h -

L |

CodeWarrior
Development Studio

ColdFire™
Architectures Edition

Build Tools Reference

freescalp""

Revised: 11 July 2006 ~ aamicon ductor



y
A

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. CodeWarrior is a trademark or reg-
istered trademark of Freescale Semiconductor, Inc. in the United States and/or other countries. All other product or ser-
vice names are the property of their respective owners.

Copyright © 2006 by Freescale Semiconductor, Inc. All rights reserved.

Information in this document is provided solely to enable system and software implementers to use Freescale Semicon-
ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte-
grated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic-
ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental dam-
ages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typ-
icals”, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not de-
signed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semi-
conductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

How to Contact Us

Corporate Headquarters Freescale Semiconductor, Inc.
7700 West Parmer Lane
Austin, TX 78729

U.S.A.

World Wide Web http://www.freescale.com/codewarrior

Technical Support http://www.freescale.com/support



http://www.freescale.com/codewarrior
http://www.freescale.com/support

Table of Contents

1 Introduction

CodeWarrior Build Tools Versions. .. ............covinn..
Compiler Architecture ..............c...iiiiineenenan ..
Linker Architecture. .. ..........c. i

2 Using Build Tools with the CodeWarrior IDE

Invoking CodeWarrior Compilers and Linkers. . ..............
Specifying File Locations. . . . ........ .. ...,
IDE Options and Pragmas. .. ........... ... ... .. ... ......
IDE Settings Panels. . ............ ... .. ... ... ...
C/C++ Language Settings Panel . .. .....................
C/C++ Preprocessor Panel ............................
C/C++ Warnings Panel . ......... ... .. ... .. ... .. ...

3 Using Build Tools on the Command Line

Configuring Command-Line Tools. . ................. ... ...
CWFolder Environment Variable .......................
Setting the PATH Environment Variable. .................

Invoking Command-Line Tools ...........................

GettingHelp . ...
Help Guidelines. . ......... ... ...

File Name Extensions. .......... ... ... ... .. ... ...

4 Command-Line Standard C Conformance

sstdkeywords ..o
SSHIICE .« et e

5 Command-Line Standard C++ Conformance

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Table of Contents

SdialeCt . L e 48
SfOr_Scoping. .. ... 48
SINSHMET .« et 49
SISO_tEMPlates . . ... 49
BRI . . 50
L0 4+ 50
_som_env_check ..., 50
WAL L. . e 50
6 Command-Line Language Translation 51
SO . L 51
sdefaults . ..o 51
SeNCOAING .« . ottt e 52
Alag 53
SECCEXL .« o vt et e e e e 53
SECC_EXLENSIONS . . o o ottt et et et 53
M 54
AR . L 54
FIAPCT & e e e et e e e e e e e e e e e e e e 54
MM e 55
MDD L 55
MDD L e 55
10 1] ). O 56
-multibyteaware . . .. ... ... e 56
) 1 ot 56
SPTAZIMA o vttt e e e e e 57
SrelaX_POINLeIS. . . oottt 57
STEQUITEPIOLOS. -« . v e vt ettt et e e e e e e e e e 57
SSBATCh L L 58
SIEIAPNS oo 58
7 Command-Line Diagnostic Messages 59
-disassemble. . ... 59
Shelp. . 59
SINAXEITOTS &« + v v v et et e e e e et et e e e e e e e e 60

4 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Table of Contents

SMAXWAITINEZS -+« ¢ o et oe ettt e e e e e e e e e e e e 61
SMSEStYle . L 61
-nofail ... 62
SPTOZIESS - o v e ettt e e e e e e e e e e e 62
S TP 62
SSEARTT ot 62
SVEIDOSE . . o s 63
SVETSION .ottt et et e e e e e 63
SHMINE . ¢ et e e 63
SWATTINZS -+« o v e ettt e e e e e e e e e e e e e 64
Swraplines . ... 67
8 Command-Line Preprocessing and Precompilation 69
—convertpaths . ... ... 69
SCWA. 70
D 70
sdefine .o 70
N 71
) P 71
—gCCINCIUAES. . o .o 71
e 72
P 72
Ainclude ..o 73
| P 73
P 73
SPrecomPile . . ..o e 74
SPTEPIOCESS . o v vttt e et e e e e e e e 74
PO - e e e 75
SPTEEIX Lo 75
-noprecompile . . ... 76
SNOSYSPAth . . oo 76
SSEAING o 76
U 76
SUndefine . . ... 77

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 5



Table of Contents

9 Command-Line Library and Linking 79
SKEEPODJECES . . o v e 79

SNOLNK .« o 79

T e e 80

10 Command-Line Object Code 81
G e e e 81

SCOBZEN. . . ottt 81

SBIUIML. .« ¢ et et et e e et e e e e e e e e e e e 81
SIMIN_ENUITL_SIZE. « o v v vt e e e e e e e e e e 82

). 82

SIS & v v e e e e e e e 83

11 Command-Line for Optimization 85
AINlNE. .. 85

SO 86

FO . 86

SO 87

12 Linker 91
Speciyfing Link Orderinthe IDE. . ........ ... .. ... .. ... .. .... 91

Defining Sections in Source Code. ... ........ ..o 92

Using aLinker Command File .......... .. .. ... .. .. .. .. ... .. 92
Dead-Stripping. . . ..ot 93

Defining the Target’'s Memory Map .......... .. .. .. ..., 93

Defining Sections inthe Output File. .. ....... ... ... ... ... .. ... .. 94

Associating Input Sections With Output Sections. . ................... 95

Controlling AgNment. . .. ...ttt 96

Specifying Memory Area Locations and Sizes....................... 97

Linker Command File Syntax .. ......... ... ... 98

Commands, Directives, and Keywords . .. ........... ... .. ... ... ... 102

. (location COUNtEr) . . . .ottt e e e e e 102

ADDR . . 103

ALIGN. . 104

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Table of Contents

ALIGNALL. . .. 104
EXCEPTION. . . .. e e 105
EXPORTSTRTAB. . ..o e 105
EXPORTSYMTAB . .. .o e 106
FORCE_ACTIVE . . ... e 107
IMPORTSTRTAB . . . .. e 107
IMPORTSYMTAB . . ... e 108
INCLUDKE . . . . e e e 109
KEEP_SECTION . . ... e e 109
MEMORY . .. 110
OBIECT . ..o 111
REF_INCLUDE . ... e e e 112
SECTIONS . .. 112
SIZEOF . . . o 113
SIZEOF_ROM . ... e 114
WRITEB . . .o 114
WRITEH. . . ..o e 114
WRITEW . 115
WRITESOCOMMENT . . ... e 115
ZERO_FILL_UNINITIALIZED. . . ... ... 116
13 ColdFire Linker 119
Deadstripping . . . .. .ottt 119
Executable files in Projects. . ........ ... i 120
S-Record COMMENES. . . .o v et ettt e e e et e e eee s 120
LCF Structure . . . .. ..o e e e e e 120
Memory SEZMENt . . ..ottt e 120
CloSUre SEZMENLS . . . ..o vttt et et e e 121
Sections SEZMEeNt . .. ...ttt 122
LCF SyntaX. .. ..ottt e e e e e 123
Variables, Expressions, and Integrals .. ........................... 123
Arithmetic, Comment Operators. . .. .......vuvviintnrenenenenn.. 124
ALGNMENE . . ..o 125
Specifying Files and Functions . . .. ........... .. ... ... ... ....... 126
Stackand Heap . ... 127
CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 7



Table of Contents

Static Initializers . ... ... ... 127
Exception Tables .. ... ... .. 128
Position-Independent Codeand Data . ............................ 128
ROM-RAM COPYINE. . . vttt et e e e e 129
Writing Data Directly toMemory . .. ......... .. ... ... . .. ... 130
14 C Compiler 133
Extensions to Standard C ... ... ... ... . . 133
Controlling Standard C Conformance . ............... ... .. ... ... 133
CHt-style COMMENLS. . ..o ov ittt e e 134
Unnamed Arguments. .. ........ ...ttt 134
Extensions to the Preprocessor . ........... ... .. . ... 134
Non-Standard Keywords . ... ... .. 135
CO9 EXIENSIONS . . . ottt ettt et e e e e e e e 135
Controlling C99 EXtensions. . . . ... ..uvtt ittt 136
Trailing Commas in Enumerations . ............... .. ... ........ 136
Compound Literal Values .......... ... .. .. . ... .. 137
Designated Initializers. .. ...ttt 137
Predefined Symbol __func__ ....... ... .. .. .. i 137
Implicit Return Frommain() . .. ....... ... i 138
Non-constant Static Data Initialization . ... ........................ 138
Variable Argument Macros . . ........ ...t 138
ExtraCO9 Keywords . . ........ . 139
C++-Style Comments . . .......ouiuiinin i 139
C++-Style Digraphs. . .. ... .. 140
Empty Arrays in Structures . . . ......outn i 140
Hexadecimal Floating-Point Constants . . . ............... .. ........ 140
Variable-Length Arrays ... ... i 141
Unsuffixed Decimal Literal Values .. ............................. 142
GCC EXIENSIONS . .o \v vttt ettt et e 142
Controlling GCC EXtensions. . . ... ...o.uuiinieninn e 143
Initializing Automatic Arrays and Structures .. ..................... 143
The sizeof() Operator. . .. . ...ttt e 143
Statements in EXpressions . ... ... ... i 144
Redefining Macros. . .. ..o ov it e 144

8 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Table of Contents

The typeof() Operator . . .. ..ottt e 145
Void and Function Pointer Arithmetic .............. ... ... ...... 145
The __builtin_constant_p() Operator . .. ..............c.c.eeeeennn.. 145
Forward Declarations of Static Arrays . ..............c.couuienan.. 145
Omitted Operands in Conditional Expressions. . .................... 146
The __builtin_expect() Operator. . . ...t . 146
Void Return Statements. . . ............ i 147
Minimum and Maximum Operators . . ...................... ... 147
15 C++ Compiler 149
C++ Compiler Performance .. .......... ... .. .. . i i 149
Precompiling C++ Source Code ... ... 149
Using the Instance Manager . ..., 149
Extensions to Standard C++. .. .. ... 150
__PRETTY_FUNCTION__ Identifier............................ 150
Standard and Non-Standard Template Parsing . . .................... 150
Implementation-Defined Behavior . .. ........ ... .. .. ... .. . L. 153
GCC EXIENSIONS . . o\ ottt ettt e et 156
Using the :: Operator in Class Declarations . ....................... 156
Embedded CH+. . ..ot 157
Activating ECH++ . . ... L o 157
Differences Between ISO C++and EC++ .......... ... .. ... ..... 157
EC++ Specifications . . . ...t 158
16 Tool Performance 161
Precompiling. . . ... ot 161
When to Use Precompiled Files .. ........... .. .. ... ... ... ... 161
What Can be Precompiled. .. .......... . ... .. . .. .. 162
Using a Precompiled Header File . .. .......... ... ... ... ... .... 162
Preprocessing and Precompiling. . ......... ... . .. oL 163
Pragma Scope in Precompiled Files .. ......... ... .. .. ... ... .. .... 164
Precompiling a File in the CodeWarrior IDE ... .................... 164
Updating a Precompiled File Automatically........................ 165
CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 9



Table of Contents

17 Intermediate Optimizations 167
Interprocedural AnalysiS. ... ...ttt 167
Invoking Interprocedural Analysis ............ ... .. . .. .. ... ... 168
File-Level Optimizations. . . ... ...ouvtitn ittt 168
Program-Level Optimizations . . ............. ..ot enennan.. 168
Program-Level Requirements .. ............. .. .. ... .. .. ...... 168
Intermediate Optimizations. . .. ... ..ottt 171
Dead Code Elimination . .. ........ ..o iuiuinninnnan.. 171
Expression Simplification . ........... ... .. . . i . 172
Common Subexpression Elimination ............................. 174
Copy Propagation . ......... ... .. . 175
Dead Store Elimination . .. ........... i 176
Live Range Splitting . . ... 177
Loop-Invariant Code Motion. .. ......... ... .. . 178
Strength Reduction . ....... .. .. ... . .. .. . . 180
Loop Unrolling . . ... e 181
Inlining . .. ..ot 182
Choosing Which Functions toInline. . ............... .. ... ... ... 182
Inlining Techniques . . .. ... . i i 184

18 Inline Assembly 187
Inline Assembly Syntax .............o ot 187
SEABIMENLS . . o o v vt ettt e e e e 187
Additional Syntax Rules . ......... ... . . i 188
Preprocessor Features . ........ ... .. .. .. i 189
Local Variables and Arguments. .. ...........c.oiiiinninenn... 189
Returning FromaRoutine. ........... .. ... .. i, 191
Inline Assembly Directives . . .. ... ...ttt 191
e 192

s oo 192
53113 PP 193
fralloc. . . oot 194
frfree ... .o 194
Machine .. ... . 195

10

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Table of Contents

naked . .. ... 195

OPWOId. . . oo 196

C 100y P 196

19 ColdFire Code Generation 197
Code Generation Limits . ......... ... .. .. i 197

Integer Representation .. .............ouuiuiinnininineenennn.. 197

Calling Conventions . . .. .......oututrn ittt 199

Variable Allocation. . ....... ...t 200

Register Variables . . ....... ... 200
Position-Independent Code. . . ...... ... .. .. . . i 201
Cryptographic Acceleration Instructions .. ............ .. ... .. ... ..... 201

20 ColdFire Runtime Libraries 205
MSL for ColdFire Development. . . ... .. 205
Customizing MSL Libraries .. ... ... 206

Using MSL for ColdFire. . ......... .. .. . . .. 206

Serial I/O and UART Libraries . . . ..., 217

Reduced Working Set Libraries .............. ... ... ... ... 218

Memory, Heaps, and Other Libraries . ............... ... .. .. ... ... 219

Runtime Libraries. . ........ .. 220
Position-Independent Code . . . .......... ... ... i 224

Board Initialization Code . ......... .. ... i 225

Custom Modifications. .. ..........o it 225

21 Predefined Symbols 227
L CPIUSPIUS . o 227

L DATE 227
_embedded_cplusplus . .. ... 228

_FILE 228

UG 228

_ FUNCTION . o e e e e 229

_Ade_target() . . i e 229

CLINE 230

_ MWERKS 230

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 11



Table of Contents

_ PRETTY_FUNCTION__ ... i 230

_profile ... 231

ST 231

TIME 232

22 ColdFire Predefined Symbols 233
_ BACKENDVERSION__. ... .. i 233
_COLDFIRE ... 233

CSTDABL .. 234

_ REGABIL . 235

23 Using Pragmas 237
Checking Pragma Settings . ................ ... 237

Saving and Restoring Pragma Settings . . ................ .. ... .. ...... 238

Determining Which Settings Are Saved and Restored . . ................. 239

Ilegal Pragmas . .. ... ..o 240

Pragma Scope .. ... ..o 240

24 Pragmas for Standard C Conformance 243
ANSISIICE « o vttt 243

CO0 243

ignore_oldstyle . ....... ... .. 245
only_std_Keywords . ........ ... 245
TEQUITE_PIOtOLYPES « .« v v e vt ettt e e e e et e e 246

25 Pragmas for C++ 249
ACCESS_EITOTS & o v v e e e e e e e e e e e e e e e e e e 249

always_inline. . .........i ottt 249

arg_dep_lookup . ... 249

ARM_conform. . . ... oo 250

ARM_SCOPING . .« . ottt e e e 250
array_new_delete. ... ... e 251

auto_nline . . ... it 251

DOOL . 251

CPIUSPIUS . .ot 252

12

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Table of Contents

CPP_EXEENSIONS . . vt ettt it et e e e e e e e e 252
debuginline . ...... ... ... ... 253
def inherited . ... ..o o 254
defer_codegen . .. ... ... ..o 255
defer_defarg parsing. ......... ... .. .. .. .. 255
direct_destruCtion . ... ..o 256
AIFECE_TO_SOML & o v oo e e e e e e e e e e e 256
dont_inline. . ... ... e 256
ecplusplus . . ..o 256
EXCEPLIONS & . o v vttt et e e e e e e e e 257
extended_errorcheck . . ... ... 257
inline_bottom_up . ... ... 259
inline_bottom_Up_ONCe. . . . ..o vt ittt 260
inline_depth. . ... ... .. . e 260
Inline_mMax_auto_SIZE . . ... e 261
INlNE_MAX_SIZE. . . oo oo 261
inline_max_total_SiZe . ............ . 262
INternal. . . ..o 262
NeW_MAaNGIer. . . . ..o 263
NO_CONSESIIINGCONY & . . vttt ittt et e e e e e 263
NO_StAtiC_dOTS . . o oottt 264
noOSymMinline. . .. ..... ... 264
Old_pods ..ot e 265
old_vtable . .. ..o 265
opt_classresults . . ... ... .. 265
parse_func_templ . ... . .. 266
parse_mfunc_templ. . ... ... .. 266
R TT . e e 267
SUPPIESS_INIt_COde . . ..ottt e 267
template_depth . ... ... .. .. 268
thread_safe Init. ... ... ... ..., 268
warn_hidevirtual . . ... ... e 269
warn_no_explicit_virtual. . . ... ... L 270
WAIN_NO_LYPENAIME . .« o v v toe ettt et et e et e e e e e e aeae 271
warn_notinlined. . . ... 271

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 13



Table of Contents

Warn_StructClass. . . .. ..ot e 272
WChar_tyPe. . .ot 272
26 Pragmas for Language Translation 275
asmpoundCommEent . .. ........i.it e 275
ASMSEMICOICOMMENT . . ..\ttt ettt et e e i 275
CONSE_SIINGS . o . vttt e et ettt e e et e e e 276
dollar_identifiers . . ... e 276
BCC_EXLENSIONS . « . vttt et ettt e ettt e 277
ALK . . . 278
MPWC_NEWIINE. . . ..ot e 278
MPWC_TCIAX . . .ot e 279
multibyteaware. . .. ... ... 279
multibyteaware_preserve_literals . ......... ... ... ... ... . ... 280
teXt_encoding. . . . ..ot 280
TIgrAPRS . - o et e 281
unsigned_char . ... ... 282
27 Pragmas for Diagnostic Messages 283
extended_errorcheck . ... ... 283
TNAXEITOTCOUNE & . v ottt et e et e et et et et e e et e et eeaes 284
TNESSAZE « v v v e v ettt et e e e e e e e e e e 285
showmessagenumber. ........... .. .. ... . . i 285
show_error_filestack . .. ... . i 286
SUPPIESS_WAITHNZS . « . ¢ & v e vt ettt e e e e et e e e et eee 286
0710 VP 286
UNUSEA .« oo v ettt et e e e e 287
WAIMIIE © o ottt et e e et e e e e e e e e 288
WATMINZ_EITOTS . & ¢ v v vt ettt et et e et e et e e e ettt et 289
Warn_any_ptr_iNt_CONV . .. .. ...ttt ettt 289
warn_emptydecl. . ... L 290
WAIN_EXLTACOMIMA « « + v v vttt et et et et et et et e e e e et nene 291
warn_filenamecaps .. ....... .. 291
warn_filenamecaps_system. .. .......... .. i 292
warn_hiddenlocals. . ....... ... .. . . 293

14 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Table of Contents

warn_illpragma . ... . .. 293
warn_illtokenpasting . . ....... ... . . 294
warn_illunionmembers . . . ... e 294
warn_impl_f2i_conv...... .. ... 295
warn_impl_i2f_conv..... ... ... . 295
warn_impl_s2U_CONV . .. ...ttt 296
warn_impliCItCONV. . . ... ..ot 297
warn_largeargs . ... ... 298
Warn_MISSINGIETUIN . . o . ottt et ettt et e e et e e e e 298
warn_no_side_effect . . ... ... . 299
warn_padding . ... 299
warn_pch_portability ......... ... . 300
WAIN_POSSUNWANL . ¢ o« vttt ettt et et e e e et e e e eaeaen 300
WAIN_PI_INE_COMV. « o o vttt ettt et e e e et et eae 302
warn_resultnotused . . ... ... e 302
warn_undefmacro . . .. ...t 303
warn_uninitializedvar . . ......... . . . . 304
Warn_UNUSEdarg. . . ..o .v ettt e 304
Warn_UNUSEAVAL. . . . e e e e e e e e e e e 305
28 Pragmas for Preprocessing and Precompilation 307
check_header_flags....... ... ... .. . 307
faster_pch_gen . ...... ... 307
flat_include . . ... . o 308
fullpath_file. ... ... ... 308
fullpath_prepdump .. ... e 309
KeepCoOmMMENtS. . . .. oottt e 309
line_prepdump. . . ... .ottt e 309
MACTO_PIEPAUIMP. .« v vt vttt e ettt e et e 310
msg_show_lineref. ... ... ... .. . . . . 310
msg_show_realref ... ... .. .. ... .. . ... 310
010701417 311
0ld_pragma_oOncCe ... .....c.uuiintn it 311
103317 311
POD, PUSH . Lo 312

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 15



Table of Contents

pragma_prepdulmiP. . ..o v e vttt e 313
precompile_target .. ........ ... 313
simple_prepdump . ......... .. 314
Space_prepdump .. ..ottt e 314
srerelincludes. . ... ..o 315
SYSPAth_ONCE . . . ot e 315
29 Pragmas for Library and Linking 317
AlWayS_IMPOIT . . . oottt e 317
BXPOTL . . ettt e e e e e e 317
fOrCe_aCtiVe . . ..ottt 318
IMPOTL. .« oottt e e e e 318
LD _@XPOIt. « ottt 319
30 Pragmas for Code Generation 321
dONt_IeUSE_SIINES . « .« ¢ ottt et et et e e e 321
enumsalwaysint . . ... ... . 322
EITNO_NAIME . o v vttt e e e e e e e e e e e e e e e e e e 323
explicit_zero_data .. ...... ... .. . 323
float_CONStantS. . ... oo vttt e 324
instmgr_file . .. ... 324
longlong. . . ..o 325
longlong enums. .. ... ... 325
MIN_ENUIML_SIZE . o o vttt et et e e e e e e e 326
OPLIONIS « .« o ettt et e e e e e e e 326
POOL_SIIINGS « o o vttt e e 327
readonly_Strings. . ... ..ottt e 328
reverse_bitfields. . . ... 328
store_object_files. . ... 329
31 Pragmas for Optimization 331
global_Optimizer .. ...ttt e 331
P . et 331
OPt_COMMON_SUDS . . . . vttt ettt e e 332
opt_dead_asSignments. .. .......uuuntnt ettt 332

16 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Table of Contents

opt_dead_code. . ... ... 333
opt_lifetimes ... ... e 333
opt_loop_invariantsS. . .. ...t 333
OPL_PrOPAZAtION. « . o\ ottt e et et e e e e e 334
opt_strength_reduction . . ........ ...ttt 334
opt_strength_reduction_strict . .. ..........c. i 335
opt_unroll_100ps . .. ..o 335
Opt_vectorize_loops .. ...ttt 335
optimization_level. .. ... ... .. .. .. 336
OPtiMIZe_fOr_SIZE ... ..ottt 336
optimizewithasm .. ....... ... ... .. .. . . 337
strictheaderchecking . ....... ... .. . . 337
32 Pragmas for ColdFire 339
ColdFire Diagnostic Pragmas. .. ..........c. .. 339
SDS_debug_support . ......... ... 339
ColdFire Library and Linking Pragmas ............. .. ... .. .. .. ... 339
define_SECHION . . o o oottt 339
ColdFire Code Generation Pragmas . . .............. ... .. ... .. ...... 341
codeColdFire. . . ... .o e 341
const_multiply. ... ..o 342
CIMAC .« & v et ettt et e et e et e e e e e e 342
explicit_zero_data. ....... ...t 342
INHNE_INEHNSICS .« o v oo e e e e e e e e e 343
INEETTUPL . « o o ettt et e e e e e e e e e e e e e e e 343
readonly_Strings . .. ..ottt e 344
o5 101 344
ColdFire Optimization Pragmas . .. ......... ... ... ... .. ... ..., 345
opt_unroll_count. . ...... ... 345
opt_unroll_instr_count . .......... ... 345
Profile . ... o 345
CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 17



Table of Contents

18 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Introduction

This reference describes how to use CodeWarrior build tools to build programs.
CodeWarrior build tools translate source code into object code then organize that object
code to create a program that is ready to execute. CodeWarrior build tools often run on a
different platform than the programs they generate. Build tools run on the host platform to
generate software that runs on the target platform.

This chapter describes what this reference covers and the processes that CodeWarrior
build tools use to create software:

e CodeWarrior Build Tools Versions

* Compiler Architecture
e Linker Architecture

CodeWarrior Build Tools Versions

This reference covers the CodeWarrior compiler version 4.0 and its related linker.

Compiler Architecture

From a programmer’s point of view, the CodeWarrior compiler translates source code into
object code. Internally, however, the CodeWarrior compiler organizes its work into
several steps.

Figure 1.1 shows the steps the compiler takes to coordinate its front-end and back-end to
translate source code into object code.

* reading settings: the compiler retrieves your settings from the CodeWarrior IDE or
the command line to determine what files to translate and how they should be
translated in subsequent steps

* preprocessing: reads your program’s source code files then preprocesses them

* front-end translation: translates your program’s preprocessed source code into a
platform-independent intermediate representation

 front-end optimization: rearranges the intermediate representation to reduce your
program’s size or improve its performance while preserving its logic

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 19



'
A

Introduction
Linker Architecture

* back-end translation: converts the optimized intermediate representation into native
object code, containing data and instructions, for the target processor

* back-end optimization: specific to a target platform, rearranges the native object
code to reduce its size or improve performance

* output: writes object code and other data, ready for linking

Figure 1.1 CodeWarrior compiler steps

start compiler

settings from the IDE or

read settings .
command line

read and
preprocess source
code

source code file and
included files

translate to
intermediate
representation

optimize
intermediate
representation

translate to
processor object
code

optimize object code

object code and debugging
data files

output object code and
debugging data

Linker Architecture

A linker combines and arranges data and instructions from one or more object code files
into a single file, or image. This image is ready to execute on the target platform. The
CodeWarrior linker uses settings from the CodeWarrior IDE or command line to

20 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Introduction
Linker Architecture

determine how to generate the image file. The linker also uses an optional linker command
file. A linker command file allows you to specify precise details of how data and
instructions should be arranged in the linker’s output file.

Figure 1.2 shows the steps the CodeWarrior linker takes to build an executable image.

Figure 1.2 CodeWarrior linker steps

start linker
v
read settings settings from th? IDE or
command line
v
read linker c@i linker command file
v
read obj@i object code files
v

delete unused objects
(“deadstripping”)

resolve references
among objects

link map and
executable image files

output link map and
image files

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 21



V¥ ¢
i

Introduction
Linker Architecture

22 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



2

Using Build Tools with the
CodeWarrior IDE

The CodeWarrior Integrated Development Environment (IDE) uses settings in a project’s
build target to choose which compilers and linkers to invoke, which files those compilers
and linkers will process, and which options the compilers and linkers will use.

This chapter describes how to use CodeWarrior compilers and linkers with the
CodeWarrior IDE:

¢ Invoking CodeWarrior Compilers and Linkers

¢ Specifying File Locations

¢ IDE Options and Pragmas
¢ IDE Settings Panels

Invoking CodeWarrior Compilers and
Linkers

The IDE uses settings in the Target Settings panel of the build-target Settings window,
where build-target is the name of the current build target, to determine which compilers
and linkers to use. The Linker option in this settings panel specifies the platform or
processor to build for. From this option, the IDE also determines which compilers, pre-
linkers, and post-linkers to use.

The IDE uses the settings in the File Mappings panel of the build-target Settings window
to determine which types of files may be added to a project’s build target and which
compiler should be invoked to process each file. The menu of compilers in the Compiler
option of this panel is determined by the Linker setting in the Target Settings panel.

Specifying File Locations

The IDE uses the settings in a build target’s Access Paths and Source Trees panels to
choose the source code and object code files to dispatch to the CodeWarrior build tools.
See the IDE User’s Guide for more information on these panels.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 23



'
A

Using Build Tools with the CodeWarrior IDE
IDE Options and Pragmas

IDE Options and Pragmas

The build tools determine their settings by IDE settings and directives in source code.

The CodeWarrior compiler follows these steps to determine the settings to apply to each
file that the compiler translates under the IDE:

* before translating the source code file, the compiler gets option settings from the
IDE’s settings panels in the current build target

* the compiler updates the settings for pragmas that correspond to panel settings

* the compiler translates the source code in the Prefix Text field of the build target’s
C/C++ Preprocessor panel

The compiler applies pragma directives and updates their settings as pragmas
directives are encountered in this source code.

* the compiler translates the source code file and the files that it includes

The compiler applies pragma settings as it encounters them.

IDE Settings Panels

A build target that uses a CodeWarrior C or C++ compiler has these settings panels to
control the compiler:

* C/C++ Language Settings Panel
¢ C/C++ Preprocessor Panel

* C/C++ Warnings Panel

C/C++ Language Settings Panel

This settings panel controls compiler language features and some object code storage
features for the current build target.

e Force C++ Compilation

¢ ISO C++ Template Parser

¢ Use Instance Manager

¢ Enable C++ Exceptions
e Enable RTTI

¢ Enable bool Support

e Enable wchar t Support

¢ EC++ Compatibility Mode

24

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

¢ Inline Depth
e Auto-Inline

* Bottom-up Inlining
e ANSI Strict
¢ ANSI Keywords Only

» Expand Trigraphs

* Legacy for-scoping
¢ Require Function Prototypes

¢ Enable C99 Extensions
¢ Enable GCC Extensions

* Enums Always Int

» Use Unsigned Chars
¢ Pool Strings

* Reuse Strings

Force C++ Compilation

When on, translates all C source files as C++ source code. When off, the IDE uses the file
name’s extension to determine whether to use the C or C++ compiler. The entries in the
IDE’s File Mappings settings panel specify the suffixes that the compiler assigns to each
compiler.

This setting corresponds to the pragma cplusplus and the command-line option
-lang c++.

ISO C++ Template Parser

When on, follows the ISO/IEC 14882-1998 standard for C++ to translate templates,
enforcing more careful use of the typename and template keywords. When on, the
compiler also follows stricter rules for resolving names during declaration and
instantiation. When off, the C+++ compiler does not expect template source code to
follow the ISO C++ standard as closely.

This setting corresponds to the parse_func_templ pragma. It corresponds to the
command-line option -iso_templates.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 25



V¥ ¢
i

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

Use Instance Manager

When on, reduces compile time by generating any instance of a C++ template (or non-
inlined inline) function only once. When off, generates a new instance of a template or
non-inlined function each time it appears in source code.

You can control where the instance database is stored using the #pragma
instmgr_file. This setting corresponds to the command-line option -instmgr.

Enable C++ Exceptions

When on, generates executable code for C++ exceptions. When off, generates smaller,
faster executable code.

Enable the Enable C++ Exceptions setting if you use the try, throw, and catch
statements specified in the ISO/IEC 14882-1998 C++ standard. Otherwise, disable this
setting to generate smaller and faster code.

This setting corresponds to the pragma exceptions and the command-line option
—cpp_exceptions.

Enable RTTI

When on, allows the use of the C++ runtime type information (RTTI) capabilities,
including the dynamic_cast and typeid operators. When off, the compiler generates
smaller, faster object code but does not allow runtime type information operations.

This setting corresponds to the pragma RTTT and the command-line option -RTTI.

Enable bool Support

When on, the C++ compiler recognizes the bool type and its true and false values
specified in the ISO/IEC 14882-1998 C++ standard. When off, the compiler does not
recognize this type or its values.

This setting corresponds to the pragma bool and the command-line option -bool.

Enable wchar_t Support

When on, the C++ compiler recognizes the wchar_t data type specified in the ISO/IEC
14882-1998 C++ standard. When off, the compiler does not recognize this type.

Turn off this option when compiling source code that defines its own wchar_t type.

This setting corresponds to the pragma wchar_ type and the command-line option
-wchar_t.

26

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

EC++ Compatibility Mode

When on, expects C++ source code files to contain Embedded C++ source code. When
off, the compiler expects regular C++ source code in C++ source files.

This setting corresponds to the pragma ecplusplus and the command-line option
-dialect ec++.

Inline Depth

Specifies the policy to follow to determine the level of function calls to replace with
function bodies. These policies are listed in Table 2.1.

Table 2.1 Settings for the Inline Depth Pop-up Menu

This setting Does this...

Don’t Inline Inlines no functions, not even C or C++ functions declared
inline.

Smart Inlines small functions to a depth of 2 to 4 inline functions deep.

1108 Inlines to the depth specified by the numerical selection.

The Smart and 1 to 8 items correspond to the pragma inline_depth and the
command-line option —inline level=n, where nis 1 to 8. The Don’t Inline item
corresponds to the pragma dont_inline and the command-line option -inline
off.

