: [a-z], [A-Z], [0-
9]

This function may not be implemented on all platforms.

See Also
“isalnum” on page 55

iswalpha

Tests for alphabetical wide characters.
#include <wctype.h>

int iswalpha (wchar_t wc);

616 MSL C Reference Version 10

wctype.h
Overview of wetype.h

Table 46.3 iswalpha

wce wchar_t The wide character to test

Remarks
Provides the same functionality as isalpha for wide character type.
Inthe “C” locale true isreturned for an alphabetic: [a-z], [A-Z]

This function may not be implemented on all platforms.

See Also
“isalpha” on page 57

iswblank

Tests for a blank space or a word separator dependent upon the locale usage.
#include <wctype.h>

int isblank(win_t c);

Table 46.4 isblank

[¢ win_t character being evaluated

Remarks

This function determines if a wide character is a blank space or tab or if the wide
character is in a locale specific set of wide characters for which iswspace is
true and is used to separate words in text.

In the “C” locale, isblank returns true only for the space and tab characters.

Return
True is returned if the criteria are met.

This function may not be implemented on all platforms.

See Also

“iswspace” on page 621

MSL C Reference Version 10 617

'
A

wctype.h
Overview of wetype.h

iswentrl

Tests for control wide characters.
#include <wctype.h>

int iswcntrl (wchar_t wc);

Table 46.5 iswcntrl

wc wchar_t The wide character to test

Remarks
Provides the same functionality as iscntrl for wide character type.

True for the delete character (0x7F) or an ordinary control character from 0x00 to
0x1F.

This function may not be implemented on all platforms.

See Also

“iscntr]” on page 58

iswdigit
Tests for digital wide characters.

#include <wctype.h>

int iswdigit (wchar_t wc);

Table 46.6 iswdigit

wce wchar_t The wide character to test

Remarks
Provides the same functionality as isdigit for wide character type.
Inthe “C” locale true is returned for a numeric character: [0-9] .

This function may not be implemented on all platforms.

618 MSL C Reference Version 10

wctype.h
Overview of wetype.h

See Also

“isdigit” on page 58

iswgraph

Tests for graphical wide characters.
#include <wctype.h>

int iswgraph (wchar_t wc);

Table 46.7 iswgraph

wce wchar_t

The wide character to test

Remarks

Provides the same functionality as isgraph for wide character type.

Inthe “C” locale true is returned for a non-space printing character from the

exclamation (0x21) to the tilde (0x7E).

This function may not be implemented on all platforms.

See Also

“isgraph” on page 59

iswlower

Tests for lowercase wide characters.
#include <wctype.h>

int iswlower (wchar_t wc) ;

Table 46.8 iswlower

wce wchar_t

The wide character to test

Remarks

Provides the same functionality as islower for wide character type.

Inthe “C” locale true is returned for a lowercase letter: [a-z].

MSL C Reference Version 10

619

'
A

wctype.h

Overview of wetype.h

This function may not be implemented on all platforms.

See Also

“islower” on page 59

“iswupper” on page 621

iswprint

Tests for printable wide characters.

#include <wctype.h>

int iswprint (wchar_t wc);

Table 46.9 iswprint

wcC

wchar_t The wide character to test

Remarks

Provides the same functionality as isprint for wide character type.

Inthe “C” locale true is returned for a printable character from space (0x20)
to tilde (0x7E).

This function may not be implemented on all platforms.

See Also

“isprint” on page 60

iswpunct

Tests for punctuation wide characters.

#include <wctype.h>

int iswpunct (wchar_t wc);

Table 46.10 iswpunct

wC

wchar_t The wide character to test

620

MSL C Reference Version 10

wctype.h
Overview of wetype.h

Remarks

Provides the same functionality as ispunct for wide character type.

True for a punctuation character. A punctuation character is neither a control nor

an alphanumeric character.

This function may not be implemented on all platforms.

See Also

“ispunct” on page 60

iswspace

Tests for whitespace wide characters.

#include <wctype.h>

int iswspace (wchar_t wc);

Table 46.11 iswspace

wc wchar_t The wide character to test
Remarks
Provides the same functionality as isspace for wide character type.
Inthe “C” locale true is returned for a space, tab, return, new line, vertical
tab, or form feed.
This function may not be implemented on all platforms.
See Also

“isspace” on page 61

iswupper

Tests for uppercase wide characters.

#include <wctype.h>

int iswupper (wchar_t wc);

MSL C Reference Version 10

621

V¥ ¢
i

wctype.h
Overview of wetype.h

Table 46.12 iswupper

wcC

wchar_t

The wide character to test

Remarks

Provides the same functionality as isupper for wide character type.
Inthe “C” locale true isreturned for an uppercase letter: [A-Z].

This function may not be implemented on all platforms.
See Also

“isupper” on page 61

“iswlower” on page 619

iswxdigit

Tests for a hexadecimal wide character type.

#include <wctype.h>

int iswxdigit (wchar_t wc);

Table 46.13 iswxdigit

wcC

wchar_t The wide character to test

Remarks

Provides the same functionality as isxdigit for wide character type.
True for a hexadecimal digit [0-9]1, [A-F],or [a-f].
This function may not be implemented on all platforms.

See Also

“isxdigit” on page 62

622 MSL C Reference Version 10

wctype.h
Overview of wetype.h

towctrans
Maps a wide character type to another wide character type.

#include <wchar.h>

wint_t towctrans (wint_t ¢, wctrans_t value);

Table 46.14 towctrans

[¢ wint_t The character to remap
value wctrans_t A value retuned by wctrans
Remarks
Maps the first argument to an upper or lower value as specified by value.
Returns the remapped character.
This function may not be implemented on all platforms.
See Also
“wetrans” on page 624
towlower

Converts wide characters from upper to lowercase.

#include <wctype.h>

wchar_t towlower (wchar_t wc);

Table 46.15 towlower

The wide character to
convert

wce wchar_t

Remarks
Provides the same functionality as tolower for wide character type.

The lowercase equivalent of a uppercase letter and returns all other characters

unchanged

MSL C Reference Version 10 623

y
A

wctype.h

Overview of wetype.h

This function may not be implemented on all platforms.

See Also

“tolower” on page 62

“towupper” on page 624

towupper

Converts wide characters from lower to uppercase.

#include <wctype.h>

wchar_t towupper (wchar_t wc) ;

Table 46.16 towupper

wc wchar_t The wide character to
convert

Remarks
Provides the same functionality as toupper for wide character type.
The uppercase equivalent of a lowercase letter and returns all other characters
unchanged.
This function may not be implemented on all platforms.

See Also

“toupper” on page 63

“towlower” on page 623

wctrans

Constructs a property value for “toupper” and “tolower” for character remapping.

#include <wchar.h>

wctrans_t wctrans (const char *name) ;

624

MSL C Reference Version 10

wctype.h
Overview of wetype.h

Table 46.17 wctrans

name

const char *

toupper or tolower property

Remarks

Constructs a value that represents a mapping between wide characters. The value

of name can be either toupper or tolower.

A wctrans_t type

This function may not be implemented on all platforms.