Auto-Inline

Lets the compiler choose which functions to inline. Also inlines C++ functions declared
inline and member functions defined within a class declaration. This setting
corresponds to the pragma auto_inline and the command-line option -inline
auto.

Bottom-up Inlining

Inline functions starting at the last function to the first function in a chain of function calls.
This setting corresponds to the pragma inline_bottom_up and the command-line
option -inline bottomup.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 27



A 4
4\

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

ANSI Strict

Only recognizes source code that conforms to the ISO/IEC 9899-1990 standard for C. The
compiler does not recognize several CodeWarrior extensions to the C language:

o C++-style comments

* unnamed arguments in function definitions
* a# not followed by a macro directive

* using an identifier after a #endif directive
* using typecasted pointers as lvalues

* converting points to type of the same size

* arrays of zero length in structures

* the D constant suffix

* enumeration constant definitions that cannot be represented as signed integers when
the Enums Always Int option is on in the IDE’s C/C++ Language settings panel or
the enumsalwaysint pragma is on

* aC++main () function that does not return an integer value
You cannot enable individual extensions that are controlled by the ANSI Strict setting.

This setting corresponds to the pragma ANSI_strict and the command-line option
-ansi strict.

ANSI Keywords Only

Controls whether the compiler recognizes non-standard keywords.

(ISO/IEC 9899-1990 C, §6.4.1) The CodeWarrior compiler can recognize several
additional reserved keywords. If you enable this setting, the compiler generates an error
message if it encounters any of the additional keywords that it recognizes. If you must
write source code that strictly adheres to the ISO standard, enable the ANSI Strict setting.

If you disable this setting, the compiler recognizes the following non-standard keywords:
far,inline,_ _inline_ ,_ inline, and pascal.

This setting corresponds to the pragma only_std_keywords and the command-line
option -stdkeywords.

Expand Trigraphs

(ISO/IEC 9899-1990 C, §5.2.1.1) The compiler normally ignores trigraph characters.
Many common character constants look like trigraph sequences, and this extension lets
you use them without including escape characters.

28

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

This setting corresponds to the pragma trigraphs and the command-line option
-trigraphs.

Legacy for-scoping

Generates an error message when the compiler encounters a variable scope usage that the
ISO/IEC 14882-1998 C++ standard disallows, but is allowed in the C++ language
specified in The Annotated C++ Reference Manual (“ARM”).

This setting corresponds to the pragma ARM_scoping and the command-line option
-for_scoping.

Require Function Prototypes

Enforces the requirement of function prototypes. If you enable the Require Function
Prototypes setting, the compiler generates an error message if you define a previously
referenced function that does not have a prototype. If you define the function before it is
referenced but do not give it a prototype, then enabling the Require Function Prototypes
setting causes the compiler to issue a warning message.

This setting corresponds to the pragma require_prototypes and the command-line
option -~-requireprotos.

Enable C99 Extensions

Recognizes ISO/IEC 9899-1999 (“C99”) language features that are supported by the
CodeWarrior compiler.

This setting corresponds to the pragma c99 and the command-line option -dialect
c99.

Enable GCC Extensions

Lets you use language features of the GCC (Gnu Compiler Collection) C compiler that are
supported by CodeWarrior.

This setting corresponds to the pragma gcc_extensions and the command-line option
-gcc_extensions.

Enums Always Int

Uses signed integers to represent enumerated constants. This option corresponds to the
enumsalwaysint pragma and the command-line option -enum.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 29



A 4
4\

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

Use Unsigned Chars

Treats char declarations as unsigned char declarations. This setting corresponds to
the pragma unsigned_char and the command-line option ~-char unsigned.

Pool Strings

Controls where the compiler stores character string literals.

If you enable this setting, the compiler collects all string constants into a single data
section in the object code it generates. If you disable this setting, the compiler creates a
unique section for each string constant.

This option corresponds to the pragma pool_strings and the command-line option
-strings pool.

Reuse Strings

When on, the compiler stores only one copy of identical string literals. When off, the
compiler stores each string literal separately.

The Reuse Strings setting corresponds to opposite of the pragma
dont_reuse_strings and the command-line option -string reuse.

C/C++ Preprocessor Panel

The C/C++ Preprocessor settings panel controls the operation of the CodeWarrior
compiler’s preprocessor.

e Prefix Text

* Source encoding
e Use prefix text in precompiled header

* Emit file changes
* Emit #pragmas
* Show full paths
* Keep comments

e Use #line

» Keep whitespace

Prefix Text

Contains source code that the compiler inserts at the beginning of each translation unit. A
translation unit is the combination of a source code file and all the files that it includes.

30 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

Source encoding

Allows you to specify the default encoding of source files. The compiler recognizes
Multibyte and Unicode source text. To replicate the obsolete option Multi-Byte Aware,
set this option to System or Autodetect. Additionally, options that affect the preprocess
request appear in this panel.

Use prefix text in precompiled header

Controls whether the compiler inserts the source code in the Prefix Text field at the
beginning of a precompiled header file.

This option defaults to disabled to correspond with previous versions of the compiler that
ignore the prefix file when building precompiled headers. If any pragmas are imported
from old C/C++ Language Panel settings, this option is enabled.

Emit file changes

Controls whether notification of file changes (or #line changes) appear in the output.

Emit #pragmas

Controls whether pragmas directives encountered in the source text appear in the
preprocessor output.

NOTE  This option is essential for producing reproducible test cases for bug reports.

Show full paths

Controls whether file changes show the full path or the base filename of the file.

Keep comments

Controls whether comments are emitted in the output.

Use #line

Controls whether file changes appear in comments (as before) or in #line directives.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 31



A 4
4\

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

Keep whitespace

Controls whether whitespace is stripped out or copied into the output. This is useful for
keeping the starting column aligned with the original source, though the compiler attempts
to preserve space within the line. This doesn’t apply when macros are expanded.

C/C++ Warnings Panel

The C/C++ Warnings settings panel contains options that control which warning
messages the CodeWarrior C/C++ compiler issues as it translates source code:

 Illegal Pragmas

* Possible Errors

» Extended Error Checking

» Hidden Virtual Functions

» Implicit Arithmetic Conversions
* Float To Integer

» Signed/Unsigned

* Integer To Float

¢ Pointer/Integral Conversions

¢ Unused Variables

* Unused Arguments

* Missing ‘return’ Statements

» Expression Has No Side Effect
e Enable All

* Disable All

¢ Extra Commas

* Inconsistent ‘class’/’struct’ Usage

* Empty Declarations
* Include File Capitalization
¢ Check System Includes

» Pad Bytes Added
¢ Undefined Macro in #if

¢ Non-Inlined Functions

e Treat All Warnings As Errors

32

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

lllegal Pragmas

Issues a warning message if the compiler encounters an unrecognized pragma.

This setting corresponds to the warn_1i1llpragma pragma and the command-line option
-warnings illpragmas.

Possible Errors

Issues warning messages for common, usually-unintended logical errors:

* in conditional statements, using the assignment (=) operator instead of the equality
comparison (==) operator

* in expression statements, using the == operator instead of the = operator
* placing a semicolon (; ) immediately after a do, while, if, or for statement

This setting corresponds to pragma warn_possunwant and the command-line option
-warnings possible.

Extended Error Checking

Issues warning messages for common programming errors:

* mis-matched return type in a function’s definition and the return statement in the
function’s body

* mismatched assignments to variables of enumerated types

This setting corresponds to pragma extended_errorcheck and the command-line
option -warnings extended.

Hidden Virtual Functions

Generates a warning message if you declare a non-virtual member function that prevents a
virtual function, that was defined in a superclass, from being called.

This setting corresponds to pragma warn_hidevirtual and the command-line option
-warnings hidevirtual.

Implicit Arithmetic Conversions
Issues a warning message when the compiler applies implicit conversions that may not
give results you intend:

» assignments where the destination is not large enough to hold the result of the
conversion

* asigned value converted to an unsigned value

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 33



V¥ ¢
i

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

* an integer or floating-point value is converted to a floating-point or integer value,
respectively

This setting corresponds to the warn_implicitconv pragma and the command-line
option -warnings implicitconv.

Float To Integer

Issues a warning message for implicit conversions from floating point values to integer
values.

This setting corresponds to the warn_impl_ £2i conv pragma and the command-line
option -warnings impl_float2int.

Signed/Unsigned
Issues a warning message for implicit conversions from a signed or unsigned integer value
to an unsigned or signed value, respectively.

This setting corresponds to the warn_impl_s2u_conv pragma and the command-line
option ~-warnings signedunsigned.

Integer To Float

Issues a warning message for implicit conversions from integer to floating-point values.

This setting corresponds to the warn_impl_ 1i2f conv pragma and the command-line
option ~-warnings impl_int2float.

Pointer/Integral Conversions

Issues a warning message for implicit conversions from pointer values to integer values
and from integer values to pointer values.

This setting corresponds to the warn_any_ptr_int_conv and
warn_ptr_int_conv pragmas and the command-line option -warnings
ptrintconv, anyptrinvconv.

Unused Variables

Issues a warning message for local variables that are not referred to in a function.

This setting corresponds to the warn_unusedvar pragma and the command-line option
-warnings unusedvar.

34

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

Unused Arguments

Issues a warning message for function arguments that are not referred to in a function.

This setting corresponds to the warn_unusedarg pragma and the command-line option
-warnings unusedarg.

Missing ‘return’ Statements

Issues a warning message if a function that is defined to return a value has no return
statement.

This setting corresponds to the warn_missingreturn pragma and the command-line
option ~-warnings missingreturn.

Expression Has No Side Effect

Issues a warning message if a statement does not change the program’s state.

This setting corresponds to the warn_no_side_effect pragma and the command-
line option ~-warnings unusedexpr.

Enable All

Turns on all warning options.

Disable All

Turns off all warning options.

Extra Commas

Issues a warning message if a list in an enumeration terminates with a comma. The
compiler ignores terminating commas in enumerations when compiling source code that
conforms to the ISO/IEC 9899-1999 (“C99”) standard.

This setting corresponds to the warn_extracomma pragma and the command-line
option ~-warnings extracomma.

Inconsistent ‘class’/’struct’ Usage

Issues a warning message if the class and struct keywords are used interchangeably in the
definition and declaration of the same identifier in C++ source code.

This setting corresponds to the warn_structclass pragma and the command-line
option ~-warnings structclass.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 35



V¥ ¢
i

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

Empty Declarations

Issues a warning message if a declaration has no variable name.

This setting corresponsd to the pragma warn_emptydecl and the command-line option
-warnings emptydecl.

Include File Capitalization

Issues a warning message if the name of the file specified in a #include "file"
directive uses different letter case from a file on disk.

This setting corresponds to the warn_filenamecaps pragma and the command-line
option ~-warnings filecaps.

Check System Includes

Issues a warning message if the name of the file specified in a #include <file>
directive uses different letter case from a file on disk.

This setting corresponds to the warn_filenamecaps_system pragma and the
command-line option -warnings sysfilecaps.

Pad Bytes Added

Issues a warning message when the compiler adjusts the alignment of components in a
data structure.

This setting corresponds to the warn_padding pragma and the command-line option -
warnings padding.

Undefined Macro in #if

Issues a warning message if an undefined macro appears in #1f and #elif directives.

This setting corresponds to the warn_undefmacro pragma and the command-line
option -warnings undefmacro.

Non-Inlined Functions

Issues a warning message if a call to a function defined with the inline, inline_ ,
or __inline keywords could not be replaced with the function body.

This setting corresponds to the warn_notinlined pragma and the command-line
option -warnings notinlined.

36

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

Treat All Warnings As Errors

Issues warning messages as error messages.

This setting corresponds to the warning_errors pragma and the command-line option
-warnings error.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 37



V¥ ¢
i

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

38 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Using Build Tools on the
Command Line

The CodeWarrior command line compilers and assemblers translate source code into
object code, storing this object code in files. CodeWarrior command-line linkers then
combine one or more of these object code files to produce an executable image ready to
load and execute on the target platform.

Each command-line tool has options that you configure when you invoke the tool.

The CodeWarrior IDE (Integrated Development Environment) uses these same compilers
and linkers, however CodeWarrior provides versions of these tools that you can directly
invoke on the command line. Many command-line options correspond to settings in the
IDE’s Target Settings window.

This chapter contains these topics:

* Configuring Command-Line Tools
* Invoking Command-Line Tools

* Getting Help
¢ File Name Extensions

Configuring Command-Line Tools

To use the command-line tools, several environment variables must be changed or
defined.

If you are using CodeWarrior command-line tools with Microsoft Windows, environment
variables may be assigned in the autoexec . bat file in Windows 95/98 operating
systems or in the Environment tab under the System control panel in Windows NT/2000/
XP operating systems.

The CodeWarrior command-line tools refer to environment variables for configuration
information:

e CWFolder Environment Variable

* Setting the PATH Environment Variable

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 39



'
A

Using Build Tools on the Command Line
Invoking Command-Line Tools

CWFolder Environment Variable

In this example, CWFolder refers to the path where you installed your CodeWarrior
software. Note that you must not include quote marks when defining environment
variables that include spaces. The Windows operating system will not remove the quotes,
which leads to warning messages for unknown directories. Use the following syntax if
defining variables in batch files or at the command line (Listing 3.1).

Listing 3.1 Example of setting CWFolder.

set CWFolder=C:\Program Files\CodeWarrior

Setting the PATH Environment Variable

The PATH variable should include the paths for your CodeWarrior tools, shown in Listing
3.2. Toolset represents the name of the folder that contains the command line tools for
your build target.

Listing 3.2 Example of setting PATH

$CWFolder%\Bin
$CWFolder%\ toolset\Command_Line_Tools

The first path in Listing 3.2 contains the FlexLM license manager DLL, and the second
path contains the tools.

In order for FlexLM to work properly, you can simply copy the following file into the
directory from which you will be using the command line tools:

..\CodeWarrior\license.dat
Alternately, you can define the variable LM_LICENSE_FILE as:
$CWFolder%\license.dat

This variable points to license information. It may point to alternate versions of this file, as
needed.

Invoking Command-Line Tools

To compile, assemble, link, or perform some other programming task with the
CodeWarrior command-line tools, you type a command at a command line’s prompt. This
command specifies the tool you want to run, what options to use while the tool runs, and
what files the tool should operate on.

The form of a command to run a command-line tool is

40

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Using Build Tools on the Command Line
Getting Help

tool options files

where tool is the name of the CodeWarrior command-line tool to invoke, optionsisa
list of zero or more options that specify to the tool what operation it should perform and
how it should be performed, and files is a list of files zero or more files that the tool
should operate on.

Which options and files you should specify depend on what operation you want the tool to
perform.

The tool then performs the operation on the files you specify. If the tool is successful it
simply finishes its operation and a new prompt appears at the command line. If the tool
encounters problems it reports these problems as text messages on the command-line
before a new prompt appears.

Scripts that automate the process to build a piece of software contain commands to invoke
command-line tools. For example, the make tool, a common software development tool,
uses scripts to manage dependencies among source code files and invoke command-line
compilers, assemblers and linkers as needed, much like the CodeWarrior IDE’s project
manager.

Getting Help

To show short descriptions of a tool’s options, type this command at the command line:
tool -help
where tool is the name of the CodeWarrior build tool.

To show only a few lines of help information at a time, pipe the tool’s output to a pager
program. For example,

tool -help | more

will use the more pager program to display the help information.

Help Guidelines

Enter the following command in a Command Prompt window to see a list of
specifications that describe how options are formatted:

tool -help usage

where tool is the name of the CodeWarrior build tool.

Parameter Formats
Parameters in an option are formatted as follows:

* A parameter included in brackets “[]” is optional.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 41



A 4
4\

Using Build Tools on the Command Line

Getting Help

» Use of the ellipsis “. . .” character indicates that the previous type of parameter

may be repeated as a list.

Option Formats
Options are formatted as follows:

» For most options, the option and the parameters are separated by a space as in

“-xxx param’.

When the option’s name is “-xxx+", however, the parameter must directly follow

[T

the option, without the “+” character (as in “-xxx45") and with no space separator.
An option given as “— [no]xxx” may be issued as “-xxx” or “-noxxx”.
The use of “-noxxx” reverses the meaning of the option.

When an option is specified as “-xxx | yy[y] | zzz”, then either “-xxx”,

9 G

“—yy”, “-yyy”, or “-zzz” matches the option.

The symbols “, ” and “="" separate options and parameters unconditionally; to
include one of these symbols in a parameter or filename, escape it (e.g., as “\ , ” in
mwce file.c\,v).

Common Terms
These common terms appear in many option descriptions:

* A “cased” option is considered case-sensitive. By default, no options are case-

sensitive.

“compatibility” indicates that the option is borrowed from another vendor’s tool and
its behavior may only approximate its counterpart.

A “global” option has an effect over the entire command line and is parsed before
any other options. When several global options are specified, they are interpreted in
order.

A “deprecated” option will be eliminated in the future and should no longer be used.
An alternative form is supplied.

An “ignored” option is accepted by the tool but has no effect.

A “meaningless” option is accepted by the tool but probably has no meaning for the
target operating system.

An “obsolete” option indicates a deprecated option that is no longer available.

A “substituted” option has the same effect as another option. This points out a
preferred form and prevents confusion when similar options appear in the help.

Use of “default” in the help text indicates that the given value or variation of an
option is used unless otherwise overridden.

42

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Using Build Tools on the Command Line
File Name Extensions

This tool calls the linker (unless a compiler option such as -c prevents it) and understands
linker options — use “~help tool=other” to see them. Options marked “passed to
linker” are used by the compiler and the linker; options marked “for linker” are used only
by the linker. When using the compiler and linker separately, you must pass the common
options to both.

File Name Extensions

Files specified on the command line are identified by contents and file extension, as in the
CodeWarrior IDE.

The command-line version of the CodeWarrior C/C++ compiler accepts non-standard file
extensions as source code but also emits a warning message. By default, the compiler
assumes that a file with any extensions besides . c, .h, .pch is C++ source code. The
linker ignores all files that it can not identify as object code, libraries, or command files.

Linker command files must end in . 1cf. They may be simply added to the link line, for
example (Listing 3.3).

Listing 3.3 Example of using linker command files

mwldtarget file.o lib.a commandfile.lcf

For more information on linker command files, refer to the Targeting manual for your
platform.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 43



V¥ ¢
i

Using Build Tools on the Command Line
File Name Extensions

44 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



g |

4

Command-Line Standard C
Conformance

-ansi
Controls the ISO/IEC 9899-1990 (“C89”) conformance options, overriding the given
settings.
Syntax
-ansi keyword
The arguments for keyword are:
off
Turns ISO conformance off. Same as
-stdkeywords off -enum min -strict off.
on | relaxed
Turns ISO conformance on in relaxed mode. Same as
-stdkeywords on -enum min -strict on
strict
Turns ISO conformance on in strict mode. Same as
-stdkeywords on -enum int -strict on
-stdkeywords

Controls the use of ISO/IEC 9899-1990 (“C89”) keywords.

Syntax
-stdkeywords on | off

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 45



Command-Line Standard C Conformance

Remarks
Default setting is of £.

-strict
Controls the use of non-standard ISO/IEC 9899-1990 (“C89”) language features.

Syntax

-strict on | off

Remarks

If this option is on, the compiler generates an error message if it encounters some
CodeWarrior extensions to the C language defined by the ISO/IEC 9899-1990
(“C89”) standard:

¢ C++-style comments
* unnamed arguments in function definitions
¢ non-standard keywords

The default setting is of £.

46 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



g |

Command-Line Standard
C++ Conformance

-ARM

Deprecated. Use -for_scoping instead.

-bool

Controls the use of true and false keywords for the C++ boo1l data type.

Syntax
-bool on | off

Remarks

When on, the compiler recognizes the true and false keywords in expressions
of type bool. When off, the compiler does recognizes the keywords, forcing the
source code to provide definitions for these names. The default is on.

-Cpp_exceptions
Controls the use of C++ exceptions.

Syntax

-cpp_exceptions on | off

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 47



Command-Line Standard C++ Conformance

Remarks

When on, the compiler recognizes the try, catch, and throw keywords and
generates extra executable code and data to handle exception throwing and
catching. The default is on.

-dialect

Specify the source language.

Syntax

-dialect keyword

-lang keyword

The arguments for keywozrd are:
c

Compiles source code using the language specified by the ISO/IEC 9899-1990 (“C89”)
standard.

c99

Compiles source code using the language specified by the ISO/IEC 9899-1999 (“C99”)
standard.

c++ | cplus
Always treat source as the C++ language.
ec++

Generate error messages for use of C++ features outside the Embedded C++ subset.
Implies dialect cplus.

objc

Always treat source as the Objective-C language.

-for_scoping

Controls legacy scope behavior in for loops.

Syntax

-for_scoping

48

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Command-Line Standard C++ Conformance

Remarks

When enabled, variables declared in for loops are visible to the enclosing scope;
when disabled, such variables are scoped to the loop only. The default is of f.

-instmgr

Controls whether the instance manager for templates is active.

Syntax

-inst[mgr] keyword [,...]

The options for keyword are:

off

Turn off the C++ instance manager. This is the default.
on

Turn on the C++ instance manager.

file=path

Specify the path to the database used for the C++ instance manager. Unless specified the
default database is cwinst .db.

Remarks
This command is global. The default setting is o £ £.

-iso_templates

Controls whether the ISO/IEC 14882-1998 standard C++ template parser is active.

Syntax

-iso_templates on | off

Remarks
Default setting is of £.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 49



Command-Line Standard C++ Conformance

-RTTI
Controls the availability of runtime type information (RTTI).
Syntax
-RTTI on | off
Remarks
Default setting is on.
-som

Obsolete. This option is no longer available.

-som_env_check

Obsolete. This option is no longer available.

-wchar _t
Controls the use of the wchaxr_ t data type in C++ source code.

Syntax

-wchar_t on | off

Remarks

The —wchar on option tells the C++ compiler to recognize the wchar_t type
as a built-in type for wide characters. The ~-wchar off option tells the compiler

not to allow this built-in type, forcing the user to provide a definition for this type.
Default setting is on.

50 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



g |

6

Command-Line Language
Translation

-char

Controls the default sign of the char data type.

Syntax

-char keyword

The arguments for keyword are:
signed

char data items are signed.
unsigned

char data items are unsigned.

Remarks
The default is signed.

-defaults

Controls whether the compiler uses additional environment variables to provide default
settings.

Syntax

-defaults

-nodefaults

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 51



Command-Line Language Translation

Remarks

This option is global. To tell the command-line compiler to use the same set of
default settings as the CodeWarrior IDE, use -defaults. For example, in the
IDE, all access paths and libraries are explicit. defaults is the default setting.

Use -nodefaults to disable the use of additional environment variables.

-encoding

Specity the default source encoding used by the compiler.

Syntax

-enc[oding] keyword

The options for keyword are:

ascii

American Standard Code for Information Interchange (ASCII) format. This is the default.
autodetect | multibyte | mb

Scan file for multibyet encoding.

system

Uses local system format.

UTF[8 | -8]

Unicode Transformation Format (UTF).

SJIS | Shift-JIS | ShiftJIS

Shift Japanese Industrial Standard (Shift-JIS) format.f

EUC[JP | -JP]
Japanese Extended UNIX Code (EUCJP) format.
IS0[2022JP | -2022-JP]

International Organization of Standards (ISO) Japanese format.

Remarks

The compiler automatically detects UTF-8 (Unicode Transformation Format)
header or UCS-2/UCS-4 (Uniform Communications Standard) encodings
regardless of setting. The default setting is ascii.

52 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Command-Line Language Translation

-flag
Specifies compiler #pragma as either on or of f.

Syntax
-fllag] [no-]lpragma

Remarks
For example, this option setting
-flag require_prototypes
is equivalent to
#pragma require_prototypes on
This option setting
-flag no-require_prototypes
is the same as

#pragma require_prototypes off

-gccext
Enables GCC (Gnu Compiler Collection) C language extensions.

Syntax

-gcclext] on | off

Remarks

See “GCC Extensions” on page 142 for a list of language extensions that the
compiler recognizes when this option is on.

The default setting is of £.

-gcc_extensions

Equivalent to the ~gccext option.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 53



Command-Line Language Translation

Syntax

-gcc[_extensions] on | off

-M
Scan source files for dependencies and emit a Makefile, without generating object code.
Syntax
-M
Remarks
This command is global and case-sensitive.
-make
Scan source files for dependencies and emit a Makefile, without generating object code.
Syntax
-make
Remarks
This command is global.
-mapcCr
Swaps the values of the \n and \r escape characters.
Syntax
-mapcr
-nomapcr
Remarks
The -mapcr option tells the compiler to treat the ' \n' character as ASCII 13 and
the ' \r' character as ASCII 10. The -nomapcr option tells the compiler to treat
these characters as ASCII 10 and 13, respectively.
54 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Command-Line Language Translation

Scan source files for dependencies and emit a Makefile, without generating object code or
listing system #include files.

Syntax

-MM

Remarks

This command is global and case-sensitive.

Scan source files for dependencies and emit a Makefile, generate object code, and write a
dependency map.

Syntax

-MD

Remarks

This command is global and case-sensitive.

-MMD

Scan source files for dependencies and emit a Makefile, generate object code, write a
dependency map, without listing system #include files.

Syntax
-MMD

Remarks

This command is global and case-sensitive.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 55



Command-Line Language Translation

-msext

Allows Microsoft Visual C++ extensions.

Syntax

-msext on | off

Remarks
Turn on this option to allow Microsoft Visual C++ extensions:
¢ Redefinition of macros
e Allows XXX : : yyy syntax when declaring method yyy of class XXX
¢ Allows extra commas
* Ignores casts to the same type

» Treats function types with equivalent parameter lists but different return types as
equal

* Allows pointer-to-integer conversions, and various syntactical differences

-multibyteaware

Allows multi-byte characters encodings in source text.

Syntax
-multibyte[aware]

-nomultibyte[aware]

-once

Prevents header files from being processed more than once.

Syntax

—once

Remarks

You can also add #pragma once on in a prefix file.

56

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Command-Line Language Translation

-pragma
Defines a pragma for the compiler.

Syntax
-pragma ‘name ["setting"]’
The arguments are:
name
Name of the new pragma enclosed in single-quotes.
setting

Setting for the new pragma. When adding a setting, setting must be enclosed in
double-quotes.

-relax_pointers
Relaxes the pointer type-checking rules in C.

Syntax

-relaxpointers

Remarks
This option is equivalent to

#pragma mpwc_relax on

-requireprotos
Controls whether or not the compiler should expect function prototypes.

Syntax

-r[equireprotos]

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 57



Command-Line Language Translation

-search
Globally searches across paths for source files, object code, and libraries specified in the
command line.
Syntax
-search
-trigraphs

Controls the use of trigraph sequences specified by the ISO/IEC standards for C and C++.

Syntax
-trigraphs on | off

Remarks
Default setting is of £.

58 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



g |

7

Command-Line Diagnostic
Messages

-disassemble

Tells the command-line tool to disassemble files and send result to stdout.

Syntax
-dis[assemble]

Remarks
This option is global.

-help

Lists descriptions of the CodeWarrior tool’s command-line options.

Syntax
-help [keyword [,...]]
The options for keyword are:
all
Show all standard options
group=keyword
Show help for groups whose names contain keyword (case-sensitive).
[no]compatible

Use compatible to show options compatible with this compiler. Use
nocompatible to show options that do not work with this compiler.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 59



Command-Line Diagnostic Messages

[no]deprecated

Shows deprecated options
[no]ignored

Shows ignored options
[no]lmeaningless

Shows options meaningless for this target
[no]lnormal

Shows only standard options
[nolobsolete

Shows obsolete options
[no] spaces

Inserts blank lines between options in printout.
opt[ion]=name

Shows help for a given option; for 'name’, maximum length 63 chars
search=keyword

Shows help for an option whose name or help contains ’keyword’ (case-sensitive);
for "’keyword’, maximum length 63 chars

tool=keyword[ all | this | other|skipped | both ]
Categorizes groups of options by tool; default.
* all-show all options available in this tool
* this-show options executed by this tool; default
* other | skipped-show options passed to another tool
* both-show options used in all tools
usage

Displays usage information.

-maxerrors

Specity the maximum number of errors messages to show.

Syntax

—maxerrors max

60 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Command-Line Diagnostic Messages

max
Use max to specify the number of error messages. Common values are:
¢ 0 (zero) — disable maximum count, show all error messages.

e 100 — Default setting.

-maxwarnings

Specify the maximum number of warning messages to show.

Syntax

-maxerrors max

max
Specifies the number of warning messages. Common values are:
¢ 0 (zero) — Disable maximum count (default).

e n — Maximum number of warnings to show.

-msgstyle
Controls the style used to show error and warning messages.

Syntax

-msgstyle keyword
The options for keyword are:
gcc

Uses the message style that the Gnu Compiler Collection tools use.

ide

Uses CodeWarrior’s Integrated Development Environment (IDE) message style.
mpw

Uses Macintosh Programmer’s Workshop (MPW®) message style.
parseable

Uses context-free machine parseable message style.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 61



Command-Line Diagnostic Messages

std

Uses standard message style. This is the default.

-nofail
Continues processing after getting error messages in earlier files.

Syntax

-nofail

-progress
Shows progess and version information.

Syntax

-progress

Disassembles all files and send output to a file. This command is global and case-
sensitive.

Syntax
-s

-stderr
Use the standard error stream to report error and warning messages.

Syntax

-stderr

62 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Command-Line Diagnostic Messages

-nostderr

Remarks

The -stderr option specifies to the compiler, and other tools that it invokes, that
error and warning messages should be sent to the standard error stream.

The -nostderr option specifies that error and warning messages should be sent
to the standard output stream.

-verbose

Tells the compiler to provide extra, cumulative information in messages.

Syntax

-v[erbose]

Remarks

This option also gives progress and version information.

-version
Displays version, configuration, and build data.
Syntax
-v[ersion]

-timing

Shows the amount of time that the tool used to perform an action.

Syntax

-timing

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 63



Command-Line Diagnostic Messages

-warnings

Specify which warning messages the command-line tool issues. This command is global.

Syntax

-wl[arning] keyword [,...]
The options for keywoxrd are:
off

Turns off all warning messages. Passed to all tools. Equivalent to
#pragma warning off
on
Turns on most warning messages. Passed to all tools. Equivalent to
#pragma warning on
[no]lcmdline
Passed to all tools.
[nolerr[or] | [noliserr[or]
Treats warnings as errors. Passed to all tools. Equivalent to
#pragma warning_errors
all
Turns on all warning messages and require prototypes.
[no]pragmas | [no]illpragmas
Issues warning messages on illegal pragmas. Equivalent to
#pragma warn_illpragma
[no]empty[decl]
Issues warning messages on empty declarations. Equivalent to
#pragma warn_emptydecl
[no]lpossible | [no]lunwanted
Issues warning messages on possible unwanted effects. Equivalent to
#pragma warn_possunwanted
[no]unusedarg
Issues warning messages on unused arguments. Equivalent to

#pragma warn_unusedarg

64

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Command-Line Diagnostic Messages

[no]unusedvar
Issues warning messages on unused variables. Equivalent to
#pragma warn_unusedvar
[no]unused
Same as
-w [no]Junusedarg, [no]unusedvar
[nolextracomma | [nolcomma

Issues warning messages on extra commas in enumerations. The compiler ignores
terminating commas in enumerations when compiling source code that conforms to
the ISO/IEC 9899-1999 (“C99”) standard. Equivalent to

#pragma warn_extracomma
[nolpedantic | [nolextended
Pedantic error checking.
[nolhidevirtual | [nolhidden[virtual]
Issues warning messages on hidden virtual functions. Equivalent to
#pragma warn_hidevirtual
[nolimplicit[conv]
Issues warning messages on implicit arithmetic conversions. Implies
-warn impl_float2int, impl_signedunsigned
[no]impl_int2float
Issues warning messages on implicit integral to floating conversions. Equivalent to
#pragma warn_impl_i2f_ conv
[nolimpl_float2int
Issues warning messages on implicit floating to integral conversions. Equivalent to
#pragma warn_impl_f2i_conv
[no]impl_signedunsigned
Issues warning messages on implicit signed/unsigned conversions.
[no]lnotinlined

Issues warning messages for functions declared with the inline qualifier that are
not inlined. Equivalent to

#pragma warn_notinlined

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 65



Command-Line Diagnostic Messages

[no]largeargs

Issues warning messages when passing large arguments to unprototyped functions.
Equivalent to

#pragma warn_largeardgs
[no]structclass

Issues warning messages on inconsistent use of class and struct. Equivalent
to

#pragma warn_structclass
[nolpadding

Issue warning messages when padding is added between struct members.
Equivalent to

#pragma warn_padding
[no]lnotused

Issues warning messages when the result of non-void-returning functions are not
used. Equivalent to

#pragma warn_resultnotused
[no]lmissingreturn

Issues warning messages when a return without a value in non-void-returning
function occurs. Equivalent to

#pragma warn_missingreturn
[no]unusedexpr

Issues warning messages when encountering the use of expressions as statements
without side effects. Equivalent to

#pragma warn_no_side_effect
[nolptrintconv
Issues warning messages when lossy conversions occur from pointers to integers.
[no]anyptrintconv
Issues warning messages on any conversion of pointers to integers. Equivalent to
#pragma warn_ptr_int_conv
[nolundef [macro]

Issues warning messages on the use of undefined macros in #1f and #elif
conditionals. Equivalent to

#pragma warn_undefmacro

66 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Command-Line Diagnostic Messages

[no] filecaps

Issues warning messages when #include "" directives use incorrect
capitalization. Equivalent to

#pragma warn_filenamecaps
[nolsysfilecaps

Issue warning messages when #include <> statements use incorrect
capitalization. Equivalent to

#pragma warn_filenamecaps_system
[no] tokenpasting

Issue warning messages when token is not formed by the ## preprocessor operator.
Equivalent to

#pragma warn_illtokenpasting
display | dump

Display list of active warnings.