See Also

“towctrans” on page 623

MSL C Reference Version 10

625

A 4
4\

wctype.h
Overview of wetype.h

626 MSL C Reference Version 10

47
WinSIOUX.h

The SIOUX and WinSIOUX (Simple Input and Output User eXchange) libraries handle
Graphical User Interface issues. Such items as menus, windows, and events are handled so
your program doesn’t need to for C, Pascal and C++ programs.

Overview of WinSIOUX

The following section describes the Windows versions of the console emulation interface
known as WinSIOUX. The facilities and structure members for the Windows Standard
Input Output User eXchange console interface are as follows:

* “Using WinSIOUX"” on page 627 explains SIOUX properties.

¢ “WinSIOUX for Windows” on page 628 explains the SIOUX library for Windows
95 and Windows NT.

NOTE If you’re porting a UNIX or DOS program, you might also need the functions
in other UNIX compatibility headers.

See Also

“MSL Extras Library Headers” on page 4. for information on POSIX naming
conventions.

Using WinSIOUX

Sometimes you need to port a program that was originally written for a command line
interface such as DOS or UNIX. Or you need to write a new program quickly and don’t
have the time to write a complete Graphical User Interface that handles windows, menus,
and events.

To help you, CodeWarrior provides you with the WinSIOUX libraries, which handles all
the Graphical User Interface items such as menus, windows, and titles so your program
doesn’t need to. It creates a window that’s much like a dumb terminal or TTY but with
scrolling. You can write to it and read from it with the standard C functions and C++
operators, such as printf(), scanf(), getchar(), putchar() and the C++ inserter and extractor
operators << and >>. The SIOUX and WinSIOUX libraries also creates a File menu that
lets you save and print the contents of the window. There is also an Edit menu that lets you
cut, copy, and paste the contents in the window.

MSL C Reference Version 10 627

y
A

WinSIOUX.h
WinSIOUX for Windows

This function may not be implemented on all platforms.

See Also

“Overview of console.h” on page 41.

NOTE If you’re porting a UNIX or DOS program, you might also need the functions

in other UNIX compatibility headers.

WinSIOUX for Windows

The WinSIOUX window is a re-sizable, scrolling text window, where your program reads

and writes text.

With the commands from the Edit menu, you can cut and copy text from the WinSIOUX

window and paste text from other applications into the WinSIOUX window. With the

commands in the File menu, you can print or save the contents of the WinSIOUX window

¢ “Creating a Project with WinSIOUX"” on page 628 basic steps to create a
WinSIOUX program.

e “Customizing WinSIOUX” on page 629 settings used to create the WinSIOUX
console

e “clrscr” on page 630 is used to clear the WinSIOUX console screen and buffer

Creating a Project with WinSIOUX

To use the WinSIOUX library, create a project from a project stationery that creates a
WinSIOUX Console style project.

A Win SIOUX project must contain at least these libraries:
¢ ANSIC_WINSIOUX.LIB
¢ ANSIC_WINSIOUXD.LIB
e Mwert.lib
* MWCRTD.lib

The Win32SDK libraries:
¢ Winspool.lib

Comdlg32.1ib

Gdi32.1ib

Kernel32.lib

User32.1ib

628

MSL C Reference Version 10

WinSIOUX.h
WinSIOUX for Windows

And the resource file:

WinSIOUX.rc

Customizing WinSIOUX

WinSIOUX offers the user a limited ability to customize the WinSIOUX window display.
The following sections describe how you achieve this customization by modifying the
structure SIOUXSettings, of type tSIOUXSettings. WinSIOUX examines some of the data
fields of SIOUXSettings to determine how to create the WinSIOUX window and

environment.

NOTE To customize WinSIOUX, you must modify SIOUXSettings before you call
any function that uses standard input or output. If you modify SIOUXSettings
afterwards, WinSIOUX does not change its window.

Table 47.1 The SIOUX Settings Structure

This field...

Specifies...

char initialize TB

Not applicable to
WinSIOUX.

char standalone

Not applicable to
WinSIOUX.

char setupmenus

Not applicable to
WinSIOUX.

char autocloseonquit

Whether to close the
window and quit the
application automatically
when the program has
completed.

char asktosaveonclose

Query the user whether to
save the WinSIOUX output
as afile, when the program
is done.

char showstatusline

Not applicable to
WinSIOUX.

MSL C Reference Version 10

629

'
A

WinSIOUX.h
WinSIOUX for Windows

Table 47.1 The SIOUX Settings Structure (continued)

This field... Specifies...

short tabspaces If greater than zero,
substitute a tab with that
number of spaces. If zero,
print the tabs.

short column The number of characters
per line that the SIOUX
window will contain.

short rows The number of lines of text
that the SIOUX window will
contain.

short toppixel Not applicable to
WinSIOUX.

short leftpixel Not applicable to
WinSIOUX.

short fontname[32] The font to be used in the

WinSIOUX window.

short fontsize The size of the font to be
used in the WinSIOUX
window.

short fontface Not applicable to
WinSIOUX.

clrscr

Clears the WinSIOUX window and flushes the buffers.
#include <WinSIOUX.h>

void clrscr(void) ;

Remarks
This function simply calls the function WinSIOUXCclrscr, that clears the screen.
This function is not implemented directly on Windows console.

Windows compatible, only.

630 MSL C Reference Version 10

WinSIOUX.h
WinSIOUX for Windows

MSL C Reference Version 10 631

A 4
4\

WinSIOUX.h
WinSIOUX for Windows

632 MSL C Reference Version 10

48

MSL Flags

This appendix contains a description of the macros and defines that are used as switches or
flags in the MSL C library.

Overview of the MSL Switches, Flags and

Defines

The MSL C library has various flags that may be set to customize the library to users
specifications. The flags are explained as follows:

“__ANSI OVERLOAD__” on page 633

“ MSL_C LLOCALE_ONLY” on page 634

“ MSL_IMP_EXP” on page 634

“ MSL_INTEGRAL_MATH” on page 634

“ MSIL, MAILLOC 0_RETURNS _NON_NULL” on page 635

“ MSL_NEEDS_EXTRAS” on page 635

“ MSL_OS_DIRECT_MALLOC” on page 635

“ MSL_CLASSIC_MALLOC” on page 635

“ MSI,_ USE NEW_ FILE APIS” on page 636

“ MSIL._USE_OLD_FILE_APIS” on page 636
“_MSL_POSIX” on page 636

“ MSL._STRERROR_KNOWS_ ERROR_NAMES” on page 637
“_SET_ERRNO__” on page 637

__ANSI_OVERLOAD__

When defined (and when using the C++ compiler) the math functions are overloaded with
float and long double versions as specified by 26.5 paragraph 6 of the C++ standard.
Disabling this flag removed the overloaded functions.

MSL C Reference Version 10 633

A 4
4\

MSL Flags

Overview of the MSL Switches, Flags and Defines

_MSL_C_LOCALE_ONLY

The flag _MSL_C_LOCALE_ONLY provides for disabling the locale mechanism in the
library.

The MSL C library should be recompiled after changing the value of the flag.

When off, the locale mechanism works as described by the ANSI C standard. When on,
there are no locales, and anything which is dependent upon locales will function as if the
“C” locale is in place. This saves code size and increases execution speed slightly.

_MSL_IMP_EXP

This macro determines how the standard headers are decorated for importing and
exporting symbols from/to a shared version of the standard runtime/C/C++ library.

If this macro is defined to nothing then the headers are configured for linking against static
libraries.

In the header file UseDLLPrefix.h the macro is defined to
__declspec (dllimport) . This will allow you to link against one of the supplied
shared libraries. Other related macros

_MSL_IMP_EXP_C

_MSL_IMP_EXP_SIOUX

_MSL_IMP_EXP_RUNTIME

allow you to link with “part” of the shared library and an individual static library.

By default the previous macros are set to whatever _MSLIMP_EXP is set to (see
ansi_parms.h). As an example, if you wish to link in the static version of the SIOUX
library then you would edit ansi_parms.h and define _MSL_TIMP_EXP_SIOUX
to nothing and link in the appropriate static SIOUX 1lib.

_MSL_INTEGRAL_MATH

When defined (and when __ ANST_OVERLOAD_ _ is defined and when using the C++
compiler), additional overloads to the math functions with integral arguments are created.
This flag is meant to prevent compile time errors for statements like:

double ¢ = cos(0);

// ambiguous with __ ANSI_OVERLOAD_

634

MSL C Reference Version 10

MSL Flags
Overview of the MSL Switches, Flags and Defines

// and not _MSL_INTEGRAL_MATH

_MSL_MALLOC_0_RETURNS_NON_NULL

This flag determines the implementation of a null allocated malloc statement. If not
defined malloc (0) returns 0. If defined malloc (0) returns non-zero.

The C lib must be recompiled when flipping this switch.

_MSL_NEEDS_EXTRAS

Macintosh and Windows programs have the ability to use extra C functions when they
have the MSL Extras Library linked into their project. This flag determines if they can be
accessed from a C standard header or not. The flag _MSL_NEEDS_EXTRAS default
setting is true for Windows and false for the Macintosh.

Macintosh developers must specify a non standard header to access the non standard extra
functions. If Macintosh programmers wishes to access non standard functions via a
standard header in legacy code, they need to do is to set _MSIL,_NEEDS_EXTRAS to
true inansi_prefix.mac.h

Windows users can access the functions in a standard header to be legacy compatible as
well as the actual header where they are declared. If a Windows programmer does not
want to access non standard functions via a standard header then they need to turn off
_MSL_NEEDS_EXTRAS in ansi_prefix.Win32.h.

_MSL_OS_DIRECT_MALLOC

If defined malloc will call straight through to the OS without forming memory pools.
This will likely degrade performance but may be valuable for debugging purposes.

The C lib must be recompiled when flipping this switch.

_MSL_CLASSIC_MALLOC

Enables the version of malloc that was in Pro 4 (for backward compatibility).

The C lib must be recompiled when flipping this switch.

MSL C Reference Version 10 635

A 4
4\

MSL Flags
Overview of the MSL Switches, Flags and Defines

_MSL_USE_NEW_FILE_APIS

You can use this flags to turn on and off the new-style use of the new HFS+ file system
APIs, present starting with Mac OS 9.0. Using the new file system APIs gets filenames
greater than 32 characters and file sizes of greater than 2GB. However, due to the standard
interfaces for C, you can only access files in 2GB chunks.

Prototypes for fread () , for example, take a 1ong as parameter for the amount of data
to be read from a file, so to access more than 2GB in a file, you must make successive
callsto fread() .

The C lib must be recompiled when flipping this switch.

_MSL_USE_OLD_FILE_APIS

You can use this flags to turn on and off the old-style use of the Mac file system APIs.
Using the old file system APIs limits you to filenames of 32 characters or less and file
sizes of 2GB or less.

The C lib must be recompiled when flipping this switch.

_MSL_POSIX
This flag adds the POSIX function stat to the global namespace. This is on by
default.

Turning this off should allow the user to link against a third party POSIX library with
the same names. The POSIX names preceded by a leading underscore are always
available in MSL. For example, _open and _stat.

Remarks

This macro is located in the prefix files ansi_prefix.win32.h or
ansi_prefix.macos.h.

Commenting this out does not require recompilation of the library.

636 MSL C Reference Version 10

MSL Flags
Overview of the MSL Switches, Flags and Defines

_MSL_STRERROR_KNOWS_ERROR_NAMES

The flag _MSL_STRERROR_KNOWS_ERROR_NAMES controls what happens when
the strerror() call is made.

When the flag is on, strerror() will return robust error messages. When the flag is off,
strerror() will always return with an “unknown” error. This provides for a huge savings in
code/data size in the executable.

__SET_ERRNO__

If this flag is defined it will cause the standard math functions to set the global errno to
either EDOM or ERANGE as specified in the 1989 C standard. The modern C standard
specifies that setting errno for the mathlib is optional. So in the spirit of the new standard
on x86 it is now optional.

Turning this off will improve performance by reducing checks for incorrect input values
but will not set errno. Most of the standard math functions are now in the header
math_x87.h.

Remarks

Since these definitions are in a header file they can be configured when building your
application and therefore you do NOT need to rebuild the library. This switch is on by
default.

This flag is only for Win32 x86 libraries.

MSL C Reference Version 10 637

A 4
4\

MSL Flags
Overview of the MSL Switches, Flags and Defines

638 MSL C Reference Version 10

49

Secure Library Functions

This chapter contains a description of the secure library functions that are an extension to
the C99 Standard. These functions promote safer, more secure programming. The
functions verify that output buffers are large enough for intended results and return a
failure indicator if not. Data is never written past the end of an array and all string results
are null terminated.

The secure library functions are only accessed by their respective headers if the
__USE_SECURE_LIB__ macro is defined in the source file where the header file is
included. If a header file is included more than once in a given scope, this will result in
undefined behavior if __USE_SECURE_LIB__is defined for some inclusions and not
others.

Input/Output

If the _ USE_SECURE_LIB__ macro is defined in the source file where <stdio.h> is
included, then stdio.h defines the following macros.

L_tmpnam_s

This macro expands to an integer constant expression that is the size needed for an array of
char large enough to hold a temporary file name string generated by the tmpnam_s
function.

TMP_MAX_S

This macro expands to an integer constant expression that is the maximum number of
unique file names that can be generated by the tmpnam_ s function.

File Operations

tmpnam_s

The tmpnam_s function generates a unique string that represents a valid file name. File
names created by the tmpnam_s function are temporary only in the sense that their
names should not collide with those generated by conventional naming rules. It is still

MSL C Reference Version 10 639

3
4

y
A

Secure Library Functions

Input/Output

necessary to use the remove function to remove such files when their use is ended, and
before program termination.

The function is capable of generating TMP_MAX_ S different strings. Any or all of them
may already be in use by existing files and thus not be suitable return values. The lengths
of these strings shall be less than the value of the L_ tmpnam_s macro. The tmpnam_s
function generates a different string each time it is called.

#define _ USE_SECURE_LIB_
#include <stdio.h>

int tmpnam_s (char *s, size_t maxsize);

Remarks

If no suitable string is generated, or if the length of the string is not less than the value of
maxsize, the tmpnam_s function writes a null character to s[0] (if maxsize is greater than
zero) and returns ERANGE.