-wraplines
Controls the word wrapping of messages.

Syntax
-wraplines

-nowraplines

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 67



Command-Line Diagnostic Messages

68 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Command-Line
Preprocessing and
Precompilation

-convertpaths

Instructs the compiler to interpret #include file paths specified for a foreign operating
system. This command is global.
Syntax

-[no]convertpaths

Remarks

The CodeWarrior compiler can interpret file paths from several different operating
systems. Each operating system uses unique characters as path separaters. These
separaters include:

¢ Mac OS® —colon “:” (:sys:stat.h)
* UNIX - forward slash “/” (sys/stat .h)
¢ Windows® operating systems — backward slash “\” (sys\stat.h)

When convertpaths is enabled, the compiler can correctly interpret and use
paths like <sys/stat.h>or <:sys:stat.h>. However, when enabled, (/)
and (:) separate directories and cannot be used in filenames.

NOTE  This is not a problem on Windows since these characters are already
disallowed in file names. It is safe to leave this option on.

When noconvertpaths is enabled, the compiler can only interpret paths that
use the Windows form, like <\sys\stat.h>.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 69



Command-Line Preprocessing and Precompilation

-cwd
Controls where a search begins for #include files.
Syntax
-cwd keyword
The options for keyword are:
explicit
No implicit directory. Search -I or -ir paths.
include
Begins searching in directory of referencing file.
proj
Begins searching in current working directory (default).
source
Begins searching in directory that contains the source file.
Remarks
The path represented by keyword is searched before searching access paths
defined for the build target.
-D+
Same as the ~define option.
Syntax
-D+name
The parameters are:
name
The symbol name to define. Symbol is set to 1.
-define

Defines a preprocessor symbol.

70

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Command-Line Preprocessing and Precompilation

Syntax
-d[efine]lname[=value]
The parameters are:
name

The symbol name to define.
value

The value to assign to symbol name. If no value is specified, set symbol value
equal to 1.

Tells the command-line tool to preprocess source files.

Syntax

-BE

Remarks

This option is global and case sensitive.

Tells the command-line tool to preprocess source files that are stripped of #1ine
directives.

Syntax
-EP

Remarks

This option is global and case sensitive.

-gccincludes

Controls the compilers use of GCC #include semantics.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 71



Command-Line Preprocessing and Precompilation

Syntax

-gccinc[ludes]

Remarks

Use -gccinclude to control the CodeWarrior compiler understanding of Gnu
Compiler Collection (GCC) semantics. When enabled, the semantices include:

* Adds -I- paths to the systems list if —-I- is not already specified

» Search referencing file’s directory first for #include files (same as —cwd
include) The compiler and IDE only search access paths, and do not take the
currently #include file into account.

This command is global.

Changes the build target’s search order of access paths to start with the system paths list.

Syntax
_ I _

—i-

Remarks

The compiler can search #include files in several different ways. Use —-I - to set
the search order as follows:

 For include statements of the form #include "xyz",the compiler first
searches user paths, then the system paths

¢ For include statements of the form #include <xyz>, the compiler searches
only system paths

This command is global.

Appends a non-recursive access path to the current #include list.

Syntax
-I+path

72 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Command-Line Preprocessing and Precompilation

-i path
The parameters are:
path

The non-recursive access path to append.

Remarks

This command is global and case-sensitive.

-include
Defines the name of the text file or precompiled header file to add to every source file
processed.
Syntax
-include file
file
Name of text file or precompiled header file to prefix to all source files.
Remarks
With the command line tool, you can add multiple prefix files all of which are
included in a meta-prefix file.
-ir
Appends a recursive access path to the current #include list. This command is global.
Syntax
-ir path
path
The recursive access path to append.
-P

Preprocess the source files without generating object code, and send output to file.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition

73



Command-Line Preprocessing and Precompilation

Syntax

-P

Remarks

This option is global and case-sensitive.

-precompile

Precompile a header file from selected source files.

Syntax
-precompile file | dir | ""
file
If specitied, the precompiled header name.
dir
If specified, the directory to store the header file.
If " " is specified, write header file to location specified in source code. If neither
argument is specified, the header file name is derived from the source file name.
Remarks
The driver determines whether to precompile a file based on its extension. The
option
-precompile filesource
is equivalent to
-c -o filesource
-preprocess

Preprocess the source files. This command is global .

Syntax

-preprocess

74 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Command-Line Preprocessing and Precompilation

-ppopt

Specify options affecting the preprocessed output.

Syntax
-ppopt keyword [,...]
The arguments for keyword are:
[nolbreak
Emits file and line breaks. This is the default.
[no]line

Controls whether #line directives are emitted or just comments. The default is
line.

[no] full [path]

Controls whether full paths are emitted or just the base filename. The default is
fullpath.

[no]lpragma

Controls whether #pragma directives are kept or stripped. The default is pragma.
[no] comment

Controls whether comments are kept or stripped.
[no] space

Controls whether whitespace is kept or stripped. The default is space.

Remarks
The default settings is break.

-prefix

Add contents a text file or precompiled header as a prefix to all source files.

Syntax

-prefix file

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 75



Command-Line Preprocessing and Precompilation

-noprecompile

Do not precompile any source files based upon the filename extension.

Syntax

-noprecompile

-nosyspath

Perform searches of both the user and system paths, treating #include statements of the
form #include <xyz> the same as the form #include "xyz".

Syntax
-nosyspath

Remarks

This command is global.

-stdinc

Use standard system include paths as specified by the environment variable
MWCIncludes%.

Syntax
-stdinc

-nostdinc

Remarks
Add this option after all system - I paths.

Same as the -undefine option.

76

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Command-Line Preprocessing and Precompilation

Syntax

-U+name

-undefine
Undefine the specified symbol name.

Syntax
-u[ndefine] name
-U+name

name

The symbol name to undefine.

Remarks

This option is case-sensitive.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 77



Command-Line Preprocessing and Precompilation

78 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



g |

9

Command-Line Library and
Linking

-keepobjects
Retains or deletes object files after invoking the linker.

Syntax
-keepobj[ects]

-nokeepobj [ects]

Remarks

Use -keepobjects to retain object files after invoking the linker. Use
-nokeepobjects to delete object files after linking. This option is global.

NOTE  Object files are always kept when compiling.

-nolink
Compile the source files, without linking.

Syntax

-nolink

Remarks

This command is global.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 79



Command-Line Library and Linking

Specify the output filename or directory for storing object files or text output during
compilation, or the the output file if calling the linker.

Syntax

-o file | dir

file

The output file name.

dir

The directory to store object files or text output.

80

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



g |

10

Command-Line Object Code

Instructs the compiler to compile but not invoke the linker to link the object code.

Syntax

-C

Remarks
This option is global.

-codegen

Instructs the compiler to compile without generating object code.

Syntax
-codegen

-nocodegen

Remarks
This option is global.

-enum

Specity the default size for enumeration types.

Syntax
-enum keyword

The arguments for keyword are:

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 81



Command-Line Object Code

int
Uses int size for enumerated types.
min

Uses minimum size for enumerated types. This is the default.

-min_enum_size
Specifies the size, in bytes, of enumerated types.

Syntax

-min_enum_size 1 | 2 | 4

Remarks

Specitying this option also invokes the —~enum min option by default.

-ext
Tells the command-line tool the extension to apply to object files.

Syntax

-ext extension

extension
The extension to apply to object files. Use these rules to specify the extension:
¢ Limited to a maximum length of 14-characters

» Extensions specified without a leading period (extension) replace the source
file’s extension. For example, if extension is “o” (without quotes), then
source.cpp becomes source. o.

* Extensions specified with a leading period (. extension) are appended to the
object files name. For example, if extension is “. o” (without quotes), then
source.cpp becomes source.cpp.o.

Remarks

This command is global. The default setting is no extension.

82 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Command-Line Object Code

-strings
Controls how string literals are stored and used.

Remarks
-str[ings] keyword[, ...]
The keyword arguments are:

[no]pool

All string constants are stored as a single data object so your program needs one
data section for all of them.

[no]lreuse

All equivilent string constants are stored as a single data object so your program
can reuse them. This is the default.

[no]readonly

Make all string constants read-only. This is the default.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 83



Command-Line Object Code

84 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



g |

11

Command-Line for
Optimization

-inline

Specify inline options. Default settings are smart, noauto.

Syntax
-inline keyword
The options for keyword are:
off | none

Turns off inlining.
on | smart

Turns on inlining for functions declared with the inline qualifier. This is the
default.

auto

Attempts to inline small functions even if they are declared with inline.
noauto

Does not auto-inline. This is the default auto-inline setting.
deferred

Refrains from inlining until a file has been translated. This allows inlining of
functions in both directions.

level=n

Inlines functions up to n levels deep. Level O is the same as ~inline on. For n,
enter 1 to 8 levels. This argument is case-sensitive.

all

Turns on aggressive inlining. This option is the same as -inline on, -inline
auto.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 85



Command-Line for Optimization

Sets optimization settings to —opt level=2.

Syntax
-0

Remarks

Provided for backwards compatibility.

Controls optimization settings.

Syntax
-O+keyword [,...]

The keyword arguments are:

0
Equivalent to -opt

Equivalent to -opt

Equivalent to -opt

Equivalent to -opt

Equivalent to -opt

Equivalent to -opt

Equivalent to -opt

off.

level=1.

level=2.

level=3.

level=4,intrinsics.

speed.

space.

86

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Command-Line for Optimization

Remarks

Options can be combined into a single command. Command is case-sensitive.

-opt

Specity code optimization options to apply to object code.

Remarks
-optkeyword [,...]
The keyword arguments are:
off | none
Suppresses all optimizations. This is the default.
on
Same as -opt level=2
all | full
Same as -opt speed, level=4, intrinsics,noframe
llevel]l=num
Sets a specific optimization level. The options for num are:

* 0 — Global register allocation only for temporary values. Equivalent to
#pragma optimization_level 0.

¢ 1 — Adds dead code elimination, branch and arithmetic optimizations,
expression simplification, and peephole optimization. Equivalent to #pragma
optimization_level 1.

¢ 2 — Adds common subexpression elimination, copy and expression propagation,
stack frame compression, stack alignment, and fast floating-point to integer
conversions. Equivalent to: #pragma optimization_level 2.

* 3 — Adds dead store elimination, live range splitting, loop-invariant code
motion, strength reduction, loop transformations, loop unrolling (with —opt
speed only), loop vectorization, lifetime-based register allocation, and
instruction scheduling. Equivalent to optimization_level 3.

e 4 —Like level 3, but with more comprehensive optimizations from levels 1 and
2. Equivalent to #pragma optimization_level 4.

For num options 0 through 4 inclusive, the default is 0.

[no] space

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 87



Command-Line for Optimization

Optimizes object code for size. Equivalent to #pragma optimize_for_size
on.

[no] speed

Optimizes object code for speed. Equivalent to #pragma
optimize_for_size off.

[nolcse | [no]commonsubs

Common subexpression elimination. Equivalent to #pragma
opt_common_subs.

[no]deadcode
Removes of dead code. Equivalent to #pragma opt_dead_code.
[no]ldeadstore

Removes of dead assignments. Equivalent to #pragma
opt_dead_assignments.

[no]lifetimes
Computation of variable lifetimes. Equivalent to #pragma opt_lifetimes.
[no]loop[invariants]

Removes of loop invariants. Equivalent to #pragma
opt_loop_invariants.

[no]lproplagation]

Propagation of constant and copy assignments. Equivalent to #pragma
opt_propagation.

[no]strength

Strength reduction. Reducing multiplication by an array index variable to addition.
Equivalent to #pragma opt_strength reduction.

[no]dead

Same as —opt [no]deadcode and [no]deadstore. Equivalent to
#pragma opt_dead_code on | of f and #pragma
opt_dead_assignments.

[nolpeeplhole]

Peephole optimization. Equivalent to #pragma peephole.
[nolcolor[ing]

Register coloring. Equivalent to #pragma register_coloring.
[nolintrinsics

Inlines intrinsic functions.

[no]lschedule

88

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Command-Line for Optimization

Performs instruction scheduling.
display | dump

Displays complete list of active optimizations.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 89



Command-Line for Optimization

90 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



g |

12

Linker

The compiler organizes its object code into sections that the linker arranges when it
creates its output file.

To generate an output file, the linker reads from input ELF (Executable and Linkable
Format) files generated by compiler and other tools. The linker also reads a linker
command file to determine how to build its output file. The linker then writes to its output
file, an ELF file. This output file is the executable image, ready to load and run on the
target platform.

This chapter describes the sections in the object code of and how to arrange them in the
linker’s output file:

¢ Speciyfing Link Order in the IDE

¢ Defining Sections in Source Code

» Using a Linker Command File
¢ Linker Command File Syntax

Speciyfing Link Order in the IDE

To specify link order, use the Link Order page of the CodeWarrior IDE’s Project
window. (For certain targets, the name of this page is Segments.)

Regardless of the order that the Link Order page specifies, the linker always processes
source code files before it processes relocatable ( . o) files or archive (. a) files. This
policy means that the linker prefers using a symbol definition from a source file rather
than a library file definition for the same symbol.

There is an exception, however: if the source file defines a weak symbol, the linker uses a
global-symbol definition from a library. Use #pragma overload to create weak
symbols.

Well-constructed projects usually do not have strong link-order dependencies.

The linker ignores executable files of the project. You may find it convenient to keep the
executable files in the project folder so that you can disassemble it. If a build is successful,
a check mark appears in the touch column on the left side of the project window. This
indicates that the new file in the project is out of date. If a build is unsuccessful, the IDE is
not be able to find the executable file and it stops the build with an appropriate message.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 91



y
A

Linker
Defining Sections in Source Code

Defining Sections in Source Code

The compiler defines its own sections to organize the data and executable code it
generates. You may also define your own sections directly in your program’s source code.

The section pragma specifies to the compiler where to place proceeding definitions in
source code. Use the push, section, and pop pragmas to enclose source code
definitions. Listing 12.1 shows an example that places variables named red and sky in a
section named .myData.

Listing 12.1 Using pragma section to specify where to place definitions

#pragma push /* Save the compiler’s state. */

#pragma section data_type ".myData" ".myData" data_mode=far_abs
int red;

int sky;

#pragma pop /* Restore the compiler’s state. */

An alternative to using the section pragma is to use ___declspec to specify where to
place a single definition in object code. Listing 12.2 shows an example.

Listing 12.2 Using __declspec to specify where to place definitions

__declspec (section ".myData") int red;

_ _declspec (section ".myData") int sky;
__declspec (section ".myISRSection") ISRType
InterruptVectorTable[256];

Using a Linker Command File

A linker command file (. 1cf file) is a text file that the linker reads to determine how to
arrange object code from input files to produce an output file.

Use a linker command file to control dead-stripping, describe the target platform’s
memory map, define and arrange sections, and control addresses and alignment:

* Dead-Stripping

¢ Defining the Target’s Memory Map

* Defining Sections in the Output File
* Associating Input Sections With Output Sections
* Controlling Alignment

* Specifying Memory Area Locations and Sizes

92 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Linker
Using a Linker Command File

Dead-Stripping
Normally, the CodeWarrior linker ignores object code that is not referred to by other
object code. If the linker detects that an object is not referred to by the rest of the program

being linked, the linker will not place that object in its output file. In other words, the
linker “dead-strips” objects that are not used.

Dead-stripping ensures the smallest possible output file. Also, dead-stripping relieves you
from having to manually exclude unused source code from the compiler and unused object
code from the linker.

There are some objects, however, that need to be in the linker’s output file even if these
objects are not explicitly referred to by other parts of your program. For example, an
executable image might contain an interrupt table that the target platform needs, but this
interrupt table is not referred to by the rest of the image.

Use the FORCEACTIVE and FORCEFILES directives in a linker command file to specify
to the linker which objects and files must not be dead-stripped.

Listing 12.3 shows an example from a linker command file that tells the linker not to dead-
strip an object named InterruptVectorTable and all the objects in an input file
named segfault.o.

Listing 12.3 FORCEACTIVE and FORCEFILES example

FORCEACTIVE { InterruptVectorTable }
FORCEFILES { segfault.o }

Defining the Target’s Memory Map

Use the linker command file’s MEMORY directive to delineate areas in the target platform’s
memory map and associate a name for each of these areas. Names defined in a MEMORY
directive may be used later in the linker command file to specify where object code should
be stored. Listing 12.4 shows an example.

Listing 12.4 MEMORY directive example

MEMORY

{

ISR_table : org = 0x00000000, len = 0x400

data
flash:
text

org = 0x00000400, len = 0x10000
org = 0x10000000, len 0x10000
org 0x80000000

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 93



3
4

y
A

Linker
Using a Linker Command File

This example defines 3 memory areas named ISR_table, data, and text. The org
argument specifies the beginning byte address of a memory area. The 1en argument is
optional, It specifies how many bytes of data or executable code the linker may store in an
area. The linker issues a warning message if an attempt to store object code in an area
exceeds its length.

Defining Sections in the Output File
Use the linker command file’s SECTIONS directive to
* define sections in the linker’s output file

* to specify in which memory area on the target platform a section in the output file
should be loaded at runtime

Use GROUP directives in a SECTIONS directive to organize objects.

The linker will only create a section in the output file if the section is not empty, even if
the section is defined in a SECTION or GROUP directive.

Listing 12.5 shows an example.

Listing 12.5 SECTIONS and GROUP example

SECTIONS

{

GROUP
{
.text : {}
.rodata : {}
} > text

GROUP
{
.sdata : {}
.sbss : {}
} > data

GROUP
{
.sdata2 : {}
.sbss2 : {}
} > data

This example defines the . text and . rodata sections in the output file and specifies
that they should be loaded in the memory area named text on the target platform at
runtime. The example then defines sections named . sdata and . sbss. These sections
will be loaded in the memory named data. The last GROUP directive in the example

94

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Linker
Using a Linker Command File

defines sections named . sdata2, and . sbss2. These sections will also be loaded in the
memory area named data, after the sections . sdata and . sbss.

Associating Input Sections With Output
Sections

Normally the linker stores sections from input object code in the sections of the linker’s
output file that have the same name. The linker command file’s SECTIONS and GROUP
directives allow you to specify other ways to associate input object code with sections in
linker output. Listing 12.6 shows an example.

Listing 12.6 Associating object code with sections in linker output

SECTIONS
{
GROUP
{
.myText { main.o (.text) }
.text @ ( *(.text) 1}
} > text
}

This example defines a section in the output file named .myText. This section will
contain the objects that are in the . text section in the object code taken from the input
file named main. o. The example also defines a section in the output file named . text.
This section will contain all objects in the . text sections of all input files containing
object code. Both these sections in the output file, .myText and . text, will be loaded
in the memory area named t ext on the target platform.

The SECTIONS and GROUP directives also allow you to filter what kinds of object code
from input files will be stored in a section in the output file. Table 12.1 shows the kinds of
data that may be filtered.

Table 12.1 Filter types for object code in input files

This filter allows input objects that and contain this kind of
have these permissions object code

TEXT readable, executable initialized

CODE readable, executable initialized

DATA readable, writable initialized

BSS readable, writable uninitialized

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition

95



'
A

Linker
Using a Linker Command File

Table 12.1 Filter types for object code in input files

This filter allows input objects that and contain this kind of
have these permissions object code

CONST readable initialized

MIXED readable, writable, executable initialized

Listing 12.7 shows an example.

Listing 12.7 Filtering objects from input files

SECTIONS

{
.text (TEXT) : { } > text
.bss (BSS) : { } > data

This example defines a section in the output file named . text. The linker will only store
objects from input object code that are readable, executable, and initialized. This example
also defines a section in the output file named . bss. This section will only contain
objects from the linker’s input files that are readable, writable, and uninitialized.

Controlling Alignment

Use the ALIGN argument in a SECTIONS or GROUP directive to specify a byte boundary
on which to align a section in the output file.

Listing 12.8 shows an example.

Listing 12.8 Example of the ALIGN directive

SECTIONS
{
GROUP:
{
.init ALIGN(0x1000) : {}
.text ALIGN(0x1000) : {1}
} > text
}

This example defines two sections named . init and . text. At runtime, each section
will be loaded at the next available address that is evenly divisible by 0x1000 in the
memory area named text on the target platform.

96 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition




Linker
Using a Linker Command File

Specifying Memory Area Locations and
Sizes

Normally, the linker stores sections in the output file in sequential order. Each object from
the linker’s output is stored after the last object in the output file. Use the BIND, ADDR,
and SIZEOF keywords in SECTIONS and GROUP directives to precisely specify where
sections in the output file will be loaded.

Listing 12.9 shows an example.

Listing 12.9 BIND, ADDR, and SIZEOF example

SECTIONS

{

.text BIND(0x00010000) : ()
.rodata : {}
.data BIND(ADDR(.rodata + SIZEOF(.rodata)) ALIGN(0x010) : {}

This example defines a section in the output file named . text. This section will be
loaded at address 0x00010000 on the target platform at runtime. The next section,
.rodata, will be loaded at the address immediately proceeding the last byte in the

. text section. The last section, . data, will be loaded at the address that is the sum of
the beginning of the . rodata section’s address and the size of the . rodata section.
This last section will be aligned at the next address that is evenly divisible by 0x10.

The dot keyword (““.”), is a convenient way to set the linker’s place in the current output
section.

Listing 12.10 shows an example.

Listing 12.10 Skipping areas of memory

SECTIONS

{

GROUP
{
.ISR_Table : {}
= 0x2000
} > flash

GROUP
{

.paramsection : {}
} > flash

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 97



y
A

Linker
Linker Command File Syntax

This example defines two sections. The first section, . ISRTable, will be loaded at
beginning of the memory area named £1lash on the target platform at runtime. The
second section, . paramsection, will be loaded at the address that is 0x2000 bytes
past the beginning of the memory area named flash.

Linker Command File Syntax

Listing 12.11 shows the syntax for linker command files.

Listing 12.11 Linker Command File Syntax

<linker command file> =
<commands>* <memory>? <commands>* <sections>? <commands>*

<commands> =
<exclude files> |
<force active> |
<force files> |
<include dwarf> |
<shorten names for tornado 101 > |
<cats bss mod> |
<cats header mod> |
<data type converts> |
<entry> |
<init> |
<term> |
<external symbol> |
<internal symbol> |
<memory gaps>

<exclude files> =
"EXCLUDEFILES" "{" <file name> "}"

<force active> =
"FORCEACTIVE" "{" <identifier> + "}"

<letter> =
e[ brfrer e e g e e |
O e e e R R R RS A
v B lre | Dr B R G R T g R L |
o e R st e e e x|
<file name> =
(<letter> |"_") (<letter> |<digit> |"_")*
(".")?(<letter> |<digit> ["_")*

98 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Linker
Linker Command File Syntax

<object file> =
(<letter> |"_") (<letter> |<digit> |["_")* (".") ("o"|"O")

<archive file> =
(<letter> |"_") (<letter> |<digit> |["_")* (".") ("a"|"A")

<force files> =
"FORCEFILES" "{" ( <object file> | <archive file> )
n (l| Object file |l) n )+ l|}ll

<include dwarf>=
"INCLUDEDWARF" "{" <file name> "}"

<shorten names for tornado 101>=
"SHORTEN_NAMES_FOR_TOR_101"

<cats bss mod> =
"CATS_BSS_MOD"

<cats header mod> =
"CATS_HEADER_MOD"

<data type converts> =
"DATA_TYPE_CONVERTS"

<entry> =

"ENTRY" " (" <identifier> ")"
<init> =

"INIT" " (" <identifier> ")"
<term> =

"TERM" " (" <identifier> ")"

<external symbol> =
"EXTERNAL_SYMBOL" "{" <identifier> "}"

<internal symbol> =
"INTERNAL_SYMBOL" "{" <identifier> "}"

<group>=
"GROUP" <address modifiers> ":"
"{" (<section spec> )* "}" ["=" <fill shortnumber> ]

[ "> " <mem area symbolic name> ]

<hexadigit> =
'O'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9'|
'A'|'B'|‘C‘|‘D‘|'E'|'a'|'b'|'c'|'d'|'e'

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 99



y
A

Linker
Linker Command File Syntax

<digit> =
'O'|'1'|‘2‘|‘3‘|'4'|'5'|'6'|'7'|'8'|'9'

<hexadecimal number> =
"0 ("x"|"X") (<hexadigit> )+

<decimal number> =
(<digit> )+

<number> =
<hexadecimal number> | <decimal number>

<binary op> =

N R KPR T ==' | =t | st os=r] o<t <=t
s | S S I I N N
<unary op> =
P T IR
<postfix unary op> =
P .
<symbol declaration> =
( <identifier> "=" <address spec> ) |
( "PROVIDE" " ("<identifier> "=" <address spec> ")" )
<identifier> =
(<letter> |"_") (<letter> |"_"|<digit> )*
<operand> =
<number> |
("ADDR" " (" <output section spec> | <address expr> ")" ) |
("ROMADDR" " ("<output section spec> | <address expr> ")" |
("SIZEOF" " ("<output section spec> | <address expr> ")" )

<address spec> =
<number> |
non
<operand> |
(<address spec> <binary op> <operand> ) |
(<unary op> <address spec> ) |
(<address spec> <postfix unary op> )

<memory spec> =

<mem area symbolic name> ":" "origin" |
n org n |
"o" =" <pnumber> " , noon length n |

100 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Linker
Linker Command File Syntax

"len" |
nln on=v cnumber>

<memory gaps>=
"." "=" <address spec>

<memory>=
n MEMORY " n B n n { n <memory SpeC> + n } n

<gsections>=
"SECTIONS" " { n
(<section spec> | <memory gaps> | <symbol declaration> | <group> )*
n } n

<section spec> =
<output section name>
[ (" <input type> Yy

[<address modifiers> ] ":" "{"
[( <input section spec> )*] "}
[= £fill shortnumber] [ > mem area symbolic name ]

<output section name> =
<section name>

<input type> =
[ "TEXT" | "DATA" | "BSS" | "CONST" | "MIXED" "ZTEXT" | "ZCODE" ]

<address modifiers> =

["BIND" " ("<address spec> ")" ]
["ALIGN" " ("<address spec> ")" | "NEXT" " ("<address spec> ")"]
[ ("LOAD" | "INTERNAL_LOAD") " ("<address spec> ")"

<input section spec> =
(<file name> |
<file name> " ("<section name> ")" |
"* ("<section name> mym |
<symbol declaration> |
<data write> )+

<data write> =
("LONG" | "SHORT" | "BYTE" ) " (" <number> ")"

<fill shortnumber> =
<number>

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 101



y
A

Linker

Commands, Directives, and Keywords

Commands, Directives, and Keywords

The rest of this chapter consists of explanations of all valid LCF functions, keywords,
directives, and commands, in alphabetic order.

Table 12.2 LCF Functions, Keywords, Directives, and Commands

. (location counter) ADDR ALIGN
ALIGNALL EXCEPTION EXPORTSTRTAB
EXPORTSYMTAB FORCE ACTIVE IMPORTSTRTAB
IMPORTSYMTAB INCLUDE KEEP SECTION
MEMORY OBJECT REF INCLUDE
SECTIONS SIZEOF SIZEOF _ROM
WRITEB WRITEH WRITEW
WRITESOCOMMENT ZERO_FILL UNINITIALIZED

. (location counter)

Denotes the current output location.

Remarks

The period always refers to a location in a sections segment, so is valid only in a
sections-section definition. Within such a definition, '."'

symbol is valid.

Assigning a new, greater value to '." causes the location counter to advance. But it
is not possible to decrease the location-counter value, so it is not possible to assign
anew, lesser value to '."' You can use this effect to create empty space in an output

section, as the Listing 12.12 example does.

Example

The code of Listing 12.12 moves the location counter to a position 0x10000 bytes

past the symbol __start.

Listing 12.12 Moving the Location Counter

may appear anywhere a

. .data

102 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition




Linker
Commands, Directives, and Keywords

* . (data)
*. (bss)
*. (COMMON)
__start = .;
= _ start + 0x10000;
_end = .;
} > DATA

ADDR

Returns the address of the named section or memory segment.

ADDR (sectionName | segmentName)

Parameters
sectionName

Identifier for a file section.
segmentName

Identifier for a memory segment

Example

The code of Listing 12.13 uses the ADDR function to assign the address of ROOT to
the symbol __rootbasecode .

Listing 12.13 ADDR() Function

MEMORY {
ROOT (RWX) : ORIGIN = 0x80000400, LENGTH = O

}

SECTIONS{
.code
{
_ _rootbasecode = ADDR (ROOT) ;
* . (text) ;
} > ROOT

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 103



y
A

Linker
Commands, Directives, and Keywords

ALIGN
Returns the location-counter value, aligned on a specified boundary.
ALIGN (alignValue)
Parameter
alignValue
Alignment-boundary specifier; must be a power of two.
Remarks
The ALIGN function does not update the location counter; it only performs
arithmetic. Updating the location counter requires an assignment such as:
= ALIGN(0x10); #update location counter to
l16-byte alignment
ALIGNALL
Forces minimum alignment for all objects in the current segment to the specified value.
ALIGNALL (alignVvalue) ;
Parameter
alignValue

Alignment-value specifier; must be a power of two.

Remarks

ALIGNALL is the command version of the ALIGN function. It updates the location
counter as each object is written to the output.

Example
Listing 12.14 is an example use for ALIGNALL () command.

Listing 12.14 ALIGNALL Example

.code
{

ALIGNALL(16); // Align code on 1l6-byte boundary
* (.init)

104 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Linker
Commands, Directives, and Keywords

* (.text)
ALIGNALL (64); //align data on 64-byte boundary
* (.rodata)
} > .text
EXCEPTION
Creates the exception table index in the output file.
EXCEPTION
Remarks

Only C++ code requires exception tables. To create an exception table, add the
EXCEPTION command, with symbols __exception_table_start__ and
__exception_table_end__, to the end of your code section segment, just as
Listing 12.15 shows. (At runtime, the system knows the values of the two
symbols.)

Example
Listing 12.15 shows the code for creating an exception table.

Listing 12.15 Creating an Exception Table

__exception_table_start__ = .;
EXCEPTION
_ _exception_table_end_ = .;

EXPORTSTRTAB

Creates a string table from the names of exported symbols.

EXPORTSTRTAB

Remarks

Table 12.3 shows the structure of the export string table. As with an ELF string
table, the system zero-terminates the library and symbol names.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 105



'
A

Linker
Commands, Directives, and Keywords

Table 12.3 Export String Table Structure

0x00 1 byte
library name varies
symbol1 name varies
symbol2 name varies
Example

Listing 12.16 shows the code for creating an export string table.

Listing 12.16 Creating an Export String Table

.expstr:

{
EXPORTSTRTAB
} > EXPSTR

EXPORTSYMTAB

Creates a jump table of the exported symbols.

EXPORTSYMTAB

Remarks

Table 12.4 shows the structure of the export symbol table. The start of the export
symbol table must be aligned on at least a four-byte boundary.

Table 12.4 Export Symbol Table Structure

Size (in bytes) of export table 4 bytes
Index to library name in export string table 4 bytes
Index to symbol1 name in export string table 4 bytes
Address of symbol1 4 bytes
A5 value for symbol1 4 bytes

106 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition




Linker
Commands, Directives, and Keywords

Table 12.4 Export Symbol Table Structure (continued)

Index to symbol2 name in export string table 4 bytes

Address of symbolf2 4 bytes

A5 value for symbol2 4 bytes
Example

Listing 12.17 shows the code for creating an export symbol table.

Listing 12.17 Creating an Export Symbol Table

.exXpsym:

{
EXPORTSYMTAB
} > EXPSYM

FORCE_ACTIVE

Starts an optional LCF closure segment that specifies symbols the linker should not
deadstrip.