Otherwise, the tmpnam_s function writes the string in the array pointed to by s and
returns zero.

The value of the TMP_MAX_ S macro should be at least 25.

Formatted input/output functions

fscanf s

The fscanf_s function is equivalent to fscanf except that the ¢, s, and [conversion
specifiers apply to a pair of arguments, unless assignment is suppressed by an asterisk (*).
The first of these arguments is the same as for fscanf. That argument is followed by the
second argument in the argument list, which has a type of size_t and gives the number
of elements in the array pointed to by the first argument of the pair. If the first argument
points to a scalar object, it is considered to be an array of one element.

If the format is known, an implementation may issue a diagnostic for any argument used
to store the result from a c, s, or [conversion specifier if that argument is not followed by
an argument of type size_t. Limited checking may be done if the format is not known at
translation time. For example, a diagnostic may be issued for each argument after a format
of type pointer to one of char, signed char, unsigned char, or void, if not followed by an
argument of type size_t. The diagnostic could provide a warning that unless the pointer
is being used with a conversion specifier using the hh length modifier, a length argument
must follow the pointer argument. Another useful diagnostic could flag any non-pointer
argument that follows a format that was not a size_t type.

640

MSL C Reference Version 10

Secure Library Functions
Input/Output

A matching failure occurs if the number of elements in a receiving object is insufficient to
hold the converted input (including any trailing null character).

#define _ USE_SECURE_LIB_
#include <stdio.h>

int fscanf_s(FILE * restrict stream, const char * restrict
format, ...);

Remarks

The fscanf_s function returns the value of the macro EOF if an input failure occurs
before any conversion. Otherwise, the £scanf_s function returns the number of input
items assigned, which can be fewer than provided for, or zero if an early match failure
occurs.

Example

#define _ USE_SECURE_LIB_

#include <stdio.h>

/* e */

int n; char s[5];

n = fscanf_s(stdin, "%s", s, sizeof s);

Providing hello as the input line will assign 0 to n since a matching failure will occur. The
end of line character attached to hello (hello\O) requires that the total array size can hold
six characters. No assignment to s occurs.

scanf_s

The scanf_s function is equivalent to £scanf_s with the stdin argument inserted
before the arguments to scanf_s.

#define _ USE_SECURE_LIB_
#include <stdio.h>

int scanf_s(const char * restrict format, ...);

Remarks

The scanf_s function returns the value of the EOF macro if an input failure occurs
before conversion. Otherwise, the scanf_ s function returns the number of input items
assigned, which can be fewer than provided for or zero if an early match failure occurs.

MSL C Reference Version 10 641

y
A

Secure Library Functions

Input/Output

sscanf_s

The sscanf_s function is equivalent to fscanf_s, except that input is obtained from a
string rather than from a stream. Reaching the end of the string is equivalent to
encountering end-of-file for the fscanf_s function. If copying takes place between
objects that overlap, the behavior is undefined.

#define _ USE_SECURE_LIB_
#include <stdio.h>

int sscanf_s(const char * restrict s, const char * restrict
format, ...);

Remarks

The sscanf_s function returns the value of the EOF macro if an input failure occurs
before conversion. Otherwise, the number of input items assigned are returned, which can
be fewer than provided for, or zero if an early match failure occurs.

viscanf_s

The vEscanf_s function is equivalent to fscanf_s, although the variable argument
list is replaced by arg, which is initialized by the va_start macro (and possibly
subsequent va_arg calls). The vEscanf_s function does not invoke the va_end
macro.

Since the functions vfscanf_s, vscanf_s, and vsscanf_s invoke the va_arg
macro, the value of arg will vary after the return.

#define _ USE_SECURE_LIB_
#include <stdarg.h>
#include <stdio.h>

int vfscanf s (FILE * restrict stream, const char * restrict
format, va_list arg);

Remarks

The vfscanf_s function returns the value of the EOF macro if an input failure occurs
before conversion. Otherwise, it returns the number of input items assigned, which can be
fewer than provided for, or zero if an early match failure occurs.

642

MSL C Reference Version 10

Secure Library Functions
Input/Output

vscanf s

The vscanf_s function is equivalent to scanf_s, although the variable argument list
is replaced by arg, which is initialized by the va_start macro (and possibly
subsequent va_arg calls). The vscanf_ s function does not invoke the va_end macro.

Since the functions viscanf_s, vscanf_s, and vsscanf_s invoke the va_arg
macro, the value of arg will vary after the return.

#define _ USE_SECURE_LIB_
#include <stdarg.h>
#include <stdio.h>

int vscanf_s(const char * restrict format, va_list arg);

Remarks

The vscanf_s function returns the value of the EOF macro if an input failure occurs
before conversion. Otherwise, the vscanf_s function returns the number of input items
assigned, which can be fewer than provided for, or zero if an early match failure occurs.

vsscanf_s

The vsscanf_s function is equivalent to sscanf_s, although the variable argument
list is replaced by arg, which is initialized by the va_start macro (and possibly
subsequent va_arg calls). The vsscanf_s function does not invoke the va_end
macro.

Since the functions vfscanf_s, vscanf_s, and vsscanf_s invoke the va_arg
macro, the value of arg will vary after the return.

#define _ USE_SECURE_LIB_
#include <stdarg.h>
#include <stdio.h>

int vsscanf_s(const char * restrict s, const char * restrict
format, va_list arg);

Remarks

The vsscanf_s function returns the value of the EOF macro if an input failure occurs
before conversion. Otherwise, it returns the number of input items assigned, which can be
fewer than provided for, or zero if an early match failure occurs.

MSL C Reference Version 10 643

V¥ ¢
i

Secure Library Functions
Input/Output

Character input/output functions

gets_s

644 MSL C Reference Version 10

Index

Symbols
__ANSI_OVERLOAD__ 633
__path2fss 265
__SET_ERRNO__ 637
__ttyname 46
_beginthread 239
_beginthreadex 240
_chdrive 81
_chsize 82
_clrser 30

_creat 118
_CRTStartup 51
_DIlITerminate 50
_dup 520

_dup2 520
_endthread 241
_endthreadex 242
_Exit 422

_fentl 119
_fcreator 539
_filelength 82
_fileno 317
_findclose 158
_finddata_t 157
_findfirst 158
_findnext 159
_ftune 508
_ftype 540
_fullpath 84
_gevt 85
_get_osthandle 86
_getch 30
_getche 31
_getdewd 65
_getdiskfree 66
_getdrive 85
_getdrives 66
_gotoxy 31
_HandleTable 51
_heapmin 87
_initscr 32

_inp 32

_inpd 33

_inpw 33

_IQFBF 377

_IOLBF 377

_IONBF 377

_itoa 87

_itow 88

_kbhit 34

_ltoa 88

_ltow 89

_makepath 90

_MSL_C_LOCALE_ONLY 634

_MSL_CLASSIC_MALLOC 635

_MSL_IMP_EXP 634

_MSL_IMP_EXP_C 634

_MSL_IMP_EXP_RUNTIME 634

_MSL_IMP_EXP_SIOUX 634

_MSL_INTEGRAL_MATH 634

_MSL_MALLOC_0_RETURNS_NON_NULL
635

_MSL_NEEDS_EXTRAS 635

_MSL_OS_DIRECT_MALLOC 635

_MSL_POSIX 636

_MSL_USE_NEW_FILE_APIS 636

_MSL_USE_OLD_FILE_APIS 636

_open 121

_open_osthandle 90

_outp 34

_outpd 35

_putenv 91,430

_Runlnit 52

_searchenv 92

_setmode 160

_SetupArgs 52

_splitpath 92

_strcmpi 94

_strdate 94

_strdup 95

_stricmp 96

_stricoll 96

_strlwr 97

_strncmpi 98

MSL C Reference Version 10

645

A
_strncoll 99 access 512
_strnicmp 100 acos 178
_strnicoll 100 acosf 179
_strnset 101 acosh 211
_strrev 102 acosl 179
_strset 102 alloca 169
_strspnp 103 alloca 25
_strupr 104 alloca.h 25-26
_textattr 36 AltiVec 322,336, 355,371
_textbackground 37 longjmp 244
_textcolor 37 setjmp 245
_ultow 106 AltiVec Extensions
_wcreate 118 fprintf 322
_wcsdup 107 printf 355
_wcesicmp 108 scanf 336, 371
_wcsicoll 108 ANSIC 3
_weslwr 109 Argc 49
_wesncoll 110 Argv 50
_wesnicmp 111 asctime 488
_wecsnicoll 110 asctime_r 489
_wesnset 112 asin 179
_wesrev 113 asinf 180
_wcsset 113 asinh 212
_wcesspnp 114 asinl 180
_wesupr 114 assert 27
_wfopen 399 assert.h 27-28
_wfreopen 399 atan 180
_wherex 38 atan2 181
_wherey 38 atan2f 183
_wopen 121 atan2l 183
_wremove 400 atanf 181
_wrename 401 atanh 213
_wstrrev 115 atanl 181
_wtmpnam 401 atexit 408
_wtoi 115 atof 410
atoi 411
Numerics atoi 411
32718 atol 412
Head B atol 412,413
heapmin 87 atoll 412
A B
abort 405 bsearch 413
abs 406 btowc 557

646 MSL C Reference Version 10

C

calloc 417
cbrt 214
ccommand 41
ceil 183

ceilf 184

ceill 184

cerr 257
CHAR_BIT 163
CHAR_MAX 163
CHAR_MIN 163
chdir 513
chmod 272
chsize 82

cin 257
clearerr 302
clock 490
clock_t 486
close 515
closedir 72
clrscr 43,630
Command-line Arguments 41
console.h 41-47
copysign 215
cos 184

cosf 185

cosh 186

coshf 187

coshl 187

cosl 185

cout 257
creat 118
creat 118
crtl.h 49-52
ctime 492
ctime_r 493
ctype.h 53-64
cuserid 518
Customizing SIOUX 258
Customizing WinSIOUX 629

D
Data Types

floating point environment 125

Date and time 485
DBL_DIG 139
DBL_EPSILON 140
DBL_MANT_DIG 139
DBL_MAX 140
DBL_MAX_10_EXP 140
DBL_MAX_EXP 139
DBL_MIN 140
DBL_MIN_10_EXP 139
DBL_MIN_EXP 139
difftime 494

direct.h 65-67

dirent.h 69-72

div 419

div_t 73

div_t structure 419
dup 520

dup2 520

E

environ 50
Environment 127
EOF 301

erf 216

erfc 217
errno 75
errno.h 75-78
excevp 522
execl 521
execle 521
execlp 522
execv 522
execve 522
exit 420

exp 187

exp2 217

expf 188

expl 188
expml 218
extras.h 79-116

F

F_DUPFD 119

MSL C Reference Version 10

647

A

fabs 188 floorf 191

fabsf 189 floorl 191

fabsl 190 FLT_DIG 139

fclose 304 FLT_ EPSILON 140
fentl 119 FLT_MANT_DIG 139
fentl 119 FLT_MAX 140

fentlh 117-124 FLT_MAX_10_EXP 140
fdim 219 FLT_MAX_EXP 139
fdopen 306 FLT_MIN 140

feclearexcept 128

fegetenv 135

fegetround 133

feholdexcept 136

fenv.h 125-138

FENV_ACC 127

fenv_t 125

feof 307

feraiseexcept 130

ferror 309

fesetenv 137

fesetexceptflag 131

fesetround 134

fetestexcept 132

feupdateenv 137

fexcept_t 125

fflush 310

fgetc 312

fgetpos 314

fgets 316

fgetwe 558

fgetws 559

FILE 299

File Mode Macros
Non Windows 271
Windows 272

File Modes 271

filelength 82

fileno 83

float.h 139

Floating Point Classification Macros 174

Floating Point Math Facilities 178

Floating point mathematics 173

Floating-Point Exception Flags 126

floor 190

FLT_MIN_10_EXP 139
FLT_MIN_EXP 139
FLT RADIX 139
FLT_ROUNDS 139
fma 220

fmax 221

fmin 222

fmod 191

fmodf 192

fmodl 192

fopen 317
fpclassify 175,177,178
fprintf 320
fputc 328

fputs 330

fputwc 559

fputws 560

fread 331

free 422
freopen 333
frexp 193

frexpf 194

frexpl 194

fscanf 335
fseek 341
fsetpos 343
FSp_fopen 141
FSp_fopen.h 141-143
FSRef fopen 142
fstat 273

ftell 344

ftime 508

fwide 345

fwprintf 561
fwrite 347

648

MSL C Reference Version 10

fwscanf 562

G

gamma 223
gevt 85,451
getc 348
getch 30,43
getchar 349
getche 31
getcwd 523
getegid 525
getenv 423
geteuid 525
getgid 525
GetHandle 86
getlogin 524
getpgrp 525
getpid 525
getpid 525
getppid 525
gets 351
getuid 525
getwc 563
getwchar 563
gmtime 495
gmtime_r 496

H

HUGE_VAL 211
HUGE_VAL 173
hypot 224

I

ilogb 225

ilogbf 225

ilogbl 225

imaxabs 150

imaxdiv 150

imaxdiv_t 146

inp 32

inpd 33

Input Control String 335
Input Conversion Specifiers 335

inpw 33
InstallConsole 44
INT_MAX 164
INT_MIN 164
INT16_C 295
INT32_C 295
INT64_C 295
INT8_C 295

Integral limits 163

INTMAX_C 295

Intrinsic functions 5

Introduction 1-6

inttypes.h 145-156

io.h 157-160
isalnum 55
isalpha 57
isatty 526
isblank 57
iscntrl 58
isdigit 58
isfinite 176
isgraph 59
isgreater 194
isgreaterless 195
isless 195
islessequal 196
islower 59
isnan 177
is0646.h 161
isprint 60
ispunct 60
isspace 61
isunordered 196
isupper 61
iswalnum 616
iswalpha 616
iswblank 617
iswentrl 618
iswdigit 618
iswgraph 619
iswlower 619
iswprint 620
iswpunct 620
iswspace 621