FORCE_ACTIVE{ symbol[, symbol] }

Parameter
symbol
Any defined symbol.

IMPORTSTRTAB

Creates a string table from the names of imported symbols.

IMPORTSTRTAB

Remarks

Table 12.5 shows the structure of the import string table. As with an ELF string
table, the system zero-terminates the library and symbol names.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 107



'
A

Linker
Commands, Directives, and Keywords

Table 12.5 Import String Table Structure

0x00 1 byte
library name varies
symbol1 name varies
symbol2 name varies
Example

Listing 12.18 shows the code for creating an import string table.

Listing 12.18 Creating an Import String Table

.impstr:

{
IMPORTSTRTAB

} > IMPSTR

IMPORTSYMTAB

Creates a jump table of the imported symbols.
IMPORTSYMTAB

Remarks

Table 12.6 shows the structure of the import symbol table. The start of the import
symbol table must be aligned on at least a four-byte boundary.

Table 12.6 Import Symbol Table Structure

Size (in bytes) of import table 4 bytes
Index to library1 name in import string table 4 bytes
Number of entries in library1 4 bytes
Index to symbol1 name in import string table 4 bytes
Address of symbol1 vector in export string table 4 bytes
Index to symbol2 name in import string table 4 bytes

108 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition




Linker
Commands, Directives, and Keywords

Table 12.6 Import Symbol Table Structure (continued)

Address of symbol2 vector in export string table 4 bytes

Index to library2 name in import string table 4 bytes

Number of entries in library2 4 bytes
Example

Listing 12.19 shows the code for creating an import symbol table.

Listing 12.19 Creating an Import Symbol Table

.exXpsym:

{
IMPORTSYMTAB
} > EXPSYM

INCLUDE

Include a specified binary file in the output file.

INCLUDE filename

Parameter
filename

Name of a binary file in the project. The File Mappings target settings panel must
specity resource file for all files that have the same extension as this file.

KEEP_SECTION

Starts an optional LCF closure segment that specifies sections the linker should not
deadstrip.

KEEP_SECTION{ sectionTypel, sectionType] }

Parameter
sectionType

Identifier for any user-defined or predefined section.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 109



y
A

Linker

Commands, Directives, and Keywords

MEMORY

Starts the LCF memory segment, which defines segments of target memory.

MEMORY { memory_spec|[, memory_spec] }

Parameters
memory._spec

segmentName (accessFlags) : ORIGIN = address,
LENGTH = length [> fileNamel

segmentName

Name for a new segment of target memory. Consists of alphanumeric characters;
can include the underscore character.

accessFlags
ELF-access permission flags — R = read, W = write, or X = execute.
address

A memory address, such as 0x80000400, or an AFTER command. The format of
the AFTER command is AFTER (name[, name]); this command specifies
placement of the new memory segment at the end of the named segments.

length

Size of the new memory segment: a value greater than zero. Optionally, the value
zero for autolength, in which the linker allocates space for all the data and code of
the segment. (Autolength cannot increase the amount of target memory, so the
feature can lead to overflow.)

fileName

Optional, binary-file destination. The linker writes the segment to this binary file
on disk, instead of to an ELF program header. The linker puts this binary file in the
same folder as the ELF output file. This option has two variants:

e > fileName: writes the segment to a new binary file.

e >> fileName: appends the segment to an existing binary file.

Remarks

The LCF contains only one MEMORY directive, but this directive can define as
many memory segments as you wish.

For each memory segment, the ORIGIN keyword introduces the starting address,
and the LENGTH keyword introduces the length value.

110

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Linker
Commands, Directives, and Keywords

There is no overflow checking for the autolength feature. To prevent overflow, you
should use the AFTER keyword to specify the segment’s starting address.

If an AFTER keyword has multiple parameter values, the linker uses the highest
memory address.

Example
Listing 12.20 is an example use of the MEMORY directive.

Listing 12.20 MEMORY Directive Example

MEMORY {
TEXT (RX) : ORIGIN = 0x00003000, LENGTH = 0
DATA (RW) :  ORIGIN = AFTER(TEXT), LENGTH = 0
}

OBJECT

Sections-segment keyword that specifies a function. Multiple OBJECT keywords control
the order of functions in the output file.

OBJECT (function, sourcefile.c)

Parameters
function

Name of a function.
sourcefile.c

Name of the C file that contains the function.

Remarks

If an OBJECT keyword tells the linker to write an object to the output file, the
linker does not write the same object again, in response to either the GROUP
keyword or the '*' wildcard character.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 111



y
A

Linker

Commands, Directives, and Keywords

REF_INCLUDE

Starts an optional LCF closure segment that specifies sections the linker should not
deadstrip, if program code references the files that contain these sections.

REF_INCLUDE{ sectionTypel, sectionTypel] }

Parameter
sectionType

Identifier for any user-defined or predefined section.

Remarks

Useful if you want to include version information from your source file
components.

SECTIONS

Starts the LCF sections segment, which defines the contents of target-memory sections.
Also defines global symbols to be used in the output file.

SECTIONS { section_spec[, section_spec] }

Parameters
section_spec

sectionName : [AT (loadAddress)] {contents}
> segmentName

sectionName
Name for the output section, such as mysection. Must start with a period.
AT (loadAddress)

Optional specifier for the load address of the section. The default value is the
relocation address.

contents

Statements that assign a value to a symbol or specify section placement, including
input sections.

segmentName

Predefined memory-segment destination for the contents of the section. The two
variants are:

112

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Linker
Commands, Directives, and Keywords

* > segmentName: puts section contents at the beginning of memory segment
segmentName.

* >> segmentName: appends section contents to the end of memory segment
segmentName.

Example

Listing 12.21 is an example sections-segment definition.

Listing 12.21 SECTIONS Directive Example

SECTIONS {
.text @ {
_textSegmentStart = .;
alpha.c (.text)
= ALIGN (0x10);
beta.c (.text)
_textSegmentEnd = .;
}
.data : { *(.data) }
.bss { *(.bss)
* (COMMON)
}
}
SIZEOF

Returns the size (in bytes) of the specified segment or section.

SIZEOF (segmentName | sectionName)

Parameters
segmentName

Name of a segment; must start with a period.
sectionName

Name of a section; must start with a period.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 113



y
A

Linker

Commands, Directives, and Keywords

SIZEOF_ROM

Returns the size (in bytes) that a segment occupies in ROM.

SIZEOF_ROM (segmentName)

Parameter
segmentName

Name of a ROM segment; must start with a period.

Remarks

Always returns the value O until the ROM is built. Accordingly, you should use
SIZEOF_ROM only within an expression inside a WRITEB, WRITEH, WRITEW, or AT
function.

Furthermore, you need STZEOF_ROM only if you use the COMPRESS option on the
memory segment. Without compression, there is no difference between the return values
of SIZEOF_ROM and SIZEOF.

WRITEB

Inserts a byte of data at the current address of a section.

WRITEB (expression);

Parameter
expression

Any expression that returns a value 0x00 to 0XFF.

WRITEH

Inserts a halfword of data at the current address of a section.

WRITEH (expression);

Parameter
expression

Any expression that returns a value 0x0000 to 0XFFFF

114

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Linker
Commands, Directives, and Keywords

WRITEW

Inserts a word of data at the current address of a section.

WRITEW (expression);

Parameter
expression

Any expression that returns a value 0x00000000 to OXFFFFFFFF.

WRITESOCOMMENT

Inserts an SO comment record into an S-record file.

WRITESOCOMMENT "comment"

Parameter
comment

Comment text: a string of alphanumerical characters 0-9, A-Z, and a-z, plus
space, underscore, and dash characters. Double quotes must enclose the comment
string. (If you omit the closing double-quote character, the linker tries to put the
entire LCF into the SO comment.)

Remarks

This command, valid only in an LCF sections segment, creates an SO record of the
form:

S0aa0000bbbbbbbbbbbbbbbbdd

e aa — hexadecimal number of bytes that follow

* bb — ASCII equivalent of comment

¢ dd — the checksum

This command does not null-terminate the ASCII string.

Within a comment string, do not use these character sequences, which are reserved
for LCF comments: # /* */ //

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 115



y
A

Linker
Commands, Directives, and Keywords

Example

This example shows that multi-line SO comments are valid:
WRITESOCOMMENT "Line 1 comment

Line 2 comment"

ZERO_FILL_UNINITIALIZED

Forces the linker to put zeroed data into the binary file for uninitialized variables.

ZERO_FILL_UNINITIALIZED

Remarks

This directive must be between directives MEMORY and SECTIONS; placing it
anywhere else would be a syntax error.

Using linker configuration files and the define_section pragma, you can mix
uninitialized and initialized data. As the linker does not normally write
uninitialized data to the binary file, forcing explicit zeroing of uninitialized data
can help with proper placement.

Example

The code of Listing 12.22 tells the linker to write uninitialized data to the binary
files as zeros.

Listing 12.22 ZERO_FILL_UNINITIALIZED Example

MEMORY {
TEXT (RX) :ORIGIN
DATA (RW) :ORIGIN
}

0x00030000, LENGTH = 0
AFTER (TEXT), LENGTH = 0

ZERO_FILL_UNINITIALIZED

SECTIONS {

.main_application:

{
*(.text)
.=ALIGN(0x8) ;
*(.rodata)
.=ALIGN (0x8) ;

} > TEXT

116 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Linker
Commands, Directives, and Keywords

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 117



V¥ ¢
i

Linker
Commands, Directives, and Keywords

118 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



g |

13
ColdFire Linker

This chapter describes how to use the features in the CodeWarrior linker that are specific
to ColdFire software development.

You access these functions through commands in the linker command file (LCF). The
LCF syntax and structure are similar to those of a programming language; the syntax
includes keywords, directives, and expressions.

This chapter consists of these sections:

* Deadstripping
» Executable files in Projects

¢ S-Record Comments
* Deadstripping
* LCF Syntax

Deadstripping

As the linker combines object files into one executable file, it recognizes portions of
executable code that execution cannot possibly reach. Deadstripping is removing such
unreachable object code — that is, not including these portions in the executable fie. The
CodeWarrior linker performs this deadstripping on a per-function basis.

The CodeWarrior linker deadstrips unused code and data from only object files that a
CodeWarrior compiler generates. The linker never deadstrips assembler-relocatable files,
or object files from a different compiler.

Deadstripping is particularly useful for C++ programs or for linking to large, general-
purpose libraries. Libraries (archives) built with the CodeWarrior compiler only contribute
the used objects to the linked program. If a library has assembly or other compiler built
files, only those files that have at least one referenced object contribute to the linked
program. The linker always ignores unreferenced object files.

Well-constructed projects probably do not contain unused data or code. Accordingly, you
can reduce the time linking takes by disabling deadstripping:

* To disable deadstripping completely, check the Disable Deadstripping checkbox
of the ColdFire Linker panel.

» To disable deadstripping for particular symbols, enter the symbol names in the Force
Active Symbols text box of the ColdFire Linker Panel.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 119



'
A

ColdFire Linker
Executable files in Projects

* To disable deadstripping for individual sections of the linker command file, use the
KEEP_SECTION () directive. As code does not directly reference interrupt-vector
tables, a common use for this directive is disabling deadstripping for these interrupt-
vector tables. The subsection Closure Segments provides additional information
about the KEEP_SECTION () directive.

NOTE  To deadstrip files from standalone assembler, you must make each assembly
functions start its own section (for example, a new . text directive before
functions) and using an appropriate directive.

Executable files in Projects

It may be convenient to keep executable files in a project, so that you can disassemble
them later. As the linker ignores executable files, the IDE portrays them as out of date —
even after a successful build. The IDE out-of-date indicator is a check mark in the fouch
column, at the left side of the project window.

Dragging/dropping the final elf and disassembling it is a useful way to view the absolute
code.

S-Record Comments

You can insert one comment at the beginning of an S-Record file via the linker-command-
file directive WRITESOCOMMENT.

LCF Structure

Linker command files consist of three kinds of segments, which must be in this order:
* A memory segment, which begins with the MEMORY { } directive

* Optional closure segments, which begin with the FORCE_ACTIVE({},
KEEP_SECTION({ }, or REF_INCLUDE({ } directives

* A sections segment, which begins with the SECTIONS{ } directive

Memory Segment

Use the memory segment to divide available memory into segments. Listing 13.1 shows
the pattern.

120 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



ColdFire Linker
LCF Structure

Listing 13.1 Example Memory Segment

MEMORY {

segment_1 (RWX): ORIGIN = 0x80001000, LENGTH = 0x19000
segment_2 (RWX): ORIGIN = AFTER(segment_1), LENGTH = 0
segment_x (RWX): ORIGIN = memory address, LENGTH = segment size
and so on...

In this pattern:

* The (RWX) portion consists of ELF-access permission flags: R = read, W = write, or X
= execute.

* ORIGIN specifies the start address of the memory segment — either an actual
memory address or, via the AFTER keyword, the name of the preceding segment.

* LENGTH specifies the size of the memory segment. The value 0 means unlimited
length.

The segment_2 line of Listing 13.1 shows how to use the AFTER and LENGTH
commands to specify a memory segment, even though you do not know the starting
address or exact length.

Closure Segments

An important feature of the linker is deadstripping unused code and data. At times,
however, an output file should keep symbols even if there are no direct references to the
symbols. Linking for interrupt handlers, for example, usually is at special addresses,
without any explicit, control-transfer jumps.

Closure segments let you make symbols immune from deadstripping. This closure is
transitive, so that closing a symbol also forces closure on all other referenced symbols.

For example, suppose that:
* Symbol _abc references symbols _def and _ghi,
* Symbol _def references symbols _jk1 and _mno, and
* Symbol _ghi references symbol _pgr

Specifying symbol _abc in a closure segment would force closure on all six of these
symbols.

The three closure-segment directives have specific uses:

* FORCE_ACTIVE — Use this directive to make the linker include a symbol that it
otherwise would not include.

* KEEP_SECTION — Use this directive to keep a section in the link, particularly a
user-defined section.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 121



y
A

ColdFire Linker
LCF Structure

* REF_INCLUDE — Use this directive to keep a section in the link, provided that
there is a reference to the file that contains the section. This is a useful way to include
version numbers.

Listing 13.2 shows an example of each directive.

Listing 13.2 Example Closure Sections

# 1lst closure segment keeps 3 symbols in link
FORCE_ACTIVE {break handler, interrupt_handler, my_ function}

# 2nd closure segment keeps 2 sections in link
KEEP_SECTION {.interruptl, .interrupt2}

# 3rd closure segment keeps file-dependent section in link
REF_INCLUDE {.version}

Sections Segment

Use the sections segment to define the contents of memory sections, and to define any
global symbols that you want to use in your output file. Listing 13.3 shows the format of a
sections segment.

Listing 13.3 Example Sections Segment

SECTIONS ({

.section_name : #The section name, for your reference,

{ # must begin with a period.
filename.c (.text) #Put .text section from filename.c,
filename2.c (.text) #then put .text section from filename2.c,
filename.c (.data) #then put .data section from filename.c,
filename2.c (.data) #then put .data section from filename2.c,
filename.c (.bss) #then put .bss section from filename.c,

filename2.c (.bss) #then put .bss section from filenamel.c.
= ALIGN (0x10); #Align next section on 1l6-byte boundary.
} > segment_1 #Map these contents to segment_1.

.next_section_name:
{
more content descriptions
} > segment_x #End of .next_section_name definition
} #End of sections segment

122 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



ColdFire Linker
LCF Syntax

LCF Syntax

This section explains LCF commands, including practical ways to use them. Subsections
are:

e Variables, Expressions, and Integrals

¢ Arithmetic, Comment Operators

e Alignment
¢ Specifying Files and Functions

» Stack and Heap
 Static Initializers

* Exception Tables
¢ Position-Independent Code and Data
* ROM-RAM Copying

e Writing Data Directly to Memory

Variables, Expressions, and Integrals

In a linker command file, all symbol names must start with the underscore character (_).
The other characters can be letters, digits, or underscores. These valid lines for an LCF
assign values to two symbols:

_dec_num = 99999999;
_hex num_ = 0x9011276;

Use the standard assignment operator to create global symbols and assign their addresses,
according to the pattern:

_symbolicname = some_ expression;

NOTE  There must be a semicolon at the end of a symbol assignment statement.
A symbol assignment is valid only at the start of an expression, so a line such
as this is not valid:
you cannot use something like this:
_syml + _sym2 = _sym3;

When the system evaluates an expression and assigns it to a variable, the expression
receives the type value absolute or a relocatable:

* Absolute expression — the symbol contains the value that it will have in the output
file.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 123



3
4

'
A

ColdFire Linker

LCF Syntax

Relocatable expression — the value expression is a fixed offset from the base of a
section.

LCF syntax for expressions is very similar to the syntax of the C programming language:

All integer types are 1long or unsigned long.

Octal integers begin with a leading zero; other digits are 0 through 7, as these symbol
assignments show:

_octal_number = 01374522;
_octal_number2 = 032405;

Decimal integers begin with any non-zero digit; other digits are O through 9, as these
symbol assignments show:

_dec_num = 99999999;
_decimal_number = 123245;
_decvalfour = 9011276;

Hexadecimal integers begin with a zero and the letter x; other digits are O through f,
as these symbol assignments show:

_hex_number = 0x999999FF;
_firstfactorspace = 0X123245EE;
_fifthhexval = O0XFFEE;

Negative integers begin with a minus sign:

_decimal_number = -123456;

Arithmetic, Comment Operators

Use standard C arithmetic and logical operations as you define and use symbols in the
LCF. All operators are left-associative. Table 13.1 lists these operators in the order of
precedence. For additional information about these operators, refer to the C Compiler
Reference.

Table 13.1 LCF Arithmetic Operators

Precedence Operators
1 _ o~

2 1 %

3 + -

4 >> <<

124

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



ColdFire Linker
LCF Syntax

Table 13.1 LCF Arithmetic Operators (continued)

Precedence Operators

5 =I= > < <= >=
6 &

7 |

8 &&

9 I

To add comments to your file, use the pound character, C-style slash and asterisk
characters, or C++-style double-slash characters, in any of these formats:

# This is a one-line comment
/* This is a
multiline comment */

* (.text) // This is a partial-line comment

Alignment

To align data on a specific byte boundary, use the ALIGN keyword or the ALIGNALL
command. Listing 13.4 and Listing 13.5 are examples for bumping the location counter to
the next 16-byte boundary.

Listing 13.4 ALIGN Keyword Example

file.c (.text)
= ALIGN (0x10);
file.c (.data) # aligned on 16-byte boundary.

Listing 13.5 ALIGNALL Command Example

file.c (.text)

ALIGNALL (0x10); #everything past this point aligned
# on 16 byte boundary

file.c (.data)

NOTE  If one segment entry imposes an alignment requirement, that segment’s
starting address must conform to that requirement. Otherwise, there could be

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 125



3
4

y
A

ColdFire Linker
LCF Syntax

conflicting section alignment in the code the linker produces.
In general, the instructions for data alignment should be lust before the end of
the section.

Specifying Files and Functions

Defining the contents of a sections segment includes specifying the source file of each
section. The standard method is merely listing the files, as Listing 13.6 shows.

Listing 13.6 Standard Source-File Specification

SECTIONS ({
.example_section

{

main.c (.text)
file2.c (.text)
file3.c (.text)
# and so forth

For a large project, however, such a list can be very long. To shorten it, you can use the
asterisk ( * ) wild-card character, which represents the filenames of every file in your
project. The line

* (.text)
in a section definition tells the system to include the . text section from each file.

Furthermore the * wildcard does not duplicate sections already specified; you need not
replace existing lines of the code. In Listing 13.6, replacing the # and so forth
comment line with

* (.text)

would add the . text sections from all other project files, without duplicating the . text
sections from filesmain.c, file2.c,or file3.c.

Another possibility as you define a sections segment, is specifying sections from a named
group of files. To do so, use the GROUP keyword:

GROUP (fileGroupl) (.text)
GROUP (fileGroup4) (.data)

These two lines would specify including the . text sections from all £i1eGroupl files,
and the . data sections from all £i1leGroup4 files.

For precise control over function placement within a section, use the OBJECT keyword.
For example, to place functions beta and alpha before anything else in a section, your
definition could be like Listing 13.7.

126

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



ColdFire Linker

LCF Syntax
Listing 13.7 Function Placement Example
SECTIONS ({
.program_section
{
OBJECT (beta, main.c) # Function beta is lst section item
OBJECT (alpha, main.c) # Function alpha is 2nd section_item
* (.text) # Remaining_items are .text sections from all files
} > ROOT

NOTE  For C++, you must specify functions by their mangled names.

If you use the OBJECT keyword to specity a function, subsequently using * wild-card
character does not specity that function a second time.

Stack and Heap

Reserving space for the stack requires some arithmetic operations to set the symbol values
used at runtime. Listing 13.8 is a sections-segment definition code fragment that shows
this arithmetic.

Listing 13.8 Stack Setup Operations

_stack_address = _ END_BSS;
_stack_address = _stack_address & ~7; /*align top of stack by 8*/
__SP INIT = _stack address + 0x4000; /*set stack to 16KB*/

The heap requires a similar space reservation, which Listing 13.9 shows. Note that the
bottom address of the stack is the top address of the heap.

Listing 13.9 Heap Setup Operations

__SP_INIT; /* heap grows opposite stack */
0x50000; /* heap size set to 500KB */

heap_addr
heap_size

Static Initializers

You must invoke static initializers to initialize static data before the start of main (). To
do so, use the STATICINIT keyword to have the linker generate the static initializer
sections.

In your linker command file, use lines similar to these to tell the linker where to put the
table of static initializers (relative to the '.' location counter):

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 127



3
4

y
A

ColdFire Linker
LCF Syntax

sinit__ = .;
STATICINIT

The program knows the symbol sinit__ atruntime. So in startup code, you can use
corresponding lines such as these:

#ifdef _ cplusplus
/* call the c++ static initializers */
_ call_static_initializers();

#endif

Exception Tables

You need exception tables only for C++ code. To create one, add the EXCEPTION
command to the end of your code section — Listing 13.10 is an example.

The program knows the two symbols __exception_table_start__ and
__exception_table_end_  atruntime.

Listing 13.10 Creating an Exception Table

__exception_table_start__ = .;
EXCEPTION
__exception_table_end_ = .;

Position-Independent Code and Data

For position-independent code (PIC) and position-independent data (PID), your LCF must
include .picdynrel and .piddynrel sections. These sections specify where to store
the PIC and PID dynamic relocation tables.

In addition, your LCF must define these six symbols:

__ START PICTABLE _ END_PICTABLE _ PICTABLE SIZE
__ START PIDTABLE __ END PIDTABLE _ PIDTABLE SIZE

Listing 13.11 is an example definition for PIC and PID.

Listing 13.11 PIC, PID Section Definition

.pictables
{
= ALIGN(0x8) ;
__ START_PICTABLE = .;
*(.picdynrel)__ END_PICTABLE = .;
__ PICTABLE_SIZE = _ END_PICTABLE - _ START PICTABLE;

128 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



ColdFire Linker
LCF Syntax

__ START PIDTABLE = .;

* (.piddynrel)__ END_PIDTABLE = .;

_ PIDTABLE SIZE = _ END_PIDTABLE - _ START PIDTABLE;
} >> DATA

ROM-RAM Copying

In embedded programming, it is common that data or code of a program residing in ROM
gets copied into RAM at runtime.

To indicate such data or code, use the LCF to assign it two addresses:
* The memory segment specifies the intended location in RAM

* The sections segment specifies the resident location in ROM, via its AT (address)
parameter

For example, suppose that we want to copy all initialized data into RAM at runtime. At
runtime, the system loads the .main_data section containing the initialized data to
RAM address 0x80000, but until runtime, this section remains in ROM. Listing 13.12
shows part of the corresponding LCF.

Listing 13.12 Partial LCF for ROM-to-RAM Copy

# ROM location: address 0x0
# RAM location: address 0x800000
# For clarity, no alignment directives in this listing

MEMORY {

TEXT (RX) : ORIGIN = 0x0, LENGTH = 0

DATA (RW) : ORIGIN = 0x800000, LENGTH = 0
}

SECTIONS{
.main
{
*(.text)
*(.rodata)
} > TEXT

# Locate initialized data in ROM area at end of .main.

.main_data : AT( ADDR(.main) + SIZEOF(.main) )

{
*(.data)
*(.sdata)
*(.sbss)
} > DATA

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 129



3
4

y
A

ColdFire Linker
LCF Syntax

.uninitialized_data:
{

* (SCOMMON)

*(.bss)

* (COMMON)
} >> DATA

For program execution to copy the section from ROM to RAM, a copy table such as
Listing 13.13 must supply the information that the program needs at runtime. This copy

table, which the symbol __S_ romp identifies, contains a sequence of three word values
per entry:

* ROM start address
* RAM start address
* size
The last entry in this table must be all zeros: this is the reason for the three lines

WRITEW(0) ; before the table closing brace character.

Listing 13.13 LCF Copy Table for Runtime ROM Copy

# Locate ROM copy table into ROM after initialized data
_romp_at = _main_ROM + SIZEOF (.main_data) ;

.romp : AT (_romp_at)
{

__S_romp = _romp_at;

WRITEW (_main_ROM) ; #ROM start address
WRITEW (ADDR (.main_data)) ; #RAM start address
WRITEW (SIZEOF (.main_data)); #size

WRITEW(O) ;

WRITEW(O) ;

WRITEW(O) ;

}

__SP_INIT = . + 0x4000; # set stack to 16kb

_ _heap_addr = _ SP_INIT; # heap grows opposite stack direction
_ _heap_size = 0x10000; # set heap to 64kb
} # end SECTIONS segment
#

end LCF

Writing Data Directly to Memory

To write data directly to memory, use appropriate WRITEXx keywords in your LCF:

* WRITEB writes a byte

130 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



ColdFire Linker
LCF Syntax

* WRITEH writes a two-byte halfword
* WRITEW writes a four-byte word.
The system inserts the data at the section’s current address. Listing 13.14 shows an

example.

Listing 13.14 Embedding Data Directly into Output

.example_data_section :

{
WRITEB 0x48; /* 'H' */
WRITEB 0x69; /* i */
WRITEB 0x21; /* e */

To insert a complete binary file, use the INCLUDE keyword, as Listing 13.15 shows.

Listing 13.15 Embedding a Binary File into Output

_musicStart = .;
INCLUDE music.mid
_musicEnd = .;

} > DATA

You must include the binary file in your IDE project. Additionally, the File Mappings
target settings panel must specify resource file for all files that have the same extension as
the binary file. Figure 13.1 shows how to make this type designation.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 131



'
A

ColdFire Linker
LCF Syntax

Figure 13.1 Marking a Binary File Type as a Resource File

H Filz Mappings
E File Type | Extenzion “:5?‘ |‘§? |® | Compiler
TEXT .c [LE C++
TEXT o+ Metrowerks CAC++
TEXT .CC Metrowerks CAC++
TEXT .cp Metroveerks CAC++
TEXT .Cpp Metrowerks CAC++
TEXT h *  Metrowerks C/C++
TEXT g Az WP MEBK ELF
TEXT .pch . Metrowerks C/C++
TEXT pch++ . tetrowerks CAC++ ll
— Mapping Infa
File: Type: ITE><T Chooge... | E stension: I_c
Flags: IT Compiler: [
Edit Langua: Launchable Add | Change | Remave |
Precompiled
Factory Seftr  Ignored by Make Import Panel... I Export Panel... I

132 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



g |

14
C Compiler

This chapter describes the CodeWarrior implementation of the C programming language:
» Extensions to Standard C
* (99 Extensions
* GCC Extensions

Extensions to Standard C

The CodeWarrior C compiler adds extra features to the C programming language. These
extensions make it easier to port source code from other compilers and offer some
programming conveniences. Note that some of these extensions do not conform to the
ISO/IEC 9899-199 C standard (“C89).

» Controlling Standard C Conformance
e C++-style Comments

* Unnamed Arguments

» Extensions to the Preprocessor

* Non-Standard Keywords

Controlling Standard C Conformance

The compiler offers settings that verify how closely your source code conforms to the
ISO/IEC 9899-1990 C standard (“C89”). Enable these settings to check for possible errors
or improve source code portability.

Some source code is too difficult or time-consuming to change so that it conforms to the
ISO/IEC standard. In this case, disable some or all of these settings.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 133



'
A

C Compiler
Extensions to Standard C

Table 14.5 shows how to control the compiler’s features for ISO conformance.

Table 14.1 Controlling conformance to the ISO/IEC 9899-1990 C language

To control this option from use this setting
here...
CodeWarrior IDE ANSI Strict and ANSI Keywords Only in

the C/C++ Language Settings panel

source code #pragma ANSI_strict

#pragma only_ std_keywords

command line -ansi

C++-style Comments

When ANSI strictness is off, the C compiler allows C++-style comments. Listing 14.1
shows an example.

Listing 14.1 C++ Comments

b; // This is a C++-style comment.
d; /* This is a regular C-style comment. */

Unnamed Arguments

When ANSI strictness is off, the C compiler allows unnamed arguments in function
definitions. Listing 14.2 shows an example.

Listing 14.2 Unnamed Arguments

void f(int ) {} /* OK if ANSI Strict is disabled. */
void f(int 1) {} /* Always OK. */

Extensions to the Preprocessor

When ANSI strictness is off, the C compiler allows a # to prefix an item that is not a
macro argument. It also allows an identifier after an #endif directive. Listing 14.3 and
Listing 14.4 show examples.

134 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition




C Compiler
C99 Extensions

Listing 14.3 Using # in Macro Definitions

#define addl (x) #x #1
/* OK, 1f ANSI_strict is disabled,
but probably not what you wanted:
addl (abc) creates "abc"#1
*/

#define add2 (x) #x "2"
/* Always OK: add2 (abc) creates "abc2". */

Listing 14.4 Identifiers After #endif

#ifdef _ MWERKS_
/. L%/

#endif _ MWERKS__ /* OK if ANSI_strict is disabled.

#ifdef _ MWERKS_
/* L. L %/
#endif /*_ MWERKS__ */ /* Always OK. */

*/

Non-Standard Keywords

When the ANSI keywords setting is off, the C compiler recognizes non-standard

keywords that extend the language.

C99 Extensions

The CodeWarrior C compiler accepts most of the enhancements to the C language
specified by the ISO/IEC 9899-1999 standard, commonly referred to as “C99.”

» Controlling C99 Extensions
* Trailing Commas in Enumerations
¢ Compound Literal Values

» Designated Initializers

* Predefined Symbol __func

* Implicit Return From main()

* Non-constant Static Data Initialization

* Variable Argument Macros
e Extra C99 Keywords

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition

135



3
4

'
A

C Compiler
C99 Extensions

e C++-Style Comments
e C++-Style Digraphs

e Empty Arrays in Structures

¢ Hexadecimal Floating-Point Constants

e Variable-Length Arrays

¢ Unsuffixed Decimal Literal Values

Controlling C99 Extensions

Table 14.2 shows how to control C99 extensions.

Table 14.2 Controlling C99 extensions to the C language

To control this option from
here...

use this setting

CodeWarrior IDE

Enable C99 Extensions in the C/C++
Language Settings panel

source code

#pragma c99

command line

-c99

Trailing Commas in Enumerations

When the C99 extensions setting is on, the compiler allows a comma after the final item in
a list of enumerations. Listing 14.5 shows an example.

Listing 14.5 Trailing comma in enumeration example

enum

{
violet,
blue
green,
vellow,
orange,

red, /* OK: accepted if C99 extensions setting is on. */

136 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition




C Compiler
C99 Extensions

Compound Literal Values

When the C99 extensions setting is on, the compiler allows literal values of structures and
arrays. Listing 14.6 shows an example.

Listing 14.6 Example of a Compound Literal

#pragma c99 on
struct my_struct {

int 1i;
char c[2];
} my_var;
my_var = ((struct my_struct) {x + vy, 'a', 0});

Designated Initializers

When the C99 extensions setting is on, the compiler allows an extended syntax for
specifying which structure or array members to initialize. Listing 14.7 shows an example.

Listing 14.7 Example of Designated Initializers

#pragma c99 on

struct X {
int a,b,c;
}x={ .c =3, .a=1, 2 };

union U {
char a;
long b;
}u={ .b= 1234567 };

int arrl([6] {1,2,
int arr2[6] {1, [1 ... 4

}
3,4 }; /* GCC only, not part of C99. */

Predefined Symbol _ func__

When the C99 extensions setting is on, the compiler offers the __func___ predefined
variable. Listing 14.8 shows an example.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 137



'
A

C Compiler
C99 Extensions

Listing 14.8 Predefined symbol _ func__

void abc (void)
{

puts(__func__); /* Output: "abc" */
}

Implicit Return From main()

When the C99 extensions setting is on, the compiler inserts this statement at the end of a
program’s main() function if the function does not return a value:

return 0;

Non-constant Static Data Initialization

When the C99 extensions setting is on, the compiler allows static variables to be
initialized with non-constant expressions.