MSL C Reference Version 10

649

iswupper 621
iswxdigit 622
isxdigit 62
itoa 87,451
itow 88,451

J

Jmp_buf 243

K
kbhit 34,44

L

labs 424

LC_ALL 167
LC_COLLATE 167
LC_CTYPE 167
LC_MONETARY 167
LC_NUMERIC 167
LC_TIME 167
lconv structure 165
LDBL_DIG 139
LDBL_EPSILON 140
LDBL_MANT DIG 139
LDBL_MAX 140
LDBL_MAX_10_EXP 140
LDBL_MAX_EXP 139
LDBL_MIN 140
LDBL_MIN_10_EXP 139
LDBL_MIN_EXP 139
Idexp 197

Idexpf 198

ldexpl 198

1div 425

Idiv_t 74

1div_t structure 425
Igamma 226

limits.h 163

llabs 425

Ildiv 426

Iidiv_t 74
LLONG_MAX 164
LLONG_MIN 164

Locale specification 165
locale.h 165-167
localeconv 166
localtime 497
localtime_r 497
log 198

log10 200

log10f 200

log101 200

loglp 227

log2 228

logb 229

logf 199

logl 199
LONG_MAX 164
LONG_MIN 164
longjmp 244
lseek 527

Itoa 88,451

M
MacOS X

Extras Library 5
Macros

floating point environment 125
makepath 90, 451
malloc.h 169-170
Marco Piovanelli 256
math.h 171-238
MB_LEN_MAX 164
mblen 428
mbsinit 566
mbstate_t 557
mbstowcs 428
mbtowc 429
memchr 454
memcmp 456
memcpy 457
memmove 458
memset 458
mkdir 275
mktime 498
modf 201, 230
modff 202

650

MSL C Reference Version 10

modfl 202

MSL Extras Library 3
MacOS X 5

MSL Flags 633-637

Multithreading 7-9, 11-??

N

NaN 173,174
nan 230
nearbyint 230
nextafter 231
NULL 287

0]

offsetof 287

open 121

open 121

opendir 69

outp 34

outpd 35

Output Control String 321

Output Conversion Specifiers 321
outpw 36

P
path2fss 265
perror 352
POSIX

naming conventions 3
pow 202
powf 203
powl 203
printf 353
process.h 239-242
ptrdiff_t 288
putc 362
putchar 363
putenv 91
puts 365
putwc 568
putwchar 568

Q

gsort 431
Quiet 174

R

raise 253

rand 432
RAND_MAX 432
rand_r 433

read 528
ReadCharsFromConsole 45
readdir 70
readdir_r 70
realloc 434
remainder 232
remove 366
RemoveConsole 45
remquo 233
rename 367
rewind 368
rewinddir 71

rint 234

rinttol 235

rmdir 529

round 236
Rounding Directions 126
roundtol 237

S

scalb 237
scanf 370
Scanset 338
SCHAR_MAX 163
SCHAR_MIN 163
SEEK_CUR 341
SEEK_END 341
SEEK_SET 341
setbuf 375
setjmp 245
setjmp.h 243-245
setlocale 166
setvbuf 377
SHRT_MAX 163

MSL C Reference Version 10

651

SHRT_MIN 164
SIG_DFL 251
SIG_ERR 251
SIG_IGN 251
SIGABRT 250, 405
SIGBREAK 250
SIGFPE 250
SIGILL 250
SIGINT 250
signal 251
Signal handling 249
signal.h 249-254
Signaling 174
SIGSEGV 250
SIGTERM 250

sin 204

sinf 205

sinh 205

sinhf 206

sinhl 206

sinl 205

SIOUX 4,256
SIOUX.h 255-267, 72-267

SIOUXHandleOneEvent 265
SIOUXSettings structure 259, 629

SIOUXSetTitle 267
size_t 288
sleep 532
snprintf 379
spawn 533
spawnl 533
spawnle 533
spawnlp 533
spawnlpe 534
spawnv 533
spawnve 533
spawnvp 534
spawnvpe 534
splitpath 92,451
sprintf 380

sscanf 381
Standard definitions 287
Standard input/output 299
stat 276
Stat Structure
Macintosh 270
stat.h 269-278
stdarg.h 279-283
stdbool.h 285
stddef.h 287-288
stderr 299
stdin 257,299
stdint.h 289-295
stdio.h 297-397
stdlib.h 403-451
stdout 257,299
strcasecmp 93
strcat 459
strchr 460
strcmp 461
strcmpi 94
strcoll 167,462
strcpy 464
strcspn 465
strdate 94
strdup 95, 481
Stream Orientation 301, 555
Streams 299
strerror 466
strerror_r 467
strftime 499
stricmp 96, 481
stricoll 96
string.h 453-481
strlen 468
strlwr 97, 481
strncasecmp 97
strncat 97
strncmp 470
strncmpi 98

sqrt 207 strncoll 99

sqrtf 208 strncpy 472

sqrtl 208 strnicmp 100, 481

srand 435 strnicoll 100

652 MSL C Reference Version 10

strnset 101, 481
strpbrk 473
strrchr 474
strrev 102, 481
strset 102, 481
strspn 475
strspnp 103
strstr 476
strtoimax 151
strtok 477
strtol 438
strtold 441
strtoul 443
strtoumax 152
struct timeb 507
strupr 104, 481
strxfrm 479
swprintf 569
swscanf 570
system 446

T

tan 208

tanf 209

tanh 209

tanhf 210
tanhl 210

tanl 209

tell 104
tgmath.h 483
time 505
time.h 485-506
time_t 486
timeb 507
timeb.h 507-509
Tm Structure Members. 487
tmpfile 382
tmpnam 384
tolower 62
toupper 63
towlower 623
towupper 624
trunc 238
ttyname 534

tzname 488
tzset 506

U

UCHAR_MAX 163
UINT16_C 295
UINT32_C 295
UINT64_C 295
UINT8_C 295
UINTMAX_C 295
ULLONG_MAX 164
ULONG_MAX 164
ultoa 451

uname 549

ungetc 385
Unicode 301, 556
unistd.h 511-537
unix.h 104-105, 539-541
unlink 535
USHRT_MAX 164
Using SIOUX 255
Using WinSIOUX 627
utime 543

utime.h 543-547
utimes 546
utsname structure 550
utsname.h 549-550

v

va_arg 280
va_copy 280
va_end 281
va_list 279
va_start 282
Variable arguments 279
vec_calloc 446
vec_free 447
vec_malloc 448
vec_realloc 448
viprintf 387
vfscanf 389
viwprintf 574
viwscanf 571
vprintf 391