Variable Argument Macros

When the C99 extensions setting is on, the compiler allows macros to have a variable
number of arguments. Listing 14.9 shows an example.

Listing 14.9 Variable argument macros example

#define MYLOG(...) fprintf(myfile,
#define MYVERSION 1
#define MYNAME "SockSorter"

VA_ARGS__)

int main(void)

{
MYLOG ("%d %$s\n", MYVERSION, MYNAME) ;
/* Expands to: fprintf (myfile, "%d %s\n", 1, "SockSorter"); */
return O;

138 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



C Compiler
C99 Extensions

Extra C99 Keywords

When the C99 extensions setting is on, the compiler recognizes extra keywords and the
language features they represent. Table 14.3 lists these keywords.

Table 14.3 Extra C99 Keywords

This keyword or combination of represents this language feature
keywords...

_Bool boolean data type

long long integer data type

restrict type qualifier

inline function qualifier

_Complex complex number data type
_Imaginary imaginary number data type

C++-Style Comments

When the C99 extensions setting is on, the compiler allows C++-style comments as well
as regular C comments. A C++-style comment begins with

/7

and continue until the end of a source code line.

A C-style comment begins with
/ *

ends with

*/

and may span more than one line.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition

139



'
A

C Compiler
C99 Extensions

C++-Style Digraphs

When the C99 extensions setting is on, the compiler recognizes C++-style two-character

combinations that represent single-character punctuation. Table 14.4 lists these digraphs.
Table 14.4 C++-Style Digraphs

This digraph is equivalent to this character
<: [

1> ]

<% {

%> }

% #

%:9 ##

Empty Arrays in Structures

When the C99 extensions setting is on, the compiler allows an empty array to be the last
member in a structure definition. Listing 14.10 shows an example.

Listing 14.10 Example of an Empty Array as the Last struct Member

struct {

int r;

char arrl[];
} os;

Hexadecimal Floating-Point Constants

Precise representations of constants specified in hexadecimal notation to ensure an
accurate constant is generated across compilers and on different hosts. The compiler
generates a warning message when the mantissa is more precise than the host floating
point format. The compiler generates an error message if the exponent is too wide for the
host float format.

Examples:
0x2f.3a2p3
OxEplf
0x1.8p0L

140 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition




C Compiler
C99 Extensions

The standard library supports printing values of type £1oat in this format using the “%a”
and “%A” specifiers.

Variable-Length Arrays

Variable length arrays are supported within local or function prototype scope, as required
by the ISO/IEC 9899-1999 (“C99”) standard. Listing 14.11 shows an example.

Listing 14.11 Example of C99 Variable Length Array usage

#pragma c99 on

void f(int n) {
int arr[n];
/* L. */

While the example shown in Listing 14.12 generates an error message.

Listing 14.12 Bad Example of C99 Variable Length Array usage

#pragma c99 on

int n;

int arr[n];

// ERROR: variable length array

// types can only be used in local or
// function prototype scope.

A variable length array cannot be used in a function template’s prototype scope or in a
local template typedef, as shown in Listing 14.13.

Listing 14.13 Bad Example of C99 usage in Function Prototype

#pragma c99 on

template<typename T> int f(int n, int A[n][nl);

{

}s

// ERROR: variable length arrays

// cannot be used in function template prototypes
// or local template variables

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 141



y
A

C Compiler
GCC Extensions

Unsuffixed Decimal Literal Values

Listing 14.14 shows an example of specifying decimal literal values without a suffix to
specify the literal’s type.

Listing 14.14 Examples of C99 Unsuffixed Constants

#pragma c99 on // Note: ULONG_MAX == 4294967295
sizeof (4294967295) == sizeof(long long)
sizeof (4294967295u) == sizeof (unsigned long)

#pragma c99 off

sizeof (4294967295) == sizeof (unsigned long)
sizeof (4294967295u) == sizeof (unsigned long)

GCC Extensions

The CodeWarrior compiler accepts many of the extensions to the C language that the GCC
(Gnu Compiler Collection) tools allow. Source code that uses these extensions does not
conform to the ISO/IEC 9899-1990 C (“C89”) standard.

* Controlling GCC Extensions

* Initializing Automatic Arrays and Structures
¢ The sizeof() Operator

» Statements in Expressions

* Redefining Macros
¢ The typeof() Operator

¢ Void and Function Pointer Arithmetic

e The  builtin_constant_p() Operator

¢ Forward Declarations of Static Arrays

¢ Omitted Operands in Conditional Expressions

e The  builtin_expect() Operator

¢ Void Return Statements

* Minimum and Maximum Operators

142 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



C Compiler

GCC Extensions
Controlling GCC Extensions
Table 14.5 shows how to turn GCC extensions on or off.
Table 14.5 Controlling GCC extensions to the C language
To control this option from use this setting
here...
CodeWarrior IDE Enable GCC Extensions in the C/C++
Language Settings panel
source code #pragma gcc_extensions
command line -gcc_extensions

Initializing Automatic Arrays and
Structures

When the GCC extensions setting is on, array and structure variables that are local to a
function and have the automatic storage class may be initialized with values that do not
need to be constant. Listing 14.15 shows an example.

Listing 14.15 Initializing arrays and structures with non-constant values

void f(int 1)

{

int j = i * 10; /* Always OK. */

/* These initializations are only accepted when GCC extensions
* are on. */

struct { int x, y; } s = {1+ 1, i+ 2 };

int af[2] = { 1, 1 + 2 };

The sizeof() Operator

When the GCC extensions setting is on, the sizeof () operator computes the size of
function and void types. In both cases, the sizeof () operator evaluates to 1. The ISO/
IEC 9899-1990 C Standard (““C89”) does not specify the size of the void type and
functions. Listing 14.16 shows an example.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 143



y
A

C Compiler
GCC Extensions

Listing 14.16 Using the sizeof() operator with void and function types

int f(int a)

{
return a * 10;

}

void g(void)

{
size_t voidsize = sizeof(void); /* voidsize contains 1 */
size_t funcsize = sizeof(f); /* funcsize contains 1 */

}

Statements in Expressions

When the GCC extensions setting is on, expressions in function bodies may contain
statements and definitions. To use a statement or declaration in an expression, enclose it
within braces. The last item in the brace-enclosed expression gives the expression its
value. Listing 14.17 shows an example.

Listing 14.17 Using statements and definitions in expressions

#define POW2 (n) ({ int i,r; for(r=1l,i=n; 1i>0; --1i) r *= 2; r;})

int main()
{

return POW2 (4) ;
}

Redefining Macros

When the GCC extensions setting is on, macros may be redefined with the #define
directive without first undefining them with the #undef directive. Listing 14.18 shows
an example.

Listing 14.18 Redefining a macro without undefining first

#define SOCK_MAXCOLOR 100
#undef SOCK_MAXCOLOR
#define SOCK_MAXCOLOR 200 /* OK: this macro is previously undefined. */

#define SOCK_MAXCOLOR 300

144 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



C Compiler
GCC Extensions

The typeof() Operator

When the GCC extensions setting is on, the compiler recognizes the typeof () operator.
This compile-time operator returns the type of an expression. You may use the value
returned by this operator in any statement or expression where the compiler expects you to
specify a type. The compiler evaluates this operator at compile time. The

___typeof ()__ operator is the same as this operator. Listing 14.19 shows an example.

Listing 14.19 Using the typeof() operator

int *ip;

/* Variables iptr and jptr have the same type. */
typeof (ip) iptr;
int *jptr;

/* Variables i and j have the same type. */
typeof (*ip) 1i;
int j;

Void and Function Pointer Arithmetic

The ISO/IEC 9899-1990 C Standard does not accept arithmetic expressions that use
pointers to void or functions. With GCC extensions on, the compiler accepts arithmetic
manipulation of pointers to void and functions.

The __builtin_constant_p() Operator

When the GCC extensions setting is on, the compiler recognizes the
__builtin_constant_p () operator. This compile-time operator takes a single
argument and returns 1 if the argument is a constant expression or 0 if it is not.

Forward Declarations of Static Arrays

When the GCC extensions setting is on, the compiler will not issue an error when you
declare a static array without specifying the number of elements in the array if you later
declare the array completely. Listing 14.20 shows an example.

Listing 14.20 Forward declaration of an empty array

static int al[]; /* Allowed only when GCC extensions are on. */
/* L. x/
static int a[l1l0]; /* Complete declaration. */

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 145



y
A

C Compiler
GCC Extensions

Omitted Operands in Conditional
Expressions

When the GCC extensions setting is on, you may skip the second expression in a

conditional expression. The default value for this expression is the first expression. Listing
14.21 shows an example.

Listing 14.21 Using the shorter form of the conditional expression

void f(int i, int 3J)

{
int a =1 ? 1 : J;
int b =1 ?: j; /* Equivalent to int b =1i 2?2 1 : j; */
/* Variables a and b are both assigned the same value. */
}

The __builtin_expect() Operator

When the GCC extensions setting is on, the compiler recognizes the
__builtin_expect () operator. Use this compile-time operator in an i f or while
statement to specify to the compiler how to generate instructions for branch prediction.

This compile-time operator takes two arguments:
* the first argument must be an integral expression
* the second argument must be a literal value
The second argument is the most likely result of the first argument. Listing 14.22 shows an

example.

Listing 14.22 Example for __builtin_expect() operator

void search(int *array, int size, int key)

{
int i;
for (i = 0; 1 < size; ++1)
{
/* We expect to find the key rarely. */
if (__builtin_expect (array[i] == key, 0))
{
rescue (i) ;
}
}
}

146 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



C Compiler
GCC Extensions

Void Return Statements

When the GCC extensions setting is on, the compiler allows you to place expressions of
type voidin a return statement. Listing 14.23 shows an example.

Listing 14.23 Returning void

void f(int a)
{

/* L. K/

return; /* Always OK. */
}

void g(int b)
{
/* L. K/
return f(b); /* Allowed when GCC extensions are on. */

Minimum and Maximum Operators

The compiler recognizes built-in minimum (< ?) and maximum (>?) operators.

Listing 14.24 Example of minimum and maximum operators

int a = 1 <? 2; // 1 is assigned to a.
int b =1 >? 2; // 2 is assigned to b.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 147



V¥ ¢

A4\
C Compiler
GCC Extensions
148

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



g |

15

C++ Compiler

This chapter describes the CodeWarrior implementation of the C++ programming
language:

¢ C++ Compiler Performance

» Extensions to Standard C++

* Implementation-Defined Behavior
* GCC Extensions

* Embedded C++

C++ Compiler Performance

Some options affect the C++ compiler’s performance. This section describes how to
improve compile times when translating C++ source code:

¢ Precompiling C++ Source Code

» Using the Instance Manager

Precompiling C++ Source Code

The CodeWarrior C++ compiler has these requirements for precompiling source code:

* C source code may not include precompiled C++ header files and C++ source code
may not include precompiled C header files.

* C++ source code can contain inline functions
* C++ source code may contain constant variable declarations

* A C++ source code file that will be automatically precompiled must have a . pch++
file name extension.

Using the Instance Manager

The instance manager reduces compile time by generating a single instance of some kinds
of functions only once:

 template functions

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 149



'
A

C++ Compiler
Extensions to Standard C++

* functions declared with the inline qualifier that the compiler was not able to insert
in line
The instance manager reduces the size of object code and debug information but does not

affect the linker’s output file size, though, since the compiler is effectively doing the same
task as the linker in this mode.

Table 15.1 shows how to control the C++ instance manager.

Table 15.1 Controlling the C++ instance manager

To control this option from use this setting
here...
CodeWarrior IDE Use Instance Manager in the C/C++

Language Settings panel

source code #pragma instmgr_file

command line -instmgr

Extensions to Standard C++

The CodeWarrior C++ compiler has features and capabilities that are not described in the
ISO/IEC 14882-1998 C++ standard:

. PRETTY_ FUNCTION___Identifier

 Standard and Non-Standard Template Parsing

__PRETTY FUNCTION Identifier

The _ PRETTY_FUNCTION___ predefined identifier represents the qualified
(unmangled) C++ name of the function being compiled.

Standard and Non-Standard Template
Parsing

CodeWarrior C++ has options to specify how strictly template declarations and
instantiations are translated. When using its strict template parser, the compiler expects the
typename and template keywords to qualify names, preventing the same name in
different scopes or overloaded declarations from being inadvertently used. When using its
regular template parser, the compiler makes guesses about names in templates, but may
guess incorrectly about which name to use.

150

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition




C++ Compiler
Extensions to Standard C++

A qualified name that refers to a type and that depends on a template parameter must begin
with typename (ISO/IEC 14882-1998 C++, §14.6). Listing 15.1 shows an example.

Listing 15.1 Using the typename keyword

template <typename T> void £ ()

{
T::name *ptr; // ERROR: an attempt to multiply T::name by ptr
typename T::name *ptr; // OK

}
The compiler requires the template keyword at the end of “.” and “—>" operators,
and for qualified identifiers that depend on a template parameter. Listing 15.2 shows an
example.

Listing 15.2 Using the template keyword

template <typename T> void f(T* ptr)

{
ptr->f<int>(); // ERROR: f is less than int
ptr->template f<int>(); // OK

}

Names referred to inside a template declaration that are not dependent on the template
declaration (that do not rely on template arguments) must be declared before the
template’s declaration. These names are bound to the template declaration at the point
where the template is defined. Bindings are not affected by definitions that are in scope at
the point of instantiation. Listing 15.3 shows an example.

Listing 15.3 Binding non-dependent identifiers

void f (char);
template <typename T> void tmpl_func/()

f(1); // Uses f(char); f(int), below, is not defined yet.
g(); // ERROR: g() is not defined yet.

void g();
void f (int);

Names of template arguments that are dependent in base classes must be explicitly
qualified (ISO/IEC 14882-1998 C++, §14.6.2). See Listing 15.4.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 151



y
A

C++ Compiler
Extensions to Standard C++

Listing 15.4 Qualifying template arguments in base classes

template <typename T> struct Base
{

void f();
}

template <typename T> struct Derive: Base<T>

{
void g()
{
f(); // ERROR: Base<T>::f() is not visible.
Base<T>::f(); // OK

When a template contains a function call in which at least one of the function’s arguments
is type-dependent, the compiler uses the name of the function in the context of the
template definition (ISO/IEC 14882-1998 C++, §14.6.2.2) and the context of its
instantiation (ISO/IEC 14882-1998 C++, §14.6.4.2). Listing 15.5 shows an example.

Listing 15.5 Function call with type-dependent argument

void f (char);

template <typename T> void type_dep_func()

{
f(1); // Uses f(char), above; f(int) is not declared yet.
£(T()); // £() called with a type-dependent argument.

}

void f (int);
struct A{};
void f(Aa);

int main()

{

type_dep_func<int>(); // Calls f(char) twice.
type_dep_func<A>(); // Calls f(char) and f(A4);
return 0;

}

The compiler only uses external names to look up type-dependent arguments in function
calls. See Listing 15.6.

152 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



C++ Compiler
Implementation-Defined Behavior

Listing 15.6 Function call with type-dependent argument and external names

static void f(int); // f£() is internal.

template <typename T> void type_dep_fun_ext ()
{

£(T()); // £() called with a type-dependent argument.
}

int main()
{

type_dep_fun_ext<int>(); // ERROR: f(int) must be external.
160}

The compiler does not allow expressions in inline assembly statements that depend on
template parameters. See Listing 15.7.

Listing 15.7 Assembly statements cannot depend on template arguments

template <typename T> void asm_tmpl ()
{

asm { move #sizeof(T), DO ); // ERROR: Not supported.
}

The compiler also supports the address of template-id rules. See Listing 15.8.

Listing 15.8 Address of Template-id Supported

template <typename T> void funcA(T) {}
template <typename T> void funcB(T) {}

funcA{ &funcB<int> ); // now accepted

Implementation-Defined Behavior

Annex A of the ISO/IEC 14882-1998 C++ Standard lists compiler behaviors that are
beyond the scope of the standard, but which must be documented for a compiler
implementation. This annex also lists minimum guidelines for these behaviors, although a
conforming compiler is not required to meet these minimums.

The CodeWarrior C++ compiler has these implementation quantities listed in Table 15.2,
based on the ISO/IEC 14882-1998 C++ Standard, Annex A.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 153



y
A

C++ Compiler
Implementation-Defined Behavior

NOTE  The term unlimited in Table 15.2 means that a behavior is limited only by the
processing speed or memory capacity of the computer on which the
CodeWarrior C++ compiler is running.

Table 15.2 Implementation Quantities for the C/C++ Compiler (ISO/IEC 14882-1998 C++,

§A)
Behavior Standard CodeWarrior
Minimum Limit
Guideline
Nesting levels of compound statements, 256 Unlimited

iteration control structures, and selection
control structures

Nesting levels of conditional inclusion 256 32

Pointer, array, and function declarators (in 256 Unlimited
any combination) modifying an arithmetic,
structure, union, or incomplete type in a
declaration

Nesting levels of parenthesized expressions 256 Unlimited
within a full expression

Number of initial characters in an internal 1024 Unlimited

identifier or macro name (255 significant in

identifiers)
Number of initial characters in an external 1024 Unlimited
identifier (255 significant in
identifiers)
External identifiers in one translation unit 65536 Unlimited
Identifiers with block scope declared in one 1024 Unlimited
block
Macro identifiers simultaneously defined in 65536 Unlimited
one translation unit
Parameters in one function definition 256 Unlimited
Arguments in one function call 256 Unlimited
Parameters in one macro definition 256 128

154 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



C++ Compiler
Implementation-Defined Behavior

Table 15.2 Implementation Quantities for the C/C++ Compiler (ISO/IEC 14882-1998 C++,
§A) (continued)

Behavior Standard CodeWarrior
Minimum Limit
Guideline

Arguments in one macro invocation 256 128

Characters in one logical source line 65536 Unlimited

Characters in a character string literal or 65536 Unlimited

wide string literal (after concatenation)

Size of an object 262144 2GB
Nesting levels for #include files 256 32
Case labels for a switch statement 16384 Unlimited
(excluding those for any nested switch

statements)

Data members in a single class, structure, or | 16384 Unlimited
union

Enumeration constants in a single 4096 Unlimited

enumeration

Levels of nested class, structure, or union 256 Unlimited
definitions in a single struct-declaration-list

Functions registered by atexit () 32 64

Direct and indirect base classes 16384 Unlimited
Direct base classes for a single class 1024 Unlimited
Members declared in a single class 4096 Unlimited
Final overriding virtual functions in a class, 16384 Unlimited

accessible or not

Direct and indirect virtual bases of a class 1024 Unlimited
Static members of a class 1024 Unlimited
Friend declarations in a class 4096 Unlimited
Access control declarations in a class 4096 Unlimited
Member initializers in a constructor definition | 6144 Unlimited

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 155



'
A

C++ Compiler
GCC Extensions

Table 15.2 Implementation Quantities for the C/C++ Compiler (ISO/IEC 14882-1998 C++,
§A) (continued)

Behavior Standard CodeWarrior
Minimum Limit
Guideline

Scope qualifications of one identifier 256 Unlimited

Nested external specifications 1024 Unlimited

Template arguments in a template 1024 Unlimited

declaration

Recursively nested template instantiations 17 Unlimited

Handlers per try block 256 Unlimited

Throw specifications on a single function 256 Unlimited

declaration

GCC Extensions

The CodeWarrior C++ compiler recognizes some extensions to the ISO/IEC 14882-1998
C++ standard that are also recognized by the GCC (GNU Compiler Collection) C++
compiler.

These extensions are:

¢ Using the :: Operator in Class Declarations

Using the :: Operator in Class Declarations

The compiler allows the use of the :: operator, of the form class: : member, in a class
declaration.

Listing 15.9 Using the :: operator in class declarations

class MyClass {
int MyClass::getval();
Y

156 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



C++ Compiler
Embedded C++

Embedded C++

Embedded C++ (EC++) is a subset of the ISO/IEC 14882-1998 C++ language that is

intended to compile into smaller, faster executable code suitable for embedded systems.

Embedded C++ source code is upwardly compatible with ISO/IEC C++ source code.

e Activating EC++
¢ Differences Between ISO C++ and EC++

* EC++ Specifications

Activating EC++

Table 15.3 shows how to control Embedded C++ conformance.

Table 15.3 Controlling Embedded C++ conformance

To control this option from use this setting

here...

CodeWarrior IDE EC++ Compatibility Mode in the C/C++
Language Settings panel

source code #pragma ecplusplus

command line -dialect ec++

To test for EC++ compatibility mode at compile time, use the

embedded_cplusplus predefined symbol.

Differences Between ISO C++ and EC++

The EC++ proposal does not support the following ISO/IEC 14882-1998 C++ features:

Templates
Libraries

File Operations
Localization

Exception Handling
Unsupported Language Features

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition

157



|
y

'
A

C++ Compiler
Embedded C++

Templates

ISO/IEC C++ specifies templates. The EC++ proposal does not include template support
for class or functions.

Libraries

The EC++ proposal supports the <string>, <complex>, <ios>, <streambuf>,
<istream>, and <ostream> classes, but only in a non-template form. The EC++
specifications do not support any other ISO/IEC C++ libraries, including the STL-type
algorithm libraries.

File Operations

The EC++ proposal does not support any file operations except simple console input and
output file types.

Localization

The EC++ proposal does not contain localization libraries because of the excessive
memory requirements.

Exception Handling

The EC++ proposal does not support exception handling.

Unsupported Language Features

The EC++ proposal does not support the following language features:
* mutable specified
e RTTI
* namespace
* multiple inheritance

e virtual inheritance

EC++ Specifications

Topics in this section describe how to design software that adhere to the EC++ proposal:
» Language Related Issues
» Library-Related Issues

158

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



C++ Compiler
Embedded C++

Language Related Issues

To make sure your source code complies with both ISO/IEC 14882-1998 C++ and EC++
standards, follow these guidelines:

* Do not use RTTI (Run Time Type Identification).
* Do not use exception handling, namespaces, or other unsupported features.

* Do not use multiple or virtual inheritance.

Library-Related Issues

Do not refer to routines, data structures, and classes in the Metrowerks Standard Library
(MSL) for C++.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 159



V¥ ¢
i

C++ Compiler
Embedded C++

160 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



g |

16

Tool Performance

Some options for CodeWarrior compilers and linkers affect how much time these tools
take. By managing these options so that they are used only when they are needed, you can
reduce the time needed to build your software.

Precompiling

Source code files in a project often use many header files. Typically, the same header files
are included by each source code file in a project, forcing the compiler to read these
header files repeatedly during compilation. To shorten the time spent compiling and
recompiling the same header files, CodeWarrior compilers can precompile a header file
once instead of preprocessing it several times.

¢ When to Use Precompiled Files

* What Can be Precompiled
» Using a Precompiled Header File

¢ Preprocessing and Precompiling

* Pragma Scope in Precompiled Files
* Precompiling a File in the CodeWarrior IDE
e Updating a Precompiled File Automaticall

When to Use Precompiled Files

As a convenience, programmers often create a header file that contains commonly-used
preprocessor definitions and includes frequently-used header files. This header file is then
included by each source code file in a project, saving the programmer some time and
effort while writing source code.

This convenience comes at a cost, though. While the programmer saves time typing, the
compiler does extra work, preprocessing and compiling this header file each time it
compiles a source code file that includes it.

This header file can be precompiled so that, instead of preprocessing files several times,
the compiler needs to load just one precompiled header file.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 161



V¥ ¢
i

Tool Performance

Precompiling

What Can be Precompiled

A file to be precompiled does not have to be a header file (. h or . hpp files, for example),
but it must meet these requirements:

The file must be a source code file in text format.
You cannot precompile libraries or other binary files.

A C source code file that will be automatically precompiled must have . pch file
name extension.

Precompiled files must have a . mch file name extension.

The file to be precompiled does not have to be in a CodeWarrior IDE project,
although a project must be open to precompile the file.

The CodeWarrior IDE uses the build target settings to precompile a file.

The file must not contain any statements that generate data or executable code.
However, the file may define static data.

Precompiled header files for different build targets are not interchangeable.

A source file may include only one precompiled file.

A file may not define any items before including a precompiled file.

Typically, a source code file includes a precompiled header file before anything else
(except comments).

Using a Precompiled Header File

Although a precompiled file is not a text file, you use it like you would a regular header
file. To include a precompiled header file in a source code file, use the #include
directive.

NOTE  Unlike regular header files in text format, a source code file may include only

TIP

one precompiled file.

Instead of explicitly including a precompiled file in each source code file with the
#include directive, put the #include directive in the Prefix Text field of the
CodeWarrior IDE’s C/C++ Preprocessor settings panel and make sure that the
Use prefix in precompiled headers option is on. If the Prefix File field already
specifies a file name, include the precompiled file in the prefix file with the
#include directive.

Listing 16.1 and Listing 16.2 show an example.

162

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Tool Performance
Precompiling

Listing 16.1 Header File that Creates a Precompiled Header File for C

/* sock_header.pch

*

* When compiled or precompiled, this file will generate a
* precompiled file named "sock_precomp.mch"

*/
#pragma precompile_target "sock_precomp.mch"

#define SOCK_VERSION "SockSorter 2.0"
#include "sock_std.h"

#include "sock_string.h"

#include "sock_sorter.h"

Listing 16.2 Using a Precompiled File

/* sock_main.c
Instead of including all the files included in
sock_header.pch, we use sock_precomp.h instead.

A precompiled file must be included before anything
else.
/

% X o ok ok 3k X

#include "sock_precomp.mch"

int main(void)
{
/* L. */
return 0;

}

Preprocessing and Precompiling

When precompiling a header file, the compiler preprocesses the file too. In other words, a
precompiled file is preprocessed in the context of its precompilation, not in the context of
its later compilation.

The preprocessor also tracks macros used to guard #include files to reduce parsing
time. Thus, if a file’s contents are surrounded with:

#ifndef MYHEADER_H
#define MYHEADER_H

/* file contents */
#endif

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 163



y
A

Tool Performance
Pragma Scope in Precompiled Files

the compiler will not load the file twice, saving some time in the process.

Pragma Scope in Precompiled Files

Pragma settings inside a precompiled file affect only the source code within that file. The
pragma settings for an item declared in a precompiled header file (such as data or a
function) are saved then restored when the precompiled header file is included.

For example, the source code in Listing 16.3 specifies that the variable xxx is a far
variable.

Listing 16.3 Pragma Settings in a Precompiled Header

/* my_pch.pch */

/* Generate a precompiled header named pch.mch. */
#pragma precompile_target "my_ pch.mch"

#pragma far_data on
extern int xxx;

The source code in Listing 16.4 includes the precompiled version of Listing 16.3.

Listing 16.4 Pragma Settings in an Included Precompiled File

/* test.c */

/* Far data is disabled. */
#pragma far_data off

/* This precompiled file sets far_data on. */
#include "my_pch.mch"

/* far_data is still off but xxx is still a far wvariable. */

The pragma setting in the precompiled file is active within the precompiled file, even
though the source file including the precompiled file has a different setting.

Precompiling a File in the CodeWarrior IDE

To precompile a file in the CodeWarrior IDE, use the Precompile command in the
Project menu:

1. Start the CodeWarrior IDE.

2. Open or create a project.

164 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Tool Performance
Pragma Scope in Precompiled Files

3. Choose or create a build target in the project.

The settings in the project’s active build target will be used when preprocessing and
precompiling the file you want to precompile.

4. Open the source code file to precompile.

See “What Can be Precompiled” on page 162 for information on what a precompiled
file may contain.

5. From the Project menu, choose Precompile.
A save dialog box appears.

6. Choose a location and type a name for the new precompiled file.
The IDE precompiles the file and saves it.

7. Click Save.

The save dialog box closes, and the IDE precompiles the file you opened, saving it in
the folder you specified, giving it the name you specified.

You may now include the new precompiled file in source code files.

Updating a Precompiled File Automatically

Use the CodeWarrior IDE’s project manager to update a precompiled header
automatically. The IDE creates a precompiled file from a source code file during a
compile, update, or make operation if the source code file meets these criteria:

¢ The text file name ends with . pch (for C header files).
¢ The file is in a project’s build target.

* The file uses the precompile_target pragma.

¢ The file, or files it depends on, have been modified.

See the CodeWarrior IDE User Guide for information on how the IDE determines
that a file must be updated.

The IDE uses the build target’s settings to preprocess and precompile files.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 165



V¥ ¢
i

Tool Performance
Pragma Scope in Precompiled Files

166 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



g |

17

Intermediate Optimizations

After it translates a program’s source code into its intermediate representation, the
compiler optionally applies optimizations that reduce the program’s size, improve its
execution speed, or both. The topics in this chapter describes these optimizations and how
to apply them:

¢ Interprocedural Analysis

¢ Intermediate Optimizations

* Inlining

Interprocedural Analysis

Most compiler optimizations are applied only within a function. The compiler analyzes a
function’s flow of execution and how the function uses variables. It uses this information
to find shortcuts in execution and reduce the number of registers and memory that the
function uses. These optimizations are useful and effective but are limited to the scope of a
function.

The CodeWarrior compiler has a special optimization that it applies at a greater scope.
Widening the scope of an optimization offers the potential to greatly improve performance
and reduce memory use. Interprocedural analysis examines the flow of execution and
data within entire files and programs to improve performance and reduce size.

* Invoking Interprocedural Analysis
¢ File-Level Optimizations

* Program-Level Optimizations

* Program-Level Requirements

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 167



'
A

Intermediate Optimizations
Interprocedural Analysis

Invoking Interprocedural Analysis

Table 17.1 descirbes how to control interprocedural analysis.

Table 17.1 Controlling interprocedural analysis

Turn control this option from use this setting

here...

CodeWarrior IDE Choose an item in the IPA option of the C/
C++ Langauge Settings settings pane.|

source code #pragma ipa off | file | program

command line -ipa off | file | program

File-Level Optimizations

When interprocedual analysis is set to optimize at the file level, the compiler reads and
analyzes an entire file before generating instructions and data.

At this level, the compiler generates more efficient code for inline function calls and C++
exception handling than when interprocedural analysis is off. The compiler also safely
removes static functions and variables that are not referred to within the file, which
reduces the amount of object code that the linker must process, resulting in better linker
performance.

Program-Level Optimizations

When interprocedural analysis is set to optimize at the program level, the compiler reads
and analyzes all files in a program before generating instructions and data.

At this level of interprocedural analysis, the compiler generates the most efficient
instructions and data for inline function calls and C++ exception handling compared to
other levels. The compiler is also able to increase character string reuse and pooling,
reducing the size of object code.

Program-Level Requirements

Program-level interprocedural analysis imposes some requirements and limitations on the
source code files that the compiler translates:

¢ Dependencies Among Source Files

¢ Function and Top-level Variable Declarations

* Type Definitions

168

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition




Intermediate Optimizations
Interprocedural Analysis

¢ Unnamed Structures and Enumerations in C

Dependencies Among Source Files

A change to even a single source file in a program still requires that the compiler read and
analyze all files in the program, even those files that are not dependent on the changed file.
This requirement significantly increases compile time.

Function and Top-level Variable Declarations

Because the compiler treats all files that compose a program as if they were a single, large
source file. Make sure all non-static declarations for variables or functions with the same
name are identical. See Listing 17.1 for an example of declarations that prevent the
compiler from applying program-level analysis. Listing 17.2 fixes this problem by
renaming the conflicting symbols.

Listing 17.1 Declaration conflicts in program-level interprocedural analysis

/* filel.c */
extern int 1i;
extern int f£();
int main(void)
{

return i + £();

}

/* file2.c */
short 1i; /* Conflict with variable i in filel.c. */
extern void f£(); /* Conflict with function f£() in filel.c */

Listing 17.2 Fixing declaration conflicts for program-level interprocedural analysis

/* filel.c */
extern int il;
extern int f1();
int main(void)
{

return il + £1();

}

/* file2.c */
short 12;
extern void £2();

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 169



y
A

Intermediate Optimizations
Interprocedural Analysis

Type Definitions

Because the compiler examines all source files for a program, make sure all definitions for
a type are the same. See Listing 17.3 for an example of conflicting type definitions.
Listing 17.4 and Listing 17.5 show suggested solutions.

Listing 17.3 Type definitions conflicts in program-level interprocedural analysis

/* fileA.c */
struct a_rec { int i, J; };
a_rec a;

/* fileB.c */
struct a_rec { char c; }; /* Conflict with a_rec in fileA.c */
a_rec b;

Listing 17.4 Fixing type definitions conflicts in C

/* fileA.c */
struct al_rec { int 1, j; };
al_rec a;

/* fileB.c */
struct a2_rec { char c; };
a2_rec b;

Listing 17.5 Fixing type definitions conflicts in C++

/* fileA.c */
namespace { struct a_rec { int i, Jj; }; }
a_rec a;

/* fileB.c */
namespace { struct a_rec { char c; }; }
a_rec b;

Unnamed Structures and Enumerations in C

The C language allows anonymous struct and enum definitions in type definitions.
Using such definitions prevents the compiler from properly applying program-level
interprocedural analysis. Make sure to give names to structures and enumerations in type
definitions. Listing 17.6 shows an example of unnamed structures and enumerations and
Listing 17.7 shows a suggested solution.

170 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Intermediate Optimizations
Intermediate Optimizations

Listing 17.6 Unnamed structures and enumerations in C

/* In C, the types x_rec and y_enum each represent a structure
and an enumeration with no name.

In C++ these same statements define a type x_rec and y_enum,
a structure named x_rec and an enumeration named y_enum.

*/

typedef struct { int a, b, c; } x_rec;

typedef enum { Y _FIRST, Y_SECOND, Y_THIRD } y_enum;

Listing 17.7 Naming structures and enumerations in C

typedef struct x_rec { int a, b, c; } X_rec;
typedef enum y_enum { Y_FIRST, Y SECOND, Y _THIRD } y_enum;

Intermediate Optimizations

After it translates a function into its intermediate representation, the compiler may
optionally apply some optimizations. The result of these optimizations on the intermediate
representation will either reduce the size of the executable code, improve the executable
code’s execution speed, or both.

* Dead Code Elimination

* Expression Simplification

» Common Subexpression Elimination
* Copy Propagation

¢ Dead Store Elimination

» Live Range Splitting

* Loop-Invariant Code Motion
* Strength Reduction

* Loop Unrolling

Dead Code Elimination

The dead code elimination optimization removes expressions that are not accessible or are
not referred to. This optimization reduces size and increases execution speed.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 171



'
A

Intermediate Optimizations
Intermediate Optimizations

Table 17.2 descirbes how to control the optimization for dead code elimination.

Table 17.2 Controlling dead code elimination

Turn control this option | use this setting

from here...

CodeWarrior IDE Choose Level 1, Level 2, Level 3, or Level 4 in the
Global Optimizations settings pane.|

source code #pragma opt_dead_code on | off |
reset

command line -opt [no]ldeadcode

In Listing 17.8, the call to funcl () will never execute because the i f statement that it is
associated with will never be true. Consequently, the compiler can safely eliminate the call
to funcl (), as shown in Listing 17.9.

Listing 17.8 Before dead code elimination

void func_from(void)

{
if (0)
{
funcl();
}
func2 () ;
}

Listing 17.9 After dead code elimination

void func_to(void)
{

func2 () ;
}

Expression Simplification

The expression simplification optimization attempts to replace arithmetic expressions with
simpler expressions. Additionally, the compiler also looks for operations in expressions
that can be avoided completely without affecting the final outcome of the expression. This
optimization reduces size and increases speed.

172 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition




Intermediate Optimizations
Intermediate Optimizations

Table 17.3 descirbes how to control the optimization for expression simplification.

Table 17.3 Controlling expression simplification

Turn control this option | use this setting

from here...

CodeWarrior IDE Choose Level 1, Level 2, Level 3, or Level 4 in the
Global Optimizations settings pane.|

source code There is no pragma to control this optimization.

command line -opt level=1, -opt level=2, -opt level=3, -
opt level=4

For example, Listing 17.10 contains a few assignments to some arithmetic expressions:
* addition to zero
* multiplication by a power of 2
* subtraction of a value from itself

e arithmetic expression with two or more literal values

Listing 17.10 Before expression simplification

void func_from(int* resultl, int* result2, int* result3, int* result4,
int x)

{
*resultl = x + 0;
*result2 = x * 2;
*result3 = x - x;
*resultd = 1 + x + 4;
}

Listing 17.11 shows source code that is equivalent to expression simplification. The
compiler has modified these assighments to:

* remove the addition to zero
* replace the multiplication of a power of 2 with bit-shift operation
* replace a subtraction of x from itself with O

¢ consolidate the additions of 1 and 4 into 5

Listing 17.11 After expression simplification

void func_to(int* resultl, int* result2, int* result3, int* result4,
int x)

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 173



'
A

Intermediate Optimizations
Intermediate Optimizations

{
*resultl = x;
*result2 = x << 1;
*result3 = 0;
*resultd = 5 + x;
}

Common Subexpression Elimination

Common subexpression elimination replaces multiple instances of the same expression
with a single instance. This optimization reduces size and increases execution speed.

Table 17.4 descirbes how to control the optimization for common subexpression
elimination.

Table 17.4 Controlling common subexpression elimination

Turn control this use this setting

option from here...

CodeWarrior IDE Choose Level 2, Level 3, or Level 4 in the Global
Optimizations settings pane.|

source code #pragma opt_common_subs on | off | reset

command line -opt [no]cse

For example, in Listing 17.12, the subexpression x * y occurs twice.

Listing 17.12 Before common subexepression elimination

void func_from(int* vec, int size, int x, int y, int value)
{
if (x * y < size)
{
vec[x * vy - 1] = value;

}

Listing 17.13 shows equivalent source code after the compiler applies common
subexpression elimination. The compiler generates instructions to compute x * y and
store it in a hidden, temporary variable. The compiler then replaces each instance of the
subexpression with this variable.

174 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition




Intermediate Optimizations
Intermediate Optimizations

Listing 17.13 After common subexpression elimination

void func_to(int* vec, int size, int x, int vy, int wvalue)

{

int temp = x * y;
if (temp < size)
{
vec[temp - 1] = value;

}

Copy Propagation

Copy propagation replaces variables with their original values if the variables do not
change. This optimization reduces runtime stack size and improves execution speed.

Table 17.5 descirbes how to control the optimization for copy propagation.

Table 17.5 Controlling copy propagation

Turn control this use this setting

option from here...

CodeWarrior IDE Choose Level 2, Level 3, or Level 4 in the Global
Optimizations settings pane.|

source code #pragma opt_propagation on | off | reset

command line -opt [nolproplagation]

For example, in Listing 17.14, the variable j is assigned the value of x. But j’s value is
never changed, so the compiler replaces later instances of j with x, as shown in Listing
17.15.

By propagating x, the compiler is able to reduce the number of registers it uses to hold
variable values, allowing more variables to be stored in registers instead of slower
memory. Also, this optimization reduces the amount of stack memory used during
function calls.

Listing 17.14 Before copy propagation

{

void func_from(int* a, int x)

int 1i;
int j;
Jj o= x;

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 175



"
A

Intermediate Optimizations
Intermediate Optimizations

for (i = 0; 1 < J; 1i++)
{

alil = 3J;
}

Listing 17.15 After copy propagation

void func_to(int* a, int x)
{

int 1i;

int j;

j o= x;

for (i = 0; 1 < x; 1i++)

{
}

Dead Store Elimination

Dead store elimination removes unused assignment statements. This optimization reduces
size and improves speed.

Table 17.6 descirbes how to control the optimization for dead store elimination.

Table 17.6 Controlling dead store elimination

Turn control this use this setting

option from here...

CodeWarrior IDE Choose Level 3 or Level 4 in the Global Optimizations
settings pane.|

source code #pragma opt_dead_assignments on | off
reset

command line -opt [no]deadstore

For example, in Listing 17.16 the variable x is first assigned the value of y * y.
However, this result is not used before x is assigned the result returned by a call to
getresult ().

In Listing 17.17 the compiler can safely remove the first assignment to x since the result
of this assignment is never used.

176 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition




Intermediate Optimizations
Intermediate Optimizations

Listing 17.16 Before dead store elimination

void func_from(int x, int vy)
{
x =y *vy;
otherfuncl (y);
x = getresult();
otherfunc?2 (y) ;

Listing 17.17 After dead store elimination

void func_to(int x, int vy)

{
otherfuncl (y);
x = getresult();
otherfunc?2 (y) ;

}

Live Range Splitting

Live range splitting attempts to reduce the number of variables used in a function. This
optimization reduces a function’s runtime stack size, requiring fewer instructions to
invoke the function. This optimization potentially improves execution speed.

Table 17.7 descirbes how to control the optimization for live range splitting.

Table 17.7 Controlling live range splitting

option from here...

Turn control this use this setting

CodeWarrior IDE Choose Level 3 or Level 4 in the Global Optimizations
settings pane.|

source code There is no pragma to control this optimization.

command line

-opt level=3, -opt level=4

For example, in Listing 17.18 three variables, a, b, and c, are defined. Although each
variable is eventually used, each of their uses is exclusive to the others. In other words, a
is not referred to in the same expressions as b or ¢, b is not referred to with a or ¢, and ¢

is not used with a or b.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 177



y
A

Intermediate Optimizations
Intermediate Optimizations

In Listing 17.19, the compiler has replaced a, b, and ¢, with a single variable. This
optimization reduces the number of registers that the object code uses to store variables,
allowing more variables to be stored in registers instead of slower memory. This
optimization also reduces a function’s stack memory.

Listing 17.18 Before live range splitting

void func_from(int x, int vy)
{

int a;

int b;

int c;

a=x*y;
otherfunc (a) ;

b =x+v;
otherfunc (b) ;

c=x-Y;
otherfunc(c) ;

Listing 17.19 After live range splitting

void func_to(int x, int vy)
{

int a_b_or_c;

a b or c=x*vy;
otherfunc (temp) ;

a b or c=x+vy;
otherfunc (temp) ;

a b or c=x-1y;
otherfunc (temp) ;

Loop-Invariant Code Motion

Loop-invariant code motion moves expressions out of a loop if the expressions are not
affected by the loop or the loop does not affect the expression. This optimization improves
execution speed.

178 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Intermediate Optimizations

Intermediate Optimizations

Table 17.8 describes how to control the optimization for loop-invariant code motion.

Table 17.8 Controlling loop-invariant code motion

Turn control this
option from here...

use this setting

CodeWarrior IDE
settings pane.|

Choose Level 3 or Level 4 in the Global Optimizations

source code

#pragma opt_loop_invariants on | off | reset

command line -opt

[no]loop[invariants]

For example, in Listing 17.20, the assignment to the variable circ does not refer to the
counter variable of the for loop, i. But the assignment to circ will be executed at each

loop iteration.

Listing 17.21 shows source code that is equivalent to how the compiler would rearrange
instructions after applying this optimization. The compiler has moved the assignment to
circ outside the for loop so that it is only executed once instead of each time the for

loop iterates.

Listing 17.20 Before loop-invariant code motion

void func_from(float* vec, int max, float val)
{
float circ;
int 1i;
for (i = 0; 1 < max; ++1)
{
circ = val * 2 * PI;
vec[i] = circ;
}
}

Listing 17.21 After loop-invariant code motion

void func_to(float* vec, int max, float val)
{

float circ;

int i;

circ = val * 2 * PI;

for (i = 0; i < max; ++1i)

{

vec[i] = circ;

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition

179



y
A

Intermediate Optimizations
Intermediate Optimizations

Strength Reduction

Strength reduction attempts to replace slower multiplication operations with faster
addition operations. This optimization improves execution speed but increases code size.

Table 17.9 describes how to control the optimization for strength reduction.
Table 17.9 Controlling strength reduction

Turn control this use this setting

option from here...

CodeWarrior IDE Choose Level 3 or Level 4 in the Global Optimizations
settings pane.|

source code #pragma opt_strength reduction on | off |
reset

command line -opt [nolstrength

For example, in Listing 17.22, the assignment to elements of the vec array use a
multiplication operation that refers to the for loop’s counter variable, 1.

In Listing 17.23, the compiler has replaced the multiplication operation with a hidden
variable that is increased by an equivalent addition operation. Processors execute addition
operations faster than multiplication operations.

Listing 17.22 Before strength reduction

void func_from(int* vec, int max, int fac)

{
int i;
for (i = 0; 1 < max; ++1)
{
vec[i] = fac * 1i;
}
}

Listing 17.23 After strength reduction

void func_to(int* wvec, int max,
{

int 1i;

int fac)

180 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition




Intermediate Optimizations
Intermediate Optimizations

int strength_red;

hidden_strength_red = 0;

for (i = 0; 1 < max; ++1)

{
vec[i] = hidden_strength_red;
hidden_strength_red = hidden_strength_red + 1i;

Loop Unrolling

Loop unrolling inserts extra copies of a loop’s body in a loop to reduce processor time
executing a loop’s overhead instructions for each iteration of the loop body. In other
words, this optimization attempts to reduce the ratio of time that the processor executes a
loop’s completion test and branching instructions compared to the time the processor
executes the loop’s body. This optimization improves execution speed but increases code
size.

Table 17.10 describes how to control the optimization for loop unrolling.

Table 17.10 Controlling loop unrolling

Turn control this use this setting
option from here...

CodeWarrior IDE Choose Level 3 or Level 4 in the Global Optimizations
settings pane.|

source code #pragma opt_unroll loops on | off | reset

command line -opt level=3, -opt level=4

For example, in Listing 17.24, the for loop’s body is a single call to a function,
otherfunc (). For each time the loop’s completion test executes

for (i = 0; i < MAX; ++1i)
the function executes the loop body only once.

In Listing 17.25, the compiler has inserted another copy of the loop body and rearranged
the loop to ensure that variable i is incremented properly. With this arrangement, the
loop’s completion test executes once for every 2 times that the loop body executes.

Listing 17.24 Before loop unrolling

const int MAX = 100;
void func_from(int* wvec)

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 181



y
A

Intermediate Optimizations

Inlining
{
int 1i;
for (i = 0; i < MAX; ++1)
{
otherfunc (vec[i]);
}
}

Listing 17.25 After loop unrolling

const int MAX = 100;
void func_to(int* vec)

{
int i;
for (i = 0; i < MAX;)
{
otherfunc (vec[i]);
++1;
otherfunc (vec[i]);
++1;
}
}

Inlining

Inlining replaces instructions that call a function and return from it with the actual
instructions of the function being called. Inlining functions makes your program faster
because it executes the function code immediately without the overhead of a function call
and return. However, inlining can also make your program larger because the compiler
may insert the function’s instructions many times throughout your program.

The rest of this section describes how to specify which functions to inline and how the
compiler performs the inlining:

¢ Choosing Which Functions to Inline
* Inlining Techniques

Choosing Which Functions to Inline

The compiler offers several methods to specify which functions are elligible for inlining.

To specity that a function is elligible to be inlined, precede its definition with the
inline, __inline_ ,or __inline keyword. To allow these keywords in C source

182

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Intermediate Optimizations
Inlining

code, turn off ANSI Keywords Only in the CodeWarrior IDE’s C/C++ Language
settings panel or turn off the only_std_keywords pragma in your source code.

To verify that an elligible function has been inlined or not, use the Non-Inlined Functions
option in the IDE’s C/C++ Warnings panel or the warn_notinlined pragma. Listing
17.26Listing 17.26 shows an example.

Listing 17.26 Specifying to the compiler that a function may be inlined

#pragma only_std_keywords off
inline int attempt_to_inline(void)
{

return 10;

}

To specity that a function must never be inlined, follow its definition’s specifier with
__attribute__ ((never_inline)). Listing 17.27 shows an example.

Listing 17.27 Specifying to the compiler that a function must never be inlined

int never_inline(void) _ attribute_ ((never_inline))
{
return 20;

}

To specify that no functions in a file may be inlined, including those that are defined with
the inline, __inline_ ,or__inline keywords, use the dont_inline pragma.
Listing 17.28Listing 17.28 shows an example.

Listing 17.28 Specifying that no functions may be inlined

#pragma dont_inline on

/* Will not be inlined. */
inline int attempt_to_inline(void)
{

return 10;

}

/* Will not be inlined. */
int never_inline(void) _ attribute_ ((never_inline))
{

return 20;

}

#pragma dont_inline off
/* Will be inlined, if possible. */

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 183



y
A

Intermediate Optimizations

Inlining

inline int also_attempt_to_inline(void)

{

}

return 10;

Some kinds of functions are never inlined:
* functions with variable argument lists
¢ functions declared with __attribute__ (never_inline)

* functions compiled with #pragma optimize_for_ size on or the Optimize
For Size setting in the IDE’s Global Optimizations panel

* functions which have their pointers stored in variables

The compiler will not inline these functions, even if they are defined with the inline,
__inline_ ,or__inline keywords.

Inlining Techniques

The depth of inlining describes how many levels of function calls the compiler will inline.
The Inline Depth setting in the IDE’s C/C++ Language settings panel and the
inline_depth pragma control inlining depth.

Normally, the compiler only inlines an elligible function if it has already translated the
function’s definition. In other words, if an elligible function has not yet been compiled, the
compiler has no object code to insert. To overcome this limitation, the compiler allows
deferred inlining, which specifies to the compiler to delay a function’s compilation until
any functions that it calls have been compiled. The Deferred Inlining setting in the IDE’s
C/C++ Language settings panel and the defer_codegen pragma control this
capability.

The compiler normally inlines functions from the first function in a chain of function calls
to the last function called. Alternately, the compiler may inline functions from the last
function called to the first function in a chain of function calls. The Bottom-up Inlining
option in the IDE’s C/C++ Language settings panel and the inline_bottom_up and
inline_ bottom_up_once pragmas control this reverse method of inlining.

Some functions that have not been defined with the inline, _ _inline_ ,or
__inline keywords may still be good candidates to be inlined. Automatic inlining
allows the compiler to inline these functions in addition to the functions that you explicitly
specify as elligible for inlining. The Auto-Inline option in the IDE’s C/C++ Language
panel and the auto_inline pragma control this capability.

When inlining, the compiler calculates the complexity of a function by counting the
number of statements, operands, and operations in a function to determine whether or not
to inline an elligible function. The compiler does not inline functions that exceed a

184

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Intermediate Optimizations
Inlining

maximum complexity. The compiler uses three settings to control the extent of inlined
functions:

* maximum auto-inlining complexity: the threshold for which a function may be auto-
inlined

* maximum complexity: the threshold for which any elligible function may be inlined
* maximum total complexity: the threshold for all inlining in a function

The inline_max_auto_size, inline_max_size, and
inline _max_total_size pragmas control these thresholds, respectively.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 185



V¥ ¢

4\
Intermediate Optimizations
Inlining
186

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



g |

18

Inline Assembly

This chapter explains support for inline assembly language programming. Inline assembly
language are assembly language instructions and directives embedded in C and C++
source code. The standalone assembler, different software component, is not a topic of this
chapter. For information on the stand-alone assembler, refer to the Assembler Guide.)

 Inline Assembly Syntax
* Inline Assembly Directives

Inline Assembly Syntax

Syntax explanation topics are:
 Statements

¢ Additional Syntax Rules

* Preprocessor Features

* Local Variables and Arguments

¢ Returning From a Routine

Statements

All internal assembly statements must follow this syntax:
[LocallLabel:] (instruction | directive) [operands];
Other rules for statements are:
» The assembly instructions are the standard ColdFire instruction mnemonics.
¢ Each instruction must end with a newline character or a semicolon (; ).

» Hexadecimal constants must be in C style: 0OxABCDEF is a valid constant, but
SABCDEF is not.

* Assembler directives, instructions, and registers are not case-sensitive. To the inline
assembler, these statements are the same:

move. 1l b, DO
MOVE.L b, do

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 187



y
A

Inline Assembly
Inline Assembly Syntax

* To specify assembly-language interpretation for a block of code in your file, use the
asm keyword.

NOTE  To make sure that the C/C++ compiler recognizes the asm keyword, you must
clear the ANSI Keywords Only checkbox of the C/C++ Language panel.

Listing 18.1 and Listing 18.2 are valid examples of inline assembly code:

Listing 18.1 Function-Level Sample

long int b;
struct mystruct {
long int a;

Yo
static asm long f(void) // Legal asm qualifier
{
move.1l struct (mystruct.a) (A0) ,DO0 // Accessing a struct.
add.1l b, DO // Using a global variable, put return value
// in DO.
rts // Return from the function:

// result = mystruct.a + b

Listing 18.2 Statement-Level Sample

long square(short a)

{
asm {
move.w a,d0 // fetch function argument ‘a’
mulu.w do0,do // multiply
return // return from function (result is in DO)

NOTE  Regardless of its settings, the compiler never optimizes assembly-language
functions. However, to maintain integrity of all registers, the compiler notes
which registers inline assembly uses.

Additional Syntax Rules

These rules pertain to labels, comments, structures, and global variables:

188 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Inline Assembly
Inline Assembly Syntax

» Each label must end with a colon; labels may contain the @ character. For example,
x1: and @x2 : would be valid labels, but x3 would not — it lacks a colon.

* Comments must use C/ C++ syntax: either starting with double slash characters
( // ) or enclosed by slash and asterisk characters ( /* ... */ ).

¢ To refer to a field in a structure, use the struct construct:
struct (structTypeName. fieldName) structAddress

For example, suppose that A0 points to structure WindowRecord. This instruction
moves the structure’s refCon field to DO:

move.l struct (WindowRecord.refCon) (A0), DO
* To refer to a global variable, merely use its name, as in the statement

move.w x,d0 // Move x into dO

Preprocessor Features

You can use all preprocessor features, such as comments and macros, in the inline
assembler. But when you write a macro definition, remember to:

* End each assembly statement with a semicolon (; ) — (the preprocessor ignores
newline characters).

* Use the % character, instead of #, to denote immediate data, — the preprocessor
uses # as a concatenate operator.

Local Variables and Arguments

Handling of local variables and arguments depends on the level of inline assembly.
However, for optimization level 1 or greater, you can force variables to stay in a register
by using the symbol $.

Function-Level
The function-level inline assembler lets you refer to local variables and function
arguments yourself, handles such references for you.

For your own references, you must explicitly save and restore processor registers and local
variables when entering and leaving your inline assembly function. You cannot refer to
the variables by name, but you can refer to function arguments off the stack pointer. For
example, this function moves its argument into d0:

asm void alpha(short n)

{
move.w 4(sp),d0 // n

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 189



3
4

y
A

Inline Assembly
Inline Assembly Syntax

//
}

To let the inline assembler handle references, use the directives fralloc and frfree,
according to these steps:

1. Declare your variables as you would in a normal C function.

2. Use the fralloc directive. It makes space on the stack for the local stack variables.
Additionally, with the statement link #x, a6, this directive reserves registers for
the local register variables.

3. Inyour assembly, you can refer to the local variables and variable arguments by name.

4. Finally, use the frfree directive to free the stack storage and restore the reserved
registers. (It is somewhat easier to use a C wrapper and statement level assembly.)

Listing 18.3 is an example of using local variables and function arguments in function-
level inline assembly.

Listing 18.3 Function-level Local Variables, Function Arguments

static asm short f (short n)

{

register short a; // Declaring a as a register variable

short b; // and b as a stack variable

// Note that you need semicolons after these statements.

fralloc + // Allocate space on stack, reserve registers.
move.w n,a // Using an argument and local var.

add.w a,a

move.w a,DO0

frfree // Free space that fralloc allocated

rts

Statement-Level

Statement-level inline assembly allows full access to local variables and function
arguments without using the fralloc or frfree directives.

Listing 18.4 is an example of using local variables and function arguments in statement-
level inline assembly. You may place statement-level assembly code anywhere in a C/C++
program.

Listing 18.4 Statement-Level Local Variables, Function Arguments

long square(short a)

{

190

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Inline Assembly
Inline Assembly Directives

long result=0;

asm {
move.w a,d0 // fetch function argument ‘a’
mulu.w d0,do0 // multiply

move.l dO,result // store in local ‘result’ variable
}

return result;

Returning From a Routine

Every inline assembly function (not statement level) should end with a return statement.
Use the rts statement for ordinary C functions, as Listing 18.5 shows.

Listing 18.5 Assembly Function Return

asm void f (void)
{ add.1l d4, ds} // Error, no RTS statement

asm void g(void)
{ add.1l d4, db
rts} // OK

For statement-level returns, see “return’” on page 196 and “naked” on page 195.

Inline Assembly Directives

Table 18.1 lists special assembler directives that the ColdFire inline assembler accepts.
Explanations follow the table.

Table 18.1 Inline Assembly Directives

dc ds entry
fralloc friree macine
naked opword return

NOTE  Except for dc and ds, the inline assembly directives are available only for
function/routine level.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 191



y
A

Inline Assembly
Inline Assembly Directives

dc

Defines blocks of constant expressions as initialized bytes, words, or longwords. (Useful

for inventing new opcodes to be implemented via a loop,)

dc[.(b|w|1l)] constexpr (,constexpr)*

Parameters

b
Byte specifier, which lets you specify any C (or Pascal) string constant.

W
Word specifier (the default), which lets you specify any 16-bit relative offset to a
local label.

1
Longword specifier.

constexpr
Name for block of constant expressions.

Example
asm void alpha(void)
{
x1: dc.b "Hello world!\n" // Creating a string
x2: de.w 1,2,3,4 // Creating an array
x3: dc.1l 3000000000 // Creating a number
}

ds

Defines a block of bytes, words, or longwords, initialized with null characters. Pushes
labels outside the block.

ds[.(b|w|l)] size

192 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Inline Assembly
Inline Assembly Directives

Parameters
b
Byte specifier.

Word specifier (the default).

Longword specifier.
size

Number of bytes, words, or longwords in the block.
Example

This statement defines a block big enough for the structure DRVRHeader:
ds.b sizeof (DRVRHeader)

entry

Defines an entry point into the current function. Use the extern qualifier to declare a
global entry point and use the static qualifier to declare a local entry point. If you leave
out the qualifier, extern is assumed (Listing 18.6).

entry [extern|static] name

Parameters
extern
Specifier for a global entry point (the default).
static
Specifier for a local entry point.
name

Name for the new entry point.

Example

Listing 18.6 defines the new local entry point MyEntry for function MyFunc.

Listing 18.6 Entry Directive Example

static long MyEntry(void) ;
static asm long MyFunc (void)

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 193



y
A

Inline Assembly
Inline Assembly Directives

move.l a,do

bra.s Ll

entry static MyEntry
move.l b,do

fralloc

Lets you declare local variables in an assembly function.

fralloc [+]

Parameter

+

Optional ColdFire-register control character.

Remarks

This directive makes space on the stack for your local stack variables. It also

reserves registers for your local register variables (with the statement 1ink
#x,a6).

Without the + control character, this directive pushes modified registers onto the
stack.

With the + control character, this directive pushes all register arguments into their
ColdFire registers.

Counterpart to the frfree directive.

frfree

Frees the stack storage area; also restores the registers (with the statement unlk a6) that
fralloc reserved.

frfree

194 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Inline Assembly
Inline Assembly Directives

machine

Specifies the CPU for which the compiler generates its inline-assembly instructions.

machine processor

Parameter
processor
MCF547x, MCF5249, MCF5272, MCF5280, MCF5282,
MCF5307, MCF5407, MCF5213, Oor MCF5206e
Remarks

If you use this directive to specify a target processor, additional inline-assembler
instructions become available — instructions that pertain only to that processor.
For more information, see the Freescale processor user’s manual

naked

Listing 18.7

Suppresses the compiler-generated stackframe setup, cleanup, and return code.

naked

Remarks

Functions with this directive cannot access local variables by name. They should
not contain C code that implicitly or explicitly uses local variables or memory.

Counterpart to the return directive.

Example
Listing 18.7 is an example use of this directive.

Naked Directive Example

long squar
{
asm{
naked
move.w
mulu.w
rts

e (short)

// no stackframe or compiler-generated rts
4 (sp),d0 // fetch function argument from stack
do, do // multiply

// return from function: result in DO

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 195



y
A

Inline Assembly
Inline Assembly Directives

opword

Writes machine-instruction constants directly into the executable file, without any error
checking.

opword constant[,constant]

Parameter
constant

Any appropriate machine-code value.
Example

opword 0x7C0802A6 — which is equivalent to the instruction mflr rO0.

return
Inserts a compiler-generated sequence of stackframe cleanup and return instructions.
Counterpart to the naked directive.

return instruction[, instruction]

Parameter
instruction

Any appropriate C instruction.

196 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



19

ColdFire Code Generation

This chapter describes the code generation features and specifications that the
CodeWarrior offers.

¢ Code Generation Limits

 Integer Representation

» Calling Conventions

¢ Variable Allocation

* Register Variables

* Position-Independent Code

» Cryptographic Acceleration Instructions

Code Generation Limits

Special-Edition software compiles assembly and C code, but the object code size must not
exceed 128 kilobytes. Standard-Edition software compiles assembly and C code, without
any size restriction. Professional-Edition software compiles assembly, C, and C++ code,
without any size restriction.

Integer Representation

The ColdFire compiler lets you specify the number of bytes that the compiler allocates for
an int. Table 19.1 shows the size and range of the integer types available for ColdFire
targets.

Table 19.1 ColdFire Integer Types

Type Option Setting Size Range

bool n/a 8 bits true or false

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 197




y
A

ColdFire Code Generation
Integer Representation

Table 19.1 ColdFire Integer Types (continued)

Type Option Setting Size Range

char Use Unsigned 8 bits -128 to 127
Chars is offin the
C/C++ Language
panel

Use Unsigned 8 bits 0to 255
Chars is onin the
C/C++ Language

panel
signed char n/a 8 bits -128 to 127
unsigned n/a 8 bits 0 to 255
char
short n/a 16 bits -32,768 to 32,767
unsigned n/a 16 bits 0 to 65,535
short
int 4-Byte Integers is 16 bits -32,768 to 32,767

offin the ColdFire
Processor panel

4-Byte Integers is | 32 bits -2,147,483,648 to 2,147,483,647
on in the ColdFire
Processor panel

unsigned int 4-Byte Integers is 16 bits 0 to 65,535
offin the ColdFire
Processor panel

4-Byte Integers is 32 bits 0 to 4,294,967,295
on in the ColdFire
Processor panel

long n/a 32 bits -2,147,483,648 to 2,147,483,647

unsigned n/a 32 bits 0 to 4,294,967,295

long

long long n/a 64 bits -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

unsigned n/a 64 bits 0to 18,446,744,073,709,551,615

long long

198 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition




ColdFire Code Generation
Calling Conventions

Calling Conventions

For ColdFire development, the calling conventions are:

» Standard — the compiler uses the default amount of memory, expanding everything
to int size.

* Compact — the compiler tries to minimize memory consumption.

* Register — the compiler tries to use memory registers, instead of the stack.

NOTE  The corresponding levels for the supported calling conventions are
standard_abi (the default), compact_abi, and register_abi.

The compiler passes parameters on the stack in reverse order. It passes the return value in
different locations, depending on the nature of the value and compiler settings:

* Integer return value: register DO.
* Pointer return value: register AQ.

* Any other return value: temporary storage area. (For any non-integer, non-pointer
return type, the calling routine reserves this area in its stack. The calling routine
passes a pointer to this area as its last argument. The called function returns its value
in this temporary storage area.)

To have the compiler return pointer values in register DO, use the pragma
pointers_in_ DO, which the C Compiler reference guide explains.

To reset pointer returns, use the pragma pointers_in_AO0.

NOTE  If you use the pragma pointers_in_AO0, be sure to use correct prototypes.
Otherwise, the pragma may not perform reliably.

Figure 19.1 depicts the stack when you use the ColdFire compiler to call a C function.

Figure 19.1 Calling a C Function: Stack Depiction

Last Argument

First Argument
Pointer to Return Value (if needed)
Stack Pointer—— = Return Address

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 199



y
A

ColdFire Code Generation
Variable Allocation

Variable Allocation

For a ColdFire target, the compiler lets you declare structs and arrays to be any size, but
imposes a few limits on how you allocate their space:

e Maximum bitfield size is 32 bits.

* There is no limit to local-variable space for a function. However, access is twice as
fast for frames that do not exceed 32 kilobytes. To keep within this limit,

— Dynamically allocate large variables, or

— Declare large variables to be static (provided that this does not exceed the 32-
kilobyte limit on global variables).

* Maximum declaration size for a global variable is 32 kilobytes, unless you use far
data. You must do one of the following:

— Dynamically allocate the variable.
— Use the far qualifier when declaring the variable.

— Select the Far (32 bit) option from the Code and Data model in the ColdFire
Processor settings panel.

Listing 19.1 shows how to declare a large struct or array. Keep in mind that declaring
large static arrays works only if the device has enough physical memory.

Listing 19.1 Declaring a large structure

int i[50000]; // Wrong with ColdFire compiler and the Far Data
// option in the Processor settings panel is off

far int j[50000]; // ALWAYS OK.

int *k;

k = malloc (50000 * sizeof(int)); // ALWAYS OK.

Register Variables

The ColdFire back-end compiler automatically allocates local variables and parameters to
registers, according to frequently of use and how many registers are available.

The ColdFire compiler can use these registers for local variables:
* A2 through A5 — for pointers
* D3 through D7 — for integers and pointers.

* FP3 through FP7 — for 64-bit floating-point numbers (provided that you select
Hardware in the Floating Point list box of the ColdFire Processor panel).