MSL C Reference Version 10

653

vsnprintf 393
vsprintf 395
vsprintf 395
vsscanf 397
vswprintf 575
vswscanf 572
vwprintf 576
vwscanf 573

w

WASTE 256

watof 576

wchar.h 553-613
WCHAR_MAX 557
WCHAR_MIN 557
wchar_t 288

wcscat 578

wceschr 579

wesemp 579
wescoll 580

wesepy 581
wesespn 581
wesdup 107,481,613
wcsftime 582
wesicmp 108, 481, 613
wesicoll 108
wesinemp 481, 613
wceslen 583

weslwr 109, 481, 613
wcesncat 584
wesnemp 585
wesncoll 110
wesncpy 585
wesnet 112
wesnicmp 111
wcsnicoll 110
wcsnset 481,613
wespbrk 586
wespnp 481, 613
wesrchr 587

wesrev 113,481, 613
wcsset 113,481,613
wesspn 589
wcesspnp 114

wcesstr 589

westod 590
wcestoimax 153
wcestok 592
wcstombs 449
wcstoumax 155
wesupr 114,481,613
wcesxfrm 599
wctime 600

wctob 600

wctomb 450
wctrans 624
wctrans_t 616
wctype.h 615-625
wctype_t 616
WEOF 557

win_t 557
WinSIOUX 628
WinSIOUX.h 627-630
wmemchr 601
wmemcmp 602
wmemcpy 603
wmemmove 603
wmemset 604
wprintf 605

write 536
WriteCharsToConsole 46
wscanf 610

wstrrev 115

wtoi 451,481, 613

654

MSL C Reference Version 10

	Introduction
	Organization of Files
	ANSI C Standard
	The ANSI C Library and Apple Macintosh

	MSL Extras Library
	POSIX Functionality
	Console I/O and the Macintosh
	Console I/O and Windows
	Using Mac OS X and the Extras Library

	Compatibility
	Intrinsic Functions

	MSL C and Multi-Threading
	Introduction to Multi-Threading
	Definitions
	Reentrancy Functions

	Configuring MSL C
	Configuring Memory Management
	Configuring Time and Clock
	Configuring File I/O
	Routines

	Configuring Console I/O
	Configuring Threads
	pthread Routines

	alloca.h
	Overview of alloca.h
	alloca

	assert.h
	Overview of assert.h
	assert

	conio.h
	Overview of conio.h
	_clrscr
	getch
	getche
	_gotoxy
	_initscr
	inp
	inpd
	inpw
	kbhit
	outp
	outpd
	outpw
	_textattr
	_textbackground
	_textcolor
	_wherex
	_wherey

	console.h
	Overview of console.h
	ccommand
	clrscr
	getch
	InstallConsole
	kbhit
	ReadCharsFromConsole
	RemoveConsole
	__ttyname
	WriteCharsToConsole

	crtl.h
	Overview of crtl.h
	Argc
	Argv
	_DllTerminate
	environ
	_HandleTable
	_CRTStartup
	_RunInit
	_SetupArgs

	ctype.h
	Overview of ctype.h
	Character Testing and Case Conversion
	Character Sets Supported
	isalnum
	isalpha
	isblank
	iscntrl
	isdigit
	isgraph
	islower
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	tolower
	toupper

	direct.h
	Overview of direct.h
	_getdcwd
	_getdiskfree
	_getdrives

	dirent.h
	Overview of dirent.h
	opendir
	readdir
	readdir_r
	rewinddir
	closedir

	div_t.h
	Overview of div_t.h
	div_t
	ldiv_t
	lldiv_t

	errno.h
	Overview of errno.h
	errno

	extras.h
	Overview of extras.h
	_chdrive
	chsize
	filelength
	fileno
	_fullpath
	gcvt
	_getdrive
	GetHandle
	_get_osfhandle
	heapmin
	itoa
	itow
	ltoa
	_ltow
	makepath
	_open_osfhandle
	putenv
	_searchenv
	splitpath
	strcasecmp
	strcmpi
	strdate
	strdup
	stricmp
	stricoll
	strlwr
	strncasecmp
	strncmpi
	strncoll
	strnicmp
	strnicoll
	strnset
	strrev
	strset
	strspnp
	strupr
	tell
	ultoa
	_ultow
	wcsdup
	wcsicmp
	wcsicoll
	wcslwr
	wcsncoll
	wcsnicoll
	wcsnicmp
	wcsnset
	wcsrev
	wcsset
	wcsspnp
	wcsupr
	wstrrev
	wtoi

	fcntl.h
	Overview of fcntl.h
	fcntl.h and UNIX Compatibility
	creat, _wcreate
	fcntl
	open, _wopen

	fenv.h
	Overview of fenv.h
	Data Types
	fenv_t
	fexcept_t

	Macros
	Floating-Point Exception Flags
	Rounding Directions
	Environment

	Pragmas
	FENV_ACC

	Floating-point exceptions
	feclearexcept
	fegetexceptflag
	feraiseexcept
	fesetexceptflag
	fetestexcept

	Rounding
	fegetround
	fesetround

	Environment
	fegetenv
	feholdexcept
	fesetenv
	feupdateenv

	float.h
	Overview of float.h
	Floating Point Number Characteristics

	FSp_fopen.h
	Overview of FSp_fopen.h
	FSp_fopen
	FSRef_fopen
	FSRefParentAndFilename_fopen

	inttypes.h
	Overview of inttypes.h
	Greatest-Width Integer Types
	imaxdiv_t

	Greatest-Width Format Specifier Macros
	Greatest-Width Integer Functions
	imaxabs
	imaxdiv
	strtoimax
	strtoumax
	wcstoimax
	wcstoumax

	io.h
	Overview of io.h
	_finddata_t
	_findclose
	_findfirst
	_findnext
	_setmode

	iso646.h
	Overview of iso646.h

	limits.h
	Overview of limits.h
	Integral type limits

	locale.h
	Overview of locale.h
	Locale Specification
	localeconv
	setlocale

	malloc.h
	Overview of malloc.h
	alloca

	Non Standard <malloc.h> Functions

	math.h
	Overview of math.h
	Floating Point Mathematics
	NaN Not a Number
	Quiet NaN
	Signaling NaN
	Floating point error testing.
	Inlined Intrinsics Option

	Floating Point Classification Macros
	Enumerated Constants
	fpclassify
	isfinite
	isnan
	isnormal
	signbit

	Floating Point Math Facilities
	acos
	acosf
	acosl
	asin
	asinf
	asinl
	atan
	atanf
	atanl
	atan2
	atan2f
	atan2l
	ceil
	ceilf
	ceill
	cos
	cosf
	cosl
	cosh
	coshf
	coshl
	exp
	expf
	expl
	fabs
	fabsf
	fabsl
	floor
	floorf
	floorl
	fmod
	fmodf
	fmodl
	frexp
	frexpf
	frexpl
	isgreater
	isgreaterless
	isless
	islessequal
	isunordered
	ldexp
	ldexpf
	ldexpl
	log
	logf
	logl
	log10
	log10f
	log10l
	modf
	modff
	modfl
	pow
	powf
	powl
	sin
	sinf
	sinl
	sinh
	sinhf
	sinhl
	sqrt
	sqrtf
	sqrtl
	tan
	tanf
	tanl
	tanh
	tanhf
	tanhl
	HUGE_VAL

	C99 Implementations
	acosh
	asinh
	atanh
	cbrt
	copysign
	erf
	erfc
	exp2
	expm1
	fdim
	fma
	fmax
	fmin
	gamma
	hypot
	ilogb
	lgamma
	log1p
	log2
	logb
	nan
	nearbyint
	nextafter
	remainder
	remquo
	rint
	rinttol
	round
	roundtol
	scalb
	trunc