If you optimize for speed, the compiler gives preference to variables in loops.

200 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



ColdFire Code Generation
Position-Independent Code

The ColdFire back-end compiler gives preference to variables declared register, but
does not automatically assign them to registers. For example, if the compiler must choose
between an inner-loop variable and a variable declared register, the compiler places
the inner-loop variable in the register.

Position-Independent Code

If you specity position-independent code, the compiler generates code that is the same
regardless of its load address. Different processes of your application can share such code.

Listing 19.2 Position Independent Code

int relocatableAlpha() ;
int (*alpha) ()=relocatableAlpha;

Follow these steps to enable the PIC compiler and runtime support:
1. Adda .picdynrel section to the linker command file.
2. Enable PIC generation in the processor settings panel.

3. Customize and recompile the runtime to support your loading routine.

Cryptographic Acceleration Instructions

MCUS52235 and related ColdFire-family processors have a cryptography acceleration unit
(CAU). This instruction-level coprocessor speeds up software-based encryption/
decryption. The CAU enhances these actions for the DES, 3DES, AES, MDS5, and SHA-1
encryption algorithms.

Table 19.2 contrasts megabyte-per-second performance of regular software and the CAU
for several encryption algorithms, noting the CAU improvement.

Table 19.2 CAU Performance Improvement

Algorithm Software CAU Improvement
DES, 3DES 2 82 41 times
AES-128 9 99 11 times
MD5 47 118 2.5 times
SHA-1 22 55 2.5 times

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 201




y
A

ColdFire Code Generation
Cryptographic Acceleration Instructions

To access the CAU, you use generic instructions that identify the CAU coprocessor and
include appropriate CAU commands.

NOTE  Syntax (prototypes) of this text is correct if the CAU is coprocessor 0. For an
implementation that includes the CAU as coprocessor 1, you would have to
substitute 1 for O in the instructions.

Table 19.3 lists the CAU instructions.

Table 19.3 ColdFire CAU Commands

This instruction... performs this operation
ADR Add to register

ADRA Add register to accumulator
AESC AES column operation
AESIC Inverse AES column operation
AESIR Inverse AES shift rows
AESIS Inverse AES substitution
AESR AES shift rows

AESS AES substitution

CNOP Coprocessor no operation
DESK DES key setup

DESR DES round

HASH Hash function

ILL lllegal command

LDR Load register

MDS Message digest shift

MVAR Move accumulator to register
MVRA Move register to accumulator
RADR Reverse and add to register
ROTL Rotate left

202 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



ColdFire Code Generation
Cryptographic Acceleration Instructions

Table 19.3 ColdFire CAU Commands (continued)

This instruction...

performs this operation

SHS Secure hash shift
STR Store register
XOR Exclusive or

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 203



V¥ ¢
i

ColdFire Code Generation
Cryptographic Acceleration Instructions

204 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



20

ColdFire Runtime Libraries

The CodeWarrior tool chain includes libraries conforming to ISO/IEC-standards for C and
C++, runtime libraries, and other code. CodeWarrior tools come with prebuilt
configurations of these libraries with variants for:

* integer size

 hardware floating-point operations

* different applications binary interfaces (ABIs)
* UART control

* console input/output support

This chapter explains how to use prebuilt libraries, and how to create reduced working-set
libraries. This chapter consists of these sections:

e MSL for ColdFire Development

¢ Runtime Libraries

NOTE  Withrespect to the Main Standard Libraries (MSL) for C and C++, this chapter
is an extension of the MSL C Reference and the MSL C++ Reference. Consult
those manuals for general information.

MSL for ColdFire Development

The Main Standard Library provides the libraries described in the ISO/IEC standards for C
and C++. MSL also provides some extensions to the standard libraries.

¢ Customizing MSL Libraries
e Using MSL for ColdFire
e Serial I/O and UART Libraries

* Reduced Working Set Libraries
e Memory, Heaps, and Other Libraries

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 205



|
y

'
A

ColdFire Runtime Libraries
MSL for ColdFire Development

Customizing MSL Libraries

Full compliance with the ISO/IEC standards can increase code size — a problem if you
must run an application in a small memory, or if you require more efficient memory usage.
In such a case, you can discard library files whose functionality you do not need.

In addition to compiled binaries, the CodeWarrior development tools include source code
and project files for MSL so that you can customize the libraries.

NOTE  The MCF52235 and related processors have smaller memories than many other
members of the ColdFire family. Accordingly, C and C++ libraries include
special, small library files, appropriate for such limited-memory devices. The
names of these small library files include the designation SZ_.

Using MSL for ColdFire

Your CodeWarrior installation includes the Main Standard Libraries (MSL), a complete C
and C++ library that you can use in your embedded projects. The installation includes all
the source files necessary to build MSL as well as project files for different MSL
configurations.

NOTE  If an MSL version already is on your computer, the CodeWarrior installer
installs only the additional MSL files necessary for ColdFire projects.

The names of library files follow this pattern, which Table 20.1 explains:

Language IO Int_size CF FPU ABI Position Size MSL.a

Table 20.1 MSL Library Name Parameters

Parameter Value Specifies
Language Cc_ C language
C++_ C++ language
IO TRK_ Console IO
Int_size 2i_ Code generation with 2-byte integers
41_ Code generation with 4-byte integers
CF_ CF_ Code generation for a ColdFire target processor
FPU FPU_ Floating-point support
206 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



ColdFire Runtime Libraries
MSL for ColdFire Development

Table 20.1 MSL Library Name Parameters (continued)

Parameter Value Specifies
ABI (nothing) Code generation with the compact ABI
RegABI_ Code generation with the register ABI
StdABI_ Code generation with the standard ABI
Position PI_ Code generation with position-independent code
and data
Size SZ_ Small libraries working set
MSL.a MSL.a Library name constant (do not change)

For example, the name C_4i_CF_MSL. a is the fully compliant, standard C library using
4-byte integers and the compact ABI.

Another example is C++_41_CF_RegABI_PI_SZ_MSL.a — the reduced working-set
C++ library using 4-byte integers, the register ABI, and position-independent code and
data.

NOTE 1. As C++ libraries are built over C libraries, a C++ application almost always
requires a C library for linking.
2. As C++ relies on low-level C functionality for IO, TRK__ is not part of any
C++-library file names.

The factory configuration for all libraries uses:
* far code and data models
* no .sdata section
* no PC-relative strings
* no A6 frames (except for C++ exception handling)
« full optimization with emphasis on reducing code size

Fully compliant, non-FPU libraries use ISA_A instructions; FPU libraries use ISA_B
instructions. Library code does not depend on the MAC or EMAC. The startup code
(E68k_startup.c) sets the initial values of the SR, A7, and A5 registers. Otherwise,
the libraries do not manipulate system registers.

The C and C++ libraries include special, small library files, appropriate for use with
MCF52235 and related processors, which have smaller memories than many other
members of the ColdFire family. These files, which use ISA_A instructions, include the
designation SZ__ in their names.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 207



3
4

y
A

ColdFire Runtime Libraries
MSL for ColdFire Development

Table 20.2 lists the MSL C libraries — which are in subdirectory
\E68K_Support\msl\MSL_C\MSL_E68k\Lib of your CodeWarrior installation

directory.

Table 20.3 lists the MSL C++ libraries — which are in subdirectory
\E68K_Support\msl\MSL_C++\MSL_E68k\Lib of your CodeWarrior

installation directory.

Table 20.4 lists MSL EC++ libraries — which are in subdirectory
\E68K_Support\msl\ (MSL_EC++) \MSL_E68k\Lib of your CodeWarrior

installation directory.

Table 20.2 C Libraries

Category Library File Description
Fully C_2i_CF_MSL.a 2-byte integers, compact ABI
Compliant
UART 1O C_2i_ CF_PI_MSL.a 2-byte integers, compact ABI, position-
independent
C_2i_CF_RegABI_MSL.a 2-byte integers, register ABI
C_2i_CF_RegABI_PI_MSL.a 2-byte integers, register ABI, position-
independent
C_2i_CF_StdABI_MSL.a 2-byte integers, standard ABI
C_2i_ CF_StdABI_PI_MSL.a 2-byte integers, standard ABI, position-
independent
C_4i_CF_MSL.a 4-byte integers, compact ABI
C_4i_CF_PI_MSL.a 4-byte integers, compact ABI, position-
independent
C_4i_CF_RegABI_MSL.a 4-byte integers, register ABI
C_4i_CF_RegABI_PI_MSL.a 4-byte integers, register ABI, position-
independent
C_4i_CF_StdABI_MSL.a 4-byte integers, standard ABI
C_4i_CF_StdABI_PI_MSL.a 4-byte integers, standard ABI, position-
independent
208 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition




ColdFire Runtime Libraries
MSL for ColdFire Development

Table 20.2 C Libraries (continued)

Category Library File Description

Fully C_TRK_2i_CF_MSL.a 2-byte integers, compact ABI
Compliant

Console |10 C_TRK_2i_CF_PI_MSL.a 2-byte integers, compact ABI, position-

independent

C_TRK_2i_CF_RegABI_MSL.a

2-byte integers, register ABI

C_TRK_2i_CF_RegABI_PI_MSL.a

2-byte integers, register ABI, position-
independent

C_TRK_2i_CF_StdABI_MSL.a

2-byte integers, standard ABI

C_TRK_2i_CF_StdABI_PI_MSL.a

2-byte integers, standard ABI, position-
independent

C_TRK_4i_CF_MSL.a

4-byte integers, compact ABI

C_TRK_4i_CF_PI_MSL.a

4-byte integers, compact ABI, position-
independent

C_TRK_4i_CF_RegABI_MSL.a

4-byte integers, register ABI

C_TRK_4i_CF_RegABI_PI_MSL.a

4-byte integers, register ABI, position-
independent

C_TRK_4i_CF_StdABI_MSL.a

4-byte integers, standard ABI

C_TRK_4i_CF_StdABI_PI_MSL.a

4-byte integers, standard ABI, position-
independent

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 209



y
A

ColdFire Runtime Libraries
MSL for ColdFire Development

Table 20.2 C Libraries (continued)

Category Library File Description
Small UART C_2i_CF_SZ_MSL.a 2-byte integers, compact ABI
10
C_2i_ CF_PI_SZ MSL.a 2-byte integers, compact ABI, position-
independent
C_2i_CF_RegABI_SZ MSL.a 2-byte integers, register ABI
C_2i_ CF_RegABI_PI_SZ MSL.a 2-byte integers, register ABI, position-
independent
C_2i_ CF_StdaBI_SzZ _MSL.a 2-byte integers, standard ABI
C_2i_CF_StdABI_PI_SZ_MSL.a 2-byte integers, standard ABI, position-
independent
C_4i_CF_SzZ_MSL.a 4-byte integers, compact ABI
C_4i_ CF_PI_SZ MSL.a 4-byte integers, compact ABI, position-
independent
C_4i_CF_RegABI_SZ MSL.a 4-byte integers, register ABI
C_4i_ CF_RegABI_PI_SZ MSL.a 4-byte integers, register ABI, position-
independent
C_4i_CF_StdABI_Sz_MSL.a 4-byte integers, standard ABI
C_4i_CF_StdABI_PI_SZ_MSL.a 4-byte integers, standard ABI, position-
independent

210 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition




ColdFire Runtime Libraries
MSL for ColdFire Development

Table 20.2 C Libraries (continued)

Category

Library File

Description

Small Console
10

C_TRK_2i_CF_SZ_MSL.a

2-byte integers, compact ABI

C_TRK_2i_CF_PI_SZ_MSL.a

2-byte integers, compact ABI, position-
independent

C_TRK_2i_CF_RegABI_SZ_MSL.a

2-byte integers, register ABI

C_TRK_2i_CF_RegABI_PI_SZ MSL.a

2-byte integers, register ABI, position-
independent

C_TRK_2i_CF_StdABI_SZ_MSL.a

2-byte integers, standard ABI

C_TRK_2i_CF_StdABI_PI_SZ MSL.a

2-byte integers, standard ABI, position-
independent

C_TRK_4i_CF_SZ_MSL.a

4-byte integers, compact ABI

C_TRK_4i_CF_PI_SZ_MSL.a

4-byte integers, compact ABI, position-
independent

C_TRK_4i_CF_RegABI_SZ_MSL.a

4-byte integers, register ABI

C_TRK_4i_CF_RegABI_PI_SZ _MSL.a

4-byte integers, register ABI, position-
independent

C_TRK_4i_CF_StdABI_SZ _MSL.a

4-byte integers, standard ABI

C_TRK_4i_CF_StdABI_PI_SZ MSL.a

4-byte integers, standard ABI, position-
independent

HW Floating-
Point UART 10

C_4i_CF_FPU_MSL.a

4-byte integers, compact ABI

C_4i_CF_FPU_PI_MSL.a

4-byte integers, compact ABI, position-
independent

C_4i_CF_FPU_RegABI_MSL.a

4-byte integers, register ABI

C_4i_CF_FPU_RegABI_PI_MSL.a

4-byte integers, register ABI, position-
independent

C_4i_CF_FPU_StdABI_MSL.a

4-byte integers, standard ABI

C_4i_CF_FPU_StdABI_PI_MSL.a

4-byte integers, standard ABI, position-
independent

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 211




'
A

ColdFire Runtime Libraries
MSL for ColdFire Development

Table 20.2 C Libraries (continued)

Category

Library File

Description

HW Floating-
Point Console
10

C_TRK_4i_CF_FPU_MSL.a

4-byte integers, compact ABI

C_TRK_4i_CF_FPU_PI_MSL.a

4-byte integers, compact ABI, position-
independent

C_TRK_4i_CF_FPU_RegABI_MSL.a

4-byte integers, register ABI

C_TRK_4i_CF_FPU_RegABI_PI_MSL.

a

4-byte integers, register ABI, position-
independent

C_TRK_4i_CF_FPU_StdABI_MSL.a

4-byte integers, standard ABI

C_TRK_4i_CF_FPU_StdABI_PI_MSL.

a

4-byte integers, standard ABI, position-
independent

212

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition




ColdFire Runtime Libraries
MSL for ColdFire Development

Table 20.3 C++ Libraries

Category Library File Description
Fully C++_2i CF_MSL.a 2-byte integers, compact ABI
Compliant

C++_2i_CF_PI_MSL.a

2-byte integers, compact ABI, position-
independent

C++_2i_CF_RegABI_MSL.a

2-byte integers, register ABI

C++_2i_ CF_RegABI_PI_MSL.a

2-byte integers, register ABI, position-
independent

C++_2i_ CF_StdABI_MSL.a

2-byte integers, standard ABI

C++_2i_ CF_StdABI_PI_MSL.a

2-byte integers, standard ABI, position-
independent

C++_4i_CF_MSL.a

4-byte integers, compact ABI

C++_4i_CF_PI_MSL.a

4-byte integers, compact ABI, position-
independent

C++_41i_CF_RegABI_MSL.a

4-byte integers, register ABI

C++_4i_CF_RegABI_PI_MSL.a

4-byte integers, register ABI, position-
independent

C++_4i_ CF_StdABI_MSL.a

4-byte integers, standard ABI

C++_4i_ CF_StdABI_PI_MSL.a

4-byte integers, standard ABI, position-
independent

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 213




y
A

ColdFire Runtime Libraries
MSL for ColdFire Development

Table 20.3 C++ Libraries (continued)

Category Library File Description
Small Working C++_21_CF_SZ_MSL.a 2-byte integers, compact ABI
Set
C++_21_CF_PI_SZ_MSL.a 2-byte integers, compact ABI, position-
independent
C++_21_CF_RegABI_SZ _MSL.a 2-byte integers, register ABI
C++_21_CF_RegABI_PI_SZ MSL.a 2-byte integers, register ABI, position-
independent
C++_21i CF_StdABI_SZ_MSL.a 2-byte integers, standard ABI
C++_21_CF_StdABI_PI_SZ_MSL.a 2-byte integers, standard ABI, position-
independent
C++_4i_CF_SZ_MSL.a 4-byte integers, compact ABI
C++_41i CF_PI_SZ _MSL.a 4-byte integers, compact ABI, position-
independent
C++_41_CF_RegABI_SZ _MSL.a 4-byte integers, register ABI
C++_41_CF_RegABI_PI_SZ MSL.a 4-byte integers, register ABI, position-
independent
C++_41_ CF_StdABI_SZ_MSL.a 4-byte integers, standard ABI
C++_41i_CF_StdABI_PI_SZ_MSL.a 4-byte integers, standard ABI, position-
independent
HW Floating- C_4i_CF_FPU_MSL.a 4-byte integers, compact ABI
Point UART 10
C_4i_CF_FPU_PI_MSL.a 4-byte integers, compact ABI, position-
independent
C_4i_CF_FPU_RegABI_MSL.a 4-byte integers, register ABI
C_4i_CF_FPU_RegABI_PI_MSL.a 4-byte integers, register ABI, position-
independent
C_41i_CF_FPU_StdABI_MSL.a 4-byte integers, standard ABI
C_4i_CF_FPU_StdABI_PI_MSL.a 4-byte integers, standard ABI, position-
independent
214 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition




ColdFire Runtime Libraries
MSL for ColdFire Development

Table 20.3 C++ Libraries (continued)

Category Library File Description
HW Floating- C++_41_CF_FPU_MSL.a 4-byte integers, compact ABI
Point
C++_41_CF_FPU_PI_MSL.a 4-byte integers, compact ABI, position-
independent
C++_41_ CF_FPU_RegABI_MSL.a 4-byte integers, register ABI
C++_41_CF_FPU_RegABI_PI_MSL.a 4-byte integers, register ABI, position-
independent
C++_41i_ CF_FPU_StdABI_MSL.a 4-byte integers, standard ABI
C++_41i_CF_FPU_StdABI_PI_MSL.a 4-byte integers, standard ABI, position-
independent

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 215



y
A

ColdFire Runtime Libraries
MSL for ColdFire Development

Table 20.4 EC++ Libraries

Category Library File Description
Fully EC++_21_CF_MSL.a 2-byte integers, compact ABI
Compliant
EC++_21_CF_PI_MSL.a 2-byte integers, compact ABI, position-
independent
EC++_21_ CF_RegABI_MSL.a 2-byte integers, register ABI
EC++_21_CF_RegABI_PI_MSL.a 2-byte integers, register ABI, position-
independent
EC++_21_CF_StdABI_MSL.a 2-byte integers, standard ABI
EC++_2i_ CF_StdABI_PI_MSL.a 2-byte integers, standard ABI, position-
independent
EC++_41_CF_MSL.a 4-byte integers, compact ABI
EC++_41i_CF_PI_MSL.a 4-byte integers, compact ABI, position-
independent
EC++_41i_ CF_RegABI_MSL.a 4-byte integers, register ABI
EC++_41_ CF_RegABI_PI_MSL.a 4-byte integers, register ABI, position-
independent
EC++_41i_ CF_StdABI_MSL.a 4-byte integers, standard ABI
EC++_41i_CF_StdABI_PI_MSL.a 4-byte integers, standard ABI, position-
independent
Hardware C_4i_CF_FPU_MSL.a 4-byte integers, compact ABI
floating point,
UART input/ C_4i_CF_FPU_PI_MSL.a 4-byte integers, compact ABI, position-
output independent
C_4i_CF_FPU_RegABI_MSL.a 4-byte integers, register ABI
C_4i_CF_FPU_RegABI_PI_MSL.a 4-byte integers, register ABI, position-
independent
C_4i_CF_FPU_StdABI_MSL.a 4-byte integers, standard ABI
C_4i_CF_FPU_StdABI_PI_MSL.a 4-byte integers, standard ABI, position-
independent
216 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition




ColdFire Runtime Libraries
MSL for ColdFire Development

Table 20.4 EC++ Libraries (continued)

Category

Library File

Description

Hardware
floating-point

EC++_4i_CF_FPU_MSL.a

4-byte integers, compact ABI

EC++_4i_CF_FPU_PI_MSL.a

4-byte integers, compact ABI, position-
independent

EC++_4i_CF_FPU_RegABI_MSL.a

4-byte integers, register ABI

EC++_4i_CF_FPU_RegABI_PI_MSL.a

4-byte integers, register ABI, position-
independent

EC++_41i_CF_FPU_StdABI_MSL.a

4-byte integers, standard ABI

EC++_41i_CF_FPU_StdABI_PI_MSL.a

4-byte integers, standard ABI, position-
independent

Serial I/0 and UART Libraries

The ColdFire Metrowerks Standard Libraries support console I/O through the serial port.
This support includes:

» Standard C-library I/O.
* All functions that do not require disk 1/O.

* Memory functionsmalloc () and free().

To use C or C++ libraries for console I/0, you must include a special serial UART driver
library in your project. These driver library files are in folder
E68K_Tools\MetroTRK\Transport\m68k\.

Table 20.5 lists target boards and corresponding UART library files.

Table 20.5 Serial I/O UART Libraries

Board

Filename

CF5206e SBC

mot_sbc_5206e_serial\Bin\UART_SBC_5206e_Aux.a

CF5206e LITE

mot_5206e_lite_serial\Bin\UART_5206e_lite_Aux.a

CF5307 SBC mot_sbc_5307_serial\Bin\UART_SBC_5307_Aux.a
CF5407 SBC mot_sbc_5407_serial\Bin\UART_SBC_5407_Aux.a
CF5249 SBC mot_sbc_5249_serial\Bin\UART_SBC_5249_Aux.a

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 217




V¥ ¢
i

ColdFire Runtime Libraries
MSL for ColdFire Development

Reduced Working Set Libraries

Before the current (6.3) software release, specialists defined a reduced-functionality set of
files, to reduce library size. This idea became particularly appropriate for MCF52235 and
related processors, which have smaller memories than other ColdFire-family devices.
When you specify such a target processor — either by selecting it in a settings panel or
using it as a -proc command-line option — CodeWarrior software automatically
specifies this library-file working set as the default.

However, you can control this library specification at the topmost declaration level, such
as the preprocessor settings panel or a prefix file. To do so, define

__ CF_USE_FULL_LIBSor__ CF_USE_SMALL_LIBS. This specification affects
available declarations, so you will see its effects at compilation time.

As the reduced working set is a proper subset of the fully compliant library, using the full
working set in declarations, but specifying small library files causes:

» Link errors for completely removed functions, or
* Reduced functionality, such as printf inability to display floating-point values.

Using the reduced working set in declarations, but specifying fully compliant library files
bloats your code.

Table 20.7 summarizes guidance for specitying libraries.

Table 20.6 Specifying Libraries

Base Processor/Define Library Set
Processor MCF5213, Reduced working set (Sz_ in name)
MCF5223x,
MCF5222x
Other ColdFire Full compliance set (no Sz_ in name)
Macro #define _ CF_USE_SMALL_LIBS Reduced working set (Sz_ in name)
#define _ CF_USE_FULL_LIBS Full compliance set (no Sz_ in name)

Beyond affecting code size, your library-set specification sets or clears certain
configuration flags. In turn, this affects certain functionality. Table 20.7 explains these
effects:

* For fully compliant libraries
* For reduced functionality libraries before the 6.3 release

» For reduced functionality libraries beginning with the 6.3 release

218 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



ColdFire Runtime Libraries

MSL for ColdFire Development

Table 20.7 Configuration-Flag Functionality

Flag Full | <6.3 | 6.3+ | Functionality
_MSL_THREADSAFE off off off no threads on bareboard
_MSL_C_LOCALE_ONLY on on on default, smallest size
_MSL_CURATE_BUT_LARGE_ANSI_FP off off off default
_MSIL_STRERROR_KNOWS_ERROR_NAMES | off off off default

_MSL_ASSERT DISPLAYS_FUNC off off off default

_MSL_C99 on on off C99 standard compliance
_MSIL_LONGLONG on on off int longlong support
_MSL_WIDE_CHAR on on off multi-byte char support
_MSL_FLOATING_POINT on on off floating point operations
_MSL_FLOATING_POINT IO on off off printf knows floating point
_MSL_NO_WCHART_C_SUPPORT off off on C multi-byte char support
_MSL_NO_WCHART_CPP_SUPPORT off off on C++ multi-byte char support
_MSL_NO_MATH_LIB off off on floating point operations
_MSL_NO_CONDITION off off on C++ threading

Memory, Heaps, and Other Libraries

The heap you create in your linker command file becomes the default heap, so it does not
need initialization. Additional memory and heap points are:

* To have the system link memory-management code into your code, callmalloc ()

ornew ().

¢ Initialize multiple memory pools to form a large heap.

* To create each memory pool, call init_alloc (). (You do not need to initialize
the memory pool for the default heap.)

You may be able to use another standard C library with CodeWarrior projects. You should
check the stdarg.h file in this other standard library and in your runtime libraries.

Additional points are:

* The CodeWarrior ColdFire C/C++ compiler generates correct variable-argument
functions only with the header file that the MSL include.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition

219



'
A

ColdFire Runtime Libraries
Runtime Libraries

* You may find that other implementations are also compatible.

* You may also need to modify the runtime to support a different standard C library;
you must include __va_arg.c.

e Other C++ libraries are not compatible.

NOTE  If you are working with any kind of embedded OS, you may need to customize
MSL to work properly with that OS.

Runtime Libraries

Every ColdFire project must include a runtime library, which provides basic runtime
support, basic initialization, system startup, and the jump to the main routine. RAM-based
debug is the primary reason behind runtime-library development for ColdFire boards, so
you probably must modify a library for your application.

Find your setup in Table 20.8, then include the appropriate runtime library file:
* For a C project, use the file that starts with C_.
* For a C++ project, use the file that starts with Cpp_.

¢ All these files are in folder \E68K_Support\Runtime)\ (Sources).

220 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



ColdFire Runtime Libraries
Runtime Libraries

Table 20.8 Runtime Libraries

Category

Library File

Description

C

C_2i_CF_Runtime.a

2-byte integers, compact ABI

C_2i_CF_PI_Runtime.a

2-byte integers, compact ABI,
position-independent

C_2i_CF_RegABI_Runtime.a

2-byte integers, register ABI

C_2i_CF_RegABI_PI_Runtime.a

2-byte integers, register ABI,
position-independent

C_2i_CF_StdABI_Runtime.a

2-byte integers, standard ABI

C_2i_CF_StdABI_PI_Runtime.a

2-byte integers, standard ABI,
position-independent

C_4i_CF_Runtime.a

4-byte integers, compact ABI

C_4i_CF_PI_Runtime.a

4-byte integers, compact ABI,
position-independent

C_4i_CF_RegABI_Runtime.a

4-byte integers, register ABI

C_4i_CF_RegABI_PI_Runtime.a

4-byte integers, register ABI,
position-independent

C_4i_CF_StdABI_Runtime.a

4-byte integers, standard ABI

C_4i_CF_StdABI_PI_Runtime.a

4-byte integers, standard ABI,
position-independent

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 221



y
A

ColdFire Runtime Libraries
Runtime Libraries

Table 20.8 Runtime Libraries (continued)

Category Library File Description
C Floating C_2i_CF_FPU_SZ_Runtime.a 2-byte integers, compact ABI
Point

C_2i_CF_FPU_PI_SZ_Runtime.a 2-byte integers, compact ABI,

position-independent

C_2i_CF_FPU_RegABI_SZ_Runtime.a 2-byte integers, register ABI

C_2i_CF_FPU_RegABI_PI_SZ Runtime.a 2-byte integers, register ABI,
position-independent

C_2i_CF_FPU_StdABI_SZ_Runtime.a 2-byte integers, standard ABI

C_2i_CF_FPU_StdABI_PI_SZ_Runtime.a 2-byte integers, standard ABI,
position-independent

C_4i_CF_FPU_SZ_Runtime.a 4-byte integers, compact ABI

C_4i_CF_FPU_PI_SZ_Runtime.a 4-byte integers, compact ABI,
position-independent

C_4i_CF_FPU_RegABI_SZ_Runtime.a 4-byte integers, register ABI

C_4i_CF_FPU_RegABI_PI_SZ Runtime.a 4-byte integers, register ABI,
position-independent

C_4i_CF_FPU_StdABI_SZ_Runtime.a 4-byte integers, standard ABI

C_4i_CF_FPU_StdABI_PI_SZ_Runtime.a 4-byte integers, standard ABI,
position-independent

222 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition




ColdFire Runtime Libraries
Runtime Libraries

Table 20.8 Runtime Libraries (continued)

Category

Library File

Description

C++, EC++

Cpp_2i_CF_Runtime.a

2-byte integers, compact ABI

Cpp_2i_CF_PI_Runtime.a

2-byte integers, compact ABI,
position-independent

Cpp_2i_CF_RegABI_Runtime.a

2-byte integers, register ABI

Cpp_2i_CF_RegABI_PI_Runtime.a

2-byte integers, register ABI,
position-independent

Cpp_2i_CF_StdABI_Runtime.a

2-byte integers, standard ABI

Cpp_2i_CF_StdABI_PI_Runtime.a

2-byte integers, standard ABI,
position-independent

Cpp_4i_CF_Runtime.a

4-byte integers, compact ABI

Cpp_4i_CF_PI_Runtime.a

4-byte integers, compact ABI,
position-independent

Cpp_4i_CF_RegABI_Runtime.a

4-byte integers, register ABI

Cpp_4i_CF_RegABI_PI_Runtime.a

4-byte integers, register ABI,
position-independent

Cpp_4i_CF_StdABI_Runtime.a

4-byte integers, standard ABI

Cpp_4i_CF_StdABI_PI_Runtime.a

4-byte integers, standard ABI,
position-independent

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition

223




y
A

ColdFire Runtime Libraries
Runtime Libraries

Table 20.8 Runtime Libraries (continued)

Category Library File Description

C++, EC++ Cpp_2i_CF_FPU_SZ_Runtime.a 2-byte integers, compact ABI

Floating-Point
Cpp_2i_CF_FPU_PI_SZ_Runtime.a 2-byte integers, compact ABI,

position-independent

Cpp_2i_CF_FPU_RegABI_SZ_Runtime.a 2-byte integers, register ABI

Cpp_21_CF_FPU_RegABI_PI_SZ Runtime.a | 2-byte integers, register ABI,
position-independent

Cpp_2i_CF_FPU_StdABI_SZ_Runtime.a 2-byte integers, standard ABI

Cpp_2i_CF_FPU_StdABI_PI_SZ_Runtime.a | 2-byte integers, standard ABI,
position-independent

Cpp_4i_CF_FPU_SZ_Runtime.a 4-byte integers, compact ABI

Cpp_4i_CF_FPU_PI_SZ_Runtime.a 4-byte integers, compact ABI,
position-independent

Cpp_4i_CF_FPU_RegABI_SZ_Runtime.a 4-byte integers, register ABI

Cpp_41i_CF_FPU_RegABI_PI_SZ Runtime.a | 4-byte integers, register ABI,
position-independent

Cpp_41i_CF_FPU_StdABI_SZ_Runtime.a 4-byte integers, standard ABI

Cpp_41i_CF_FPU_StdABI_PI_SZ_Runtime.a | 4-byte integers, standard ABI,
position-independent

NOTE  ABI corresponds directly to the parameter-passing setting of the ColdFire
Processor Settings panel (Standard, Compact or Register).
If your target supports floating points, you should use an FPU-enabled runtime
library file.

Position-Independent Code

To use position-independent code or position-independent data in your program, you must
customize the runtime library. Follow these steps:

224 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition




ColdFire Runtime Libraries
Runtime Libraries

1. Load project file MSL_Runt imeCF . mcp, from the folder
\E68K_Support\runtime.

2. Modify runtime functions.
Open file E68K_startup.c.

b. As appropriate for your application, change or remove runtime function
_ block_copy_section. (This function relocates the PIC/PID sections in the
absence of an operating system.)

c. As appropriate for your application, change or remove runtime function
_ fix_addr_references. (This function creates the relocation tables.)

3. Change the prefix file.

a. Open the C/C++ preference panel for your target.

b. Make sure this panel specifies prefix file PICPIDRuntimePrefix.h.
4. Recompile the runtime library for your target.

Once you complete this procedure, you are ready to use the modified runtime library in
your PIC/PID project. Source-file comments and runtime-library release notes may
provide additional information.

Board Initialization Code

Your CodeWarrior development tools come with several basic, assembly-language
hardware initialization routines, which may be useful in your programs.

You need not include this code when you are debugging, as the debugger or debug kernel
already performs the same board initialization.

You should have your program do as much initialization as possible, minimizing the
initializations that the configuration file performs. This facilitates the transition from
RAM-based debugging to Flash/ROM.

Custom Modifications

As text above shows, specific library files support specific functionality. If target-device
memory is particularly small, you may need to delete library files for functionality that
your application does not use. Follow this guidance:

* Configuration settings — Change them in projects or makefiles. Generally,
modifying flags from configuration header ansi_prefix.CF.size.his
sufficient to modify the working set. Sometimes, however, you also must modify
header ansi_prefix.e68k.h.