	Process.h
	Overview of Process.h
	_beginthread
	_beginthreadex
	_endthread
	_endthreadex

	setjmp.h
	Overview of setjmp.h
	Non-local Jumps and Exception Handling
	longjmp
	setjmp

	signal.h
	Overview of signal.h
	Signal handling
	signal
	raise

	SIOUX.h
	Overview of SIOUX
	Using SIOUX

	SIOUX for Macintosh
	Creating a Project with SIOUX
	Customizing SIOUX
	path2fss
	SIOUXHandleOneEvent
	SIOUXSetTitle

	stat.h
	Overview of stat.h
	Stat Structure and Definitions
	chmod
	fstat
	mkdir
	stat
	umask

	stdarg.h
	Overview of stdarg.h
	Variable Arguments for Functions
	va_arg
	va_copy
	va_end
	va_start

	stdbool.h
	Overview of stdbool.h

	stddef.h
	Overview of stddef.h
	NULL
	offsetof
	ptrdiff_t
	size_t
	wchar_t

	stdint.h
	Overview of stdint.h
	Integer Types
	Limits of Specified-width Integer Types
	Macros for Integer Constants
	Macros for Greatest-width Integer Constants

	stdio.h
	Overview of stdio.h
	Standard input/output
	Streams
	File position indicator
	End-of-file and errors
	Wide Character and Byte Character Stream Orientation
	Stream Orientation and Standard Input/ Output
	clearerr
	fclose
	fdopen
	feof
	ferror
	fflush
	fgetc
	fgetpos
	fgets
	_fileno
	fopen
	fprintf
	fputc
	fputs
	fread
	freopen
	fscanf
	fseek
	fsetpos
	ftell
	fwide
	fwrite
	getc
	getchar
	gets
	perror
	printf
	putc
	putchar
	puts
	remove
	rename
	rewind
	scanf
	setbuf
	setvbuf
	snprintf
	sprintf
	sscanf
	tmpfile
	tmpnam
	ungetc
	vfprintf
	vfscanf
	vprintf
	vsnprintf
	vsprintf
	vsscanf
	_wfopen
	_wfreopen
	_wremove
	_wrename
	_wtmpnam

	stdlib.h
	Overview of stdlib.h
	String Conversion Functions
	Pseudo-random Number Generation Functions
	Memory Management Functions
	Environment Communication Functions
	Searching And Sorting Functions
	Multibyte Conversion Functions
	Integer Arithmetic Functions
	abort
	abs
	atexit
	atof
	atoi
	atol
	atoll
	bsearch
	calloc
	div
	exit
	_Exit
	free
	getenv
	labs
	ldiv
	llabs
	lldiv
	malloc
	mblen
	mbstowcs
	mbtowc
	_putenv
	qsort
	rand
	rand_r
	realloc
	srand
	strtod
	strtof
	strtol
	strtold
	strtoll
	strtoul
	strtoull
	system
	vec_calloc
	vec_free
	vec_malloc
	vec_realloc
	wcstombs
	wctomb

	Non Standard <stdlib.h> Functions

	string.h
	Overview of string.h
	memchr
	memcmp
	memcpy
	memmove
	memset
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strerror
	strerror_r
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtok
	strxfrm

	Non Standard <string.h> Functions

	tgmath.h
	Overview of tgmath.h

	time.h
	Overview of time.h
	Date and time
	Type clock_t
	Type time_t
	struct tm
	tzname
	asctime
	asctime_r
	clock
	ctime
	ctime_r
	difftime
	gmtime
	gmtime_r
	localtime
	localtime_r
	mktime
	strftime
	time
	tzset

	Non Standard <time.h> Functions

	timeb.h
	Overview of timeb.h
	struct timeb
	ftime

	unistd.h
	Overview of unistd.h
	unistd.h and UNIX Compatibility
	access
	chdir
	close
	cuserid
	cwait
	dup
	dup2
	exec functions
	getcwd
	getlogin
	getpid
	isatty
	lseek
	read
	rmdir
	sleep
	spawn functions
	ttyname
	unlink
	write

	unix.h
	Overview of unix.h
	UNIX Compatibility
	_fcreator
	_ftype

	utime.h
	Overview of utime.h
	utime.h and UNIX Compatibility
	utime
	utimes

	utsname.h
	Overview of utsname.h
	utsname.h and UNIX Compatibility
	uname

	wchar.h
	Overview of wchar.h
	Multibyte Character Functions
	Wide Character and Byte Character Stream Orientation
	Stream Orientation and Standard Input/Output
	Definitions
	btowc
	fgetwc
	fgetws
	fputwc
	fputws
	fwprintf
	fwscanf
	getwc
	getwchar
	mbrlen
	mbrtowc
	mbsinit
	mbsrtowcs
	putwc
	putwchar
	swprintf
	swscanf
	vfwscanf
	vswscanf
	vwscanf
	vfwprintf
	vswprintf
	vwprintf
	watof
	wcrtomb
	wcscat
	wcschr
	wcscmp
	wcscoll
	wcscspn
	wcscpy
	wcsftime
	wcslen
	wcsncat
	wcsncmp
	wcsncpy
	wcspbrk
	wcsrchr
	wcsrtombs
	wcsspn
	wcsstr
	wcstod
	wcstof
	wcstok
	wcstol
	wcstold
	wcstoll
	wcstoul
	wcstoull
	wcsxfrm
	wctime
	wctob
	wmemchr
	wmemcmp
	wmemcpy
	wmemmove
	wmemset
	wprintf
	wscanf

	Non Standard <wchar.h> Functions

	wctype.h
	Overview of wctype.h
	Types
	iswalnum
	iswalpha
	iswblank
	iswcntrl
	iswdigit
	iswgraph
	iswlower
	iswprint
	iswpunct
	iswspace
	iswupper
	iswxdigit
	towctrans
	towlower
	towupper
	wctrans

	WinSIOUX.h
	Overview of WinSIOUX
	Using WinSIOUX

	WinSIOUX for Windows
	Creating a Project with WinSIOUX
	WinSIOUX.rc
	Customizing WinSIOUX
	clrscr

	MSL Flags
	Overview of the MSL Switches, Flags and Defines
	__ANSI_OVERLOAD__
	_MSL_C_LOCALE_ONLY
	_MSL_IMP_EXP
	_MSL_INTEGRAL_MATH
	_MSL_MALLOC_0_RETURNS_NON_NULL
	_MSL_NEEDS_EXTRAS
	_MSL_OS_DIRECT_MALLOC
	_MSL_CLASSIC_MALLOC
	_MSL_USE_NEW_FILE_APIS
	_MSL_USE_OLD_FILE_APIS
	_MSL_POSIX
	_MSL_STRERROR_KNOWS_ERROR_NAMES
	__SET_ERRNO__

	Secure Library Functions
	Input/Output
	File Operations
	tmpnam_s
	Formatted input/output functions
	fscanf_s
	scanf_s
	sscanf_s
	vfscanf_s
	vscanf_s
	vsscanf_s
	Character input/output functions
	gets_s

	Index