* Projects — The easiest way to create a new project is starting from a copy of a full-
compliance project. Turning off such flags as floating point forces you to remove
some files from the project file list. But this is appropriate, as your project will not

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 225



3
4

'
A

ColdFire Runtime Libraries

Runtime Libraries

need those files. Although changing the basic configuration can require editing all

targets of all project files, usually modifying the single targets your application uses
is sufficient.

Makefules — Makefile targets already are set up to build any library; the CFLAGS
macro defines the basic configuration. Target all does not include all targets, but a
commented variation of all these targets is present in every makefile.

226

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



g |

21
Predefined Symbols

The compiler preprocessor has prefedined macros and the compiler simulates variable
definitions that describe the compile-time environment and properties of the target
processor.

This chapter lists the predefined symbols that all CodeWarrior compilers make available.

__cplusplus
Preprocessor macro defined if compiling C++ source code.

Syntax
_ _cplusplus

Remarks

The compiler defines this macro when compiling C++ source code. This macro is
undefined otherwise.

_ DATE__

Preprocessor macro defined as the date of compilation.

Syntax

_ DATE_

Remarks

The compiler defines this macro as a character string representation of the date of
compilation. The format of this string is

"Mmm dd yyyy"

where Mmm is the a three-letter abbrevation of the month, dd is the day of the
month, and yyyy is the year.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 227



Predefined Symbols

__embedded_cplusplus

Defined as 1 when compiling embedded C++ source code, undefined otherwise.

Syntax

__ embedded_cplusplus

Remarks

The compiler defines this macro as 1 when the compiler’s settings are configured
to restrict the compiler to translate source code that conforms to the Embedded
C++ proposed standard. The compiler does not define this macro otherwise.

__FILE__
Preprocessor macro of the name of the source code file being compiled.

Syntax

_ FILE__

Remarks

The compiler defines this macro as a character string literal value of the name of
the file being compiled, or the name specified in the last instance of a #1ine
directive.

__func__
Predefined variable of the name of the function being compiled.

Prototype

static const char _ func_ [] = "function-name";

Remarks

The compiler implicitly defines this variable at the beginning of each function if
the function refers to ___func__. The character string contained by this array,
function-name, is the name of the function being compiled.

228 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Predefined Symbols

This implicit variable is undefined outside of a function body. This variable is also
undefined when C99 (ISO/IEC 9899-1999) or GCC (GNU Compiler Collection)
extension settings are off.

__FUNCTION__
Predefined variable of the name of the function being compiled.
Prototype
static const char _ FUNCTION_ [] = "function-name";
Remarks

The compiler implicitly defines this variable at the beginning of each function if
the function refers to __ FUNCTION__ . The character string contained by this
array, function-name, is the name of the function being compiled.

This implicit variable is undefined outside of a function body. This variable is also
undefined when C99 (ISO/IEC 9899-1999) or GCC (GNU Compiler Collection)
extension settings are off.

__ide_target()
Preprocessor operator for querying the IDE about the active build target.

Syntax
__ide_target (" target_name")
target-name

The name of a build target in the active project in the CodeWarrior IDE.

Remarks

Expands to 1 if target_name is the same as the active build target in the
CodeWarrior IDE’s active project. Expands to O otherwise. The ISO standards do
not specify this symbol.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 229



Predefined Symbols

__LINE__

Preprocessor macro of the number of the line of the source code file being compiled.

Syntax
__ LINE__

Remarks

The compiler defines this macro as a integer value of the number of the line of the
source code file that the compiler is translating. The #1ine directive also affects
the value that this macro expands to.

_ MWERKS__

Preprocessor macro defined as the version of the CodeWarrior compiler.

Syntax
_ MWERKS_

Remarks

CodeWarrior compilers issued after 1995 define this macro with the compiler’s
version. For example, if the compiler version is 4.0, the value of __ MWERKS___is
0x4000.

This macro is defined as 1 if the compiler was issued before the CodeWarrior
CWT7 that was released in 1995.

The ISO standards do not specify this symbol.

_ PRETTY_FUNCTION__

Predefined variable containing a character string of the “unmangled” name of the C++
function being compiled.

230 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Predefined Symbols

Syntax

Prototype

static const char _ PRETTY FUNCTION__ [] = "function-name";

Remarks

The compiler implicitly defines this variable at the beginning of each function if
the function refers to __ PRETTY_FUNCTION__ . This name, function-name, is
the same identifer that appears in source code, not the “mangled” identifier that the
compiler and linker use. The C++ compiler “mangles” a function name by
appending extra characters to the function’s identifier to denote the function’s
return type and the types of its parameters.

The ISO/IEC 14882-1998 C++ standard does not specify this symbol. This implicit
variable is undefined outside of a function body. This symbol is only defined if the
GCC extension setting is on.

__profile__

Preprocessor macro that specifies whether or not the compiler is generating object code
for a profiler.

Syntax
profile_

Remarks

Defined as 1 when generating object code that works with a profiler. Undefined
otherwise. The ISO standards does not specify this symbol.

__STDC__

Defined as 1 when compiling ISO/IEC Standard C source code, undefined otherwise.

Syntax
__STDC__

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 231



Predefined Symbols

Remarks

The compiler defines this macro as 1 when the compiler’s settings are configured
to restrict the compiler to translate source code that conforms to the ISO/IEC 9899-
1990 and ISO/IEC 9899-1999 standards. The compiler does not define this macro
otherwise.

_TIME__

Preprocessor macro defined as a character string representation of the time of compilation.

Syntax

_ TIME__

Remarks

The compiler defines this macro as a character string representation of the time of
compilation. The format of this string is

"hh:mm:ss"

where hh is a 2-digit hour of the day, mm is a 2-digit minute of the hour, and ss is a
2-digit second of the minute.

232 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



22

ColdFire Predefined
Symbols

The compiler preprocessor has prefedined macros and the compiler simulates variable
definitions that describe the compile-time environment and properties of the target
processor.

This chapter lists the predefined symbols made available by the CodeWarrior compiler for
ColdFire processors.

_ BACKENDVERSION__

Preprocessor macro defined to describe the version of CodeWarrior compiler’s back-end.

Syntax

#define _ BACKENDVERSION___ version

Remarks

The compiler defines this macro to be a character string literal containing a
numeric value.

__COLDFIRE__

Preprocessor macro defined to describe the target ColdFire processor.

Syntax

#define _ COLDFIRE__ processor._code

Remarks

The compiler defines this macro to describe the ColdFire processor that the
compiler is generating object code for. Table 22.1 lists the ColdFire processors that
each value of processor_code represents.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 233



ColdFire Predefined Symbols

Table 22.1 ColdFire processor models and compiler codes

When the compiler targets this
ColdFire processor...

then the compiler defines
__COLDFIRE__ to this value

MCF5206E 0x206e
MCF5208 0x2008
MCF521X 0x2013
MCF5222X 0x2022
MCF5223X 0x2023
MCF5249 0x2049
MCF5270, MCF5271, MCF5274, 0x2008
MCF5275

MCF5272 0x2072
MCF5280, MCF52801, MCF52802 0x2082
MCF5307 0x3070
MCF532X 0x3020
MCF5407 0x4070
MCF547X 0x4080
MCF548X 0x4080

__STDABI__

Preprocessor macro defined to describe the compiler’s parameter-passing setting.

Syntax
#define _ STDABI__ 0 | 1

Remarks

The compiler defines this macro to be 1 if the compiler is set to use standard
parameter-passing code generation, O otherwise.

234

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



ColdFire Predefined Symbols

__REGABI__
Preprocessor macro defined to describe the compiler’s parameter-passing setting.

Syntax
#define _ REGABI__ 0 | 1

Remarks

The compiler defines this macro to be 1 if the compiler is set to use register-based
parameter-passing code generation, O otherwise.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 235



ColdFire Predefined Symbols

236 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



g |

23

Using Pragmas

The #pragma preprocessor directive specifies option settings to the compiler to control the
compiler and linker’s code generation.

¢ Checking Pragma Settings

» Saving and Restoring Pragma Settings
* Determining Which Settings Are Saved and Restored
 Illegal Pragmas

Checking Pragma Settings

The preprocessor function __option () returns the state of pragma settings at compile-
time. The syntax is

__ option(setting-name)

where setting-name is the name of a pragma that accepts the on, of f, and reset
arguments.

If setting-name is on, __option (setting-name) returns 1. If setting-name is of £,
__option(setting-name) returns 0. If setting-name is not the name of a pragma,
__option(setting-name) returns false. If setting-name is the name of a pragma
that does not accep the on, off, and reset arguments, the compiler issues a warning
message.

Listing 23.1 shows an example.

Listing 23.1 Using the __option() preprocessor function

#if _ option (ANSI_strict)

#include "portable.h" /* Use the portable declarations. */
#else

#include “custom.h” /* Use the specialized declarations. */
#endif

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 237



y
A

Using Pragmas
Saving and Restoring Pragma Settings

Saving and Restoring Pragma Settings

There are some occasions when you would like to apply pragma settings to a piece of
source code independently from the settings in the rest of the source file. For example, a
function might require unique optimization settings that should not be used in the rest of
the function’s source file.

Remembering which pragmas to save and restore is tedious and error-prone. Fortunately,
the compiler has mechanisms that save and restore pragma setings at compile time.
Pragma settings may be saved and restored at two levels:

¢ all pragma settings
* some individual pragma settings

Settings may be saved at one point in a compilation unit (a source code file and the files
that it includes), changed, then restored later in the same compilation unit. Pragma settings
cannot be saved in one source code file then restored in another unless both source code
files are included in the same compilation unit.

Pragmas push and pop save and restore, respectively, most pragma settings in a
compilation unit. Pragmas push and pop may be nested to unlimited depth. Listing 23.2
shows an example.

Listing 23.2 Using push and pop to save and restore pragma settings

/* Settings for this file. */
#pragma opt_unroll_loops on
#pragma optimize_for_size off
void fast_func_A (void)

{

/* L. x/

}

/* Settings for slow_func(). */

#pragma push /* Save file settings. */
#pragma optimization_size 0

void slow_func (void)

{

/* .. */

}

#pragma pop /* Restore file settings. */

void fast_func_B(void)
{

/* .. */

}

238 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Using Pragmas
Determining Which Settings Are Saved and Restored

Pragmas that accept the reset argument perform the same actions as pragmas push and
pop, but apply to a single pragma. A pragma’s on and of £ arguments save the pragma’s
current setting before changing it to the new setting. A pragma’s reset argument
restores the pragma’s setting. The on, off, and reset arguments may be nested to an
unlimited depth. Listing 23.3 shows an example.

Listing 23.3 Using the reset option to save and restore a pragma setting

/* Setting for this file. */
#pragma opt_unroll_loops on

void fast_func_A (void)

{

/* oo x/

}

/* Setting for smallslowfunc(). */

#pragma opt_unroll_loops off
void small_func (void)

{

/* L. F/

}

/* Restore previous setting. */
#pragma opt_unroll_loops reset

void fast_func_B(void)
{

/* L. */

}

Determining Which Settings Are Saved and
Restored

Not all pragma settings are saved and restored by pragmas push and pop. Pragmas that
do not change compiler settings are not affected by push and pop. For example, pragma
message cannot be saved and restored.

Listing 23.4 shows an example that checks if the ANST_strict pragma setting is saved
and restored by pragmas push and pop.

Listing 23.4 Testing if pragmas push and pop save and restore a setting

/* Preprocess this source code. */
#pragma ANSI_strict on

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 239



'
A

Using Pragmas
lllegal Pragmas

#pragma push

#pragma ANSI_strict off

#pragma pop

#if _ option (ANSI_strict)

#error "Saved and restored by push and pop."
#else

#error "Not affected by push and pop."
#endif

lllegal Pragmas

If you enable the illegal pragmas setting, the compiler issues a warning when it encounters
a pragma it does not recognize. For example, the pragma statements in Listing 23.5
generate warnings with the illegal pragmas setting enabled.

Listing 23.5 lllegal Pragmas

#pragma silly data off // WARNING: silly_data is not a pragma.
#pragma ANSI_strict select // WARNING: select is not defined
#pragma ANSI_strict on // OK

Table 23.1 shows how to control the recognition of illegal pragmas..

Table 23.1 Controlling illegal pragmas

To control this option from use this setting

here...

CodeWarrior IDE lllegal Pragmas in the C/C++ Warnings
panel

source code #pragma warn_illpragma

command line -warnings illpragmas

Pragma Scope

The scope of a pragma setting is limited to a compilation unit (a source code file and the
files that it includes).

At the beginning of compilation unit, the compiler uses its default settings. The compiler
then uses the settings specified by the CodeWarrior IDE’s build target or in command-line
options.

240 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition




Using Pragmas
Pragma Scope

The compiler uses the setting in a pragma beginning at the pragma’s location in the
compilation unit. The compilers continues using this setting:

* until another instance of the same pragma appears later in the source code
* until an instance of pragma pop appears later in the source code

* until the compiler finishes translating the compilation unit

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 241



V¥ ¢
i

Using Pragmas
Pragma Scope

242 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



24

Pragmas for Standard C
Conformance

ANSI_strict

Controls the use of non-standard language features.

Syntax
#pragma ANSI_strict on | off | reset

Remarks

If you enable the pragma ANST_strict, the compiler generates an error message
if it encounters some CodeWarrior extensions to the C language defined by the
ISO/IEC 9899-1990 (“C89”) standard:

e C++-style comments
¢ unnamed arguments in function definitions
* non-standard keywords

This pragma corresponds to the ANSI Strict setting in the CodeWarrior IDE’s
CodeWarrior IDE’s C/C++ Language settings panel. By default, this pragma is
off.

c99

Controls the use of a subset of ISO/IEC 9899-1999 (“C99”) language features.

Syntax
#pragma c99 on | off | reset

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 243



Pragmas for Standard C Conformance

Remarks

If you enable this pragma, the compiler accepts many of the language features
described by the ISO/IEC 9899-1999 standard:

This pragma corresponds to the Enable C99 Extensions setting in the
CodeWarrior IDE’s C/C++ Language settings panel. By default, this pragma is

Trailing commas in enumerations
GCC/C99-style compound literal values.
Designated initializers.

__func__ predefined symbol

Implicit return 0; inmain ()

Non-const static data initializations

Variable argument macros (__VA_ARGS__)

bool and _Bool support

long long support (separate switch)
restrict support

// comments

inline support

Digraphs

_Complex and _TImaginary (treated as keywords but not supported)

Empty arrays as last struct members.
Designated initializers

Hexadecimal floating-point constants.

Variable length arrays are supported within local or function prototype scope (as

required by the C99 standard)
Unsuffixed decimal constant rules

++bool-- expressions

(T) (int-1list) are handled/parsed as cast-expressions and as literals

__STDC_HOSTED___is1

disabled.

244

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Standard C Conformance

ignore_oldstyle

Controls the recognition of function declarations that follow the syntax conventions used
before ISO/IEC standard C (in other words, “K&R” style).
Syntax

#pragma ignore_oldstyle on | off | reset

Remarks

If you enable this pragma, the compiler ignores old-style function declarations and
lets you prototype a function any way you want. In old-style declarations, you
specity the types of arguments on separate lines instead of the function’s argument
list. For example, the code in Listing 24.1 defines a prototype for a function with
an old-style definition.

Listing 24.1 Mixing Old-style and Prototype Function Declarations

int f(char x, short y, float z);
#pragma ignore_oldstyle on

f(x, v, z)
char x;
short vy;
float z;
{
return (int)x+y+z;

}

#pragma ignore_oldstyle reset

This pragma does not correspond to any panel setting. By default, this setting is
disabled.

only_std_keywords

Controls the use of ISO/IEC keywords.

Syntax

#pragma only_ std_keywords on | off | reset

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 245



Pragmas for Standard C Conformance

Remarks

The compiler recognizes additional reserved keywords. If you are writing source
code that must follow the ISO/IEC C standards strictly, enable the pragma
only_std_keywords.

This pragma corresponds to the ANSI Keywords Only setting in the
CodeWarrior IDE’s C/C++ Language settings panel. By default, this pragma is
disabled.

require_prototypes
Controls whether or not the compiler should expect function prototypes.

Syntax

#pragma require_prototypes on | off | reset

Remarks
This pragma only affects non-static functions.

If you enable this pragma, the compiler generates an error message if you use a
function that does not have a preceding prototype. Use this pragma to prevent error
messages caused by referring to a function before you define it. For example,
without a function prototype, you might pass data of the wrong type. As a result,
your code might not work as you expect even though it compiles without error.

In Listing 24.2, function main () calls PrintNum () with an integer argument
even though PrintNum () takes an argument of type float.

Listing 24.2 Unnoticed Type-mismatch

#include <stdio.h>

void main(void)
{
PrintNum (1) ; /* PrintNum() tries to interpret the
integer as a float. Prints 0.000000. */
}

void PrintNum(float x)
{

printf ("$f\n", x);
}

246 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Standard C Conformance

When you run this program, you could get this result:
0.000000

Although the compiler does not complain about the type mismatch, the function
does not give the result you intended. Since PrintNum () does not have a
prototype, the compiler does not know to generate instructions to convert the
integer to a floating-point number before calling PrintNum () . Consequently, the
function interprets the bits it received as a floating-point number and prints
nonsense.

A prototype for PrintNum (), as in Listing 24.3, gives the compiler sufficient
information about the function to generate instructions to properly convert its
argument to a floating-point number. The function prints what you expected.

Listing 24.3 Using a Prototype to Avoid Type-mismatch

#include <stdio.h>
void PrintNum(float x); /* Function prototype. */

void main (void)
{

PrintNum (1) ; /* Compiler converts int to float.
1 Prints 1.000000. */

void PrintNum(float x)
{

printf ("$f\n", x);
}

In other situations where automatic conversion is not possible, the compiler
generates an error message if an argument does not match the data type required by
a function prototype. Such a mismatched data type error is easier to locate at
compile time than at runtime.

This pragma corresponds to the Require Function Prototypes setting in the
CodeWarrior IDE’s C/C++ Language settings panel.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 247



Pragmas for Standard C Conformance

248 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



g |

25

Pragmas for C++

access_errors

Controls whether or not to change illegal access errors to warnings.

Syntax

#pragma access_errors on | off | reset

Remarks

If you enable this pragma, the compiler issues an error message instead of a
warning when it detects illegal access to protected or private class members.

This pragma does not correspond to any IDE panel setting. By default, this pragma
is on.

always_inline
Controls the use of inlined functions.

Syntax

#pragma always_inline on | off | reset

Remarks

This pragma is deprecated. We recommend that you use the inline_depth ()
pragma instead.

arg_dep_lookup

Controls C++ argument-dependent name lookup.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 249



Pragmas for C++

Syntax

#pragma arg_dep_lookup on | off | reset

Remarks

If you enable this pragma, the C++ compiler uses argument-dependent name
lookup.

This pragma does not correspond to any IDE panel setting. By default, this setting
is on.

ARM_conform

This pragma is no longer available. Use ARM_scoping instead.

ARM_scoping

Controls the scope of variables declared in the expression parts of 1 f, while, do, and
for statements.

Syntax

#pragma ARM scoping on | off | reset

Remarks

If you enable this pragma, any variables you define in the conditional expression of
an 1f, while, do, or for statement remain in scope until the end of the block
that contains the statement. Otherwise, the variables only remain in scope until the
end of that statement. Listing 25.1 shows an example.

This pragma corresponds to the Legacy for-scoping setting in the CodeWarrior
IDE’s C/C++ Language settings panel. By default, this pragma is of £.

Listing 25.1 Example of Using Variables Declared in £or Statement

for(int i=1; i<1000; i++) { /* . . . */ }
return i; // OK if ARM scoping is on, error if ARM_scoping is off.

250 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for C++

array_new_delete

Enables the operator new[ ] and delete[] in array allocation and deallocation
operations, respectively.

Syntax

#pragma array_new_delete on | off | reset

Remarks
By default, this pragma is on.

auto_inline

Controls which functions to inline.

Syntax

#pragma auto_inline on | off | reset

Remarks

If you enable this pragma, the compiler automatically chooses functions to inline
for you, in addition to functions declared with the inline keyword.

Note that if you enable either the Don’t Inline setting or the dont_inline
pragma, the compiler ignores the setting of the auto_inline pragma and does
not inline any functions.

This pragma corresponds to the Auto-Inline setting in the CodeWarrior IDE’s C/
C++ Language settings panel. By default, this pragma is disabled.

bool

Determines whether or not bool, true, and false are treated as keywords in C++
source code.

Syntax

#pragma bool on | off | reset

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 251



Pragmas for C++

Remarks

If you enable this pragma, you can use the standard C++ bool type to represent
true and false. Disable this pragma if bool, true, or false are defined in
your source code.

Enabling the bool data type and its true and false values is not equivalent to
defining them in source code with typedef, enum, or #define. The C++
bool type is a distinct type defined by the ISO/IEC 14882-1998 C++ Standard.
Source code that does not treat boo1l as a distinct type might not compile properly.

This pragma corresponds to the Enable bool Support setting in the CodeWarrior
IDE’s C/C++ Language settings panel. By default, this setting is on.

cplusplus
Controls whether or not to translate subsequent source code as C or C++ source code.

Syntax

#pragma cplusplus on | off | reset

Remarks

If you enable this pragma, the compiler translates the source code that follows as
C++ code. Otherwise, the compiler uses the suffix of the filename to determine
how to compile it. If a file name ends in . ¢, .h, or . pch, the compiler
automatically compiles it as C code, otherwise as C++. Use this pragma only if a
file contains both C and C++ code.

NOTE  The CodeWarrior C/C++ compilers do not distinguish between uppercase and
lowercase letters in file names and file name extensions except on UNIX-based
systems.

This pragma corresponds to the Force C++ Compilation setting in the
CodeWarrior IDE’s C/C++ Language settings panel. By default, this pragma is
disabled.

cpp_extensions

Controls language extensions to ISO/IEC 14882-1998 C++.

252 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for C++

Syntax

#pragma cpp_extensions on | off | reset

Remarks

If you enable this pragma, you can use the following extensions to the ISO/IEC
14882-1998 C++ standard that would otherwise be illegal:

* Anonymous struct & union objects. Listing 25.2 shows an example.

Listing 25.2 Example of Anonymous struct & union Objects

#pragma cpp_extensions on
void func ()
{
union {
long hilo;
struct { short hi, lo; }; // anonymous struct
Y
hi=0x1234;
1lo=0x5678; // hilo==0x12345678
}

* Unqualified pointer to a member function. Listing 25.3 shows an example.

Listing 25.3 Example of an Unqualified Pointer to a Member Function

#pragma cpp_extensions on

struct RecA { void f£(); }
volid RecA::f ()
{
void (RecA::*ptmfl) () = &RecA::f; // ALWAYS OK

void (RecA::*ptmf2) () = £; // OK if you enable cpp_extensions.

¢ Inclusion of const data in precompiled headers.

This pragma does not correspond to any setting in the CodeWarrior IDE’s C/C++
Language settings panel. By default, this pragma is disabled.

debuginline

Controls whether the compiler emits debugging information for expanded inline function
calls.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 253



Pragmas for C++

Syntax

#pragma debuginline on | off | reset

Remarks

If the compiler emits debugging information for inline function calls, then the
debugger can step to the body of the inlined function. This behavior more closely
resembles the debugging experience for un-inlined code.

NOTE  Since the actual “call” and “return” instructions are no longer present when
stepping through inline code, the debugger will immediately jump to the body
of an inlined function and “return” before reaching the return statement for the
function. Thus, the debugging experience of inlined functions may not be as
smooth as debugging un-inlined code.

This pragma does not correspond to any panel setting. By default, this pragma is
on.

def inherited

Controls the use of inherited.

Syntax

#pragma def_inherited on | off | reset

Remarks

The use of this pragma is deprecated. It lets you use the non-standard inherited
symbol in C++ programming by implicitly adding

typedef base inherited;

as the first member in classes with a single base class.

NOTE  The ISO/IEC 14882-1998 C++ standard does not support the inherited

symbol. Only the CodeWarrior C++ language implements the inherited
symbol for single inheritance.

This pragma does not correspond to any setting in the CodeWarrior IDE’s C/C++
Language settings panel. By default, this pragmais of .

254 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for C++

defer_codegen

¢

Obsolete pragma. Replaced by interprocedural analysis options. See “Interprocedural
Analysis” on page 167.

defer_defarg_parsing
Defers the parsing of default arguments in member functions.

Syntax
#pragma defer_defarg parsing on | off

Remarks

To be accepted as valid, some default expressions with template arguments will
require additional parenthesis. For example, Listing 25.4 results in an error
message.

Listing 25.4 Deferring parsing of default arguments

template<typename T, typename U> struct X { T t; U u; };

struct Y {
// The following line is not accepted, and generates
// an error message with defer_defarg_parsing on.
void f (X<int,int> = X<int,int>());

Y

Listing 25.5 does not generate an error message.

Listing 25.5 Correct default argument deferral

template<typename T, typename U> struct X { T t; U u; };

struct Y {
// The following line is OK if the default
// argument is parenthesized.
void f (X<int,int> = (X<int,int>()) );

Y

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 255



Pragmas for C++

This pragma does not correspond to any panel setting. By default, this pragma is
on.

direct_destruction

This pragma is obsolete. It is no longer available.

direct_to_som

This pragma is obsolete. It is no longer available.

dont_inline
Controls the generation of inline functions.

Syntax

#pragma dont_inline on | off | reset

Remarks

If you enable this pragma, the compiler does not inline any function calls, even
those declared with the inl ine keyword or within a class declaration. Also, it
does not automatically inline functions, regardless of the setting of the
auto_inline pragma, described in “auto_inline” on page 251. If you
disable this pragma, the compiler expands all inline function calls, within the limits
you set through other inlining-related pragmas.

This pragma corresponds to the Don’t Inline setting in the CodeWarrior IDE’s C/
C++ Language settings panel. By default, this pragmais of f.

ecplusplus
Controls the use of embedded C++ features.

Syntax

#pragma ecplusplus on | off | reset

256 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for C++

Remarks

If you enable this pragma, the C++ compiler disables the non-EC++ features of
ISO/IEC 14882-1998 C++ such as templates, multiple inheritance, and so on.

This pragma corresponds to the EC++ Compatibility Mode setting in the
CodeWarrior IDE’s C/C++ Language settings panel. By default, this pragma is
off.

exceptions
Controls the availability of C++ exception handling.

Syntax

#pragma exceptions on | off | reset

Remarks

If you enable this pragma, you can use the t ry and catch statements in C++
to perform exception handling. If your program does not use exception handling,
disable this setting to make your program smaller.

You can throw exceptions across any code compiled by the CodeWarrior C/C++
compiler with #pragma exceptions oIl.

You cannot throw exceptions across libraries compiled with #pragma
exceptions off. If you throw an exception across such a library, the code
calls terminate () and exits.

This pragma does not correspond to an option in any IDE settings panel. By
default, this pragma is on.

extended_errorcheck

Controls the issuing of warning messages for possible unintended logical errors.

Syntax

#pragma extended_errorcheck on | off | reset

Remarks

If you enable this pragma, the C++ compiler generates a warning message for the
possible unintended logical errors described in “extended_errorcheck” on

page 283.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 257



Pragmas for C++

It also issues a warning message when it encounters a delete operator for a class or
structure that has not been defined yet. Listing 25.6 shows an example.

Listing 25.6 Attempting to delete an undefined structure

#pragma extended_errorcheck on

struct X;
int func(X *xp)
{
delete xp; // Warning: deleting incomplete type X

}

* Anempty return statement in a function that is not declared void. For
example, Listing 25.7 results in a warning message.

Listing 25.7 A non-void function with an empty return statement

int MyInit (void)

{
int err = GetMyResources() ;
if (err != -1)
{

err = GetMoreResources() ;
}
return; /* WARNING: empty return statement */

Listing 25.8 shows how to prevent this warning message.

Listing 25.8 A non-void function with a proper return statement

int MyInit (void)

{
int err = GetMyResources/();
if (err !'= -1)
{

err = GetMoreResources() ;
}
return err; /* OK */

This pragma corresponds to the Extended Error Checking setting in the
CodeWarrior IDE’s C/C++ Warnings settings panel. By default, this setting is
off.

258 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for C++

inline_bottom_up
Controls the bottom-up function inlining method.

Syntax

#pragma inline bottom up on | off | reset

Remarks

Bottom-up function inlining tries to expand up to eight levels of inline leaf
functions. The maximum size of an expanded inline function and the caller of an
inline function can be controlled by the pragmas shown in Listing 25.9 and Listing
25.10.

Listing 25.9 Maximum Complexity of an Inlined Function

// Maximum complexity of an inlined function
#pragma inline_max_ size( max ) // default max == 256

Listing 25.10 Maximum Complexity of a Function that Calls Inlined Functions

// Maximum complexity of a function that calls inlined functions
#pragma inline_max_total_size( max ) // default max == 10000

where max loosely corresponds to the number of instructions in a function.

If you enable this pragma, the compiler calculates inline depth from the last
function in the call chain up to the first function that starts the call chain. The
number of functions the compiler inlines from the bottom depends on the values of
inline_depth, inline_max_size,and inline_max_total_size.
This method generates faster and smaller source code for some (but not all)
programs with many nested inline function calls.

If you disable this pragma, top-down inlining is selected, and the inline_depth
setting determines the limits for top-down inlining. The inline_max_size and
inline_max_total_size pragmas do not affect the compiler in top-down
mode.

This pragma corresponds to the Bottom-up setting of the Inline Depth menu in
the CodeWarrior IDE’s C/C++ Language settings panel. By default, this pragma
is disabled.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 259



Pragmas for C++

inline_bottom_up_once

Performs a single bottom-up function inlining operation.

Syntax

#pragma inline_bottom up_once on | off | reset

Remarks

By default, this pragma is of f.

inline_depth

Controls how many passes are used to expand inline function calls.

Syntax

#pragma inline_depth (n)

#pragma inline_depth (smart)

Parameters

n

Sets the number of passes used to expand inline function calls. The number 7 is an
integer from O to 1024 or the smart specifier. It also represents the distance
allowed in the call chain from the last function up. For example, if d is the total
depth of a call chain, then functions below a depth of d—n are inlined if they do
not exceed the following size settings:

#pragma inline_max_size(n);
#pragma inline_max_total_size(n);

The first pragma sets the maximum function size to be considered for inlining; the
second sets the maximum size to which a function is allowed to grow after the
functions it calls are inlined. Here, n is the number of statements, operands, and
operators in the function, which turns out to be roughly twice the number of
instructions generated by the function. However, this number can vary from
function to function. For the inline_max_size pragma, the default value of n
is 256; for the inline_max_total_size pragma, the default value of n is
10000.

260

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for C++

smart

The smart specifier is the default mode, with four passes where the passes 2-4 are
limited to small inline functions. All inlineable functions are expanded if
inline_depthis set to 1-1024.

Remarks

The pragmas dont_inline and always_inline override this pragma. This
pragma corresponds to the Inline Depth setting in the CodeWarrior IDE’s C/
C++ Language settings panel. By default, this pragma is disabled.

inline_max_auto_size
Determines the maximum complexity for an auto-inlined function.

Syntax

#pragma inline_max_auto_size ( complex )

Parameters
complex

The complex value is an approximation of the number of statements in a
function, the current default value is 15. Selecting a higher value will inline more
functions, but can lead to excessive code bloat.

Remarks

This pragma does not correspond to any panel setting.

inline_max_size

Sets the maximum number of statements, operands, and operators used to consider the
function for inlining.

Syntax

#pragma inline_max size ( size )

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 261



Pragmas for C++

Parameters

size
The maximum number of statements, operands, and operators in the function to
consider it for inlining, up to a maximum of 256.

Remarks

This pragma does not correspond to any panel setting.

inline_max_total size

Sets the maximum total size a function can grow to when the function it calls is inlined.

Syntax

#pragma inline_max_total_size ( max_size )

Parameters

max_size
The maximum number of statements, operands, and operators the inlined function
calls that are also inlined, up to a maximum of 7000.

Remarks

This pragma does not correspond to any panel setting.

internal
Controls the internalization of data or functions.
Syntax
#pragma internal on | off | reset
#pragma internal list namel [, name2 ]*
Remarks
When using the #pragma internal on format, all data and functions are
automatically internalized.
262 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for C++

Use the #pragma internal list format to tag specific data or functions for
internalization. It applies to all names if it is used on an overloaded function. You
cannot use this pragma for C++ member functions or static class members.

Listing 25.11 shows an example:

Listing 25.11 Example of an Internalized List

extern int f£(), g;
#pragma internal list f,g

This pragma does not correspond to any panel setting. By default, this pragma is
disabled.

new_mangler

Controls the inclusion or exclusion of a template instance’s function return type to the
mangled name of the instance.
Syntax

#pragma new_mangler on | off | reset

Remarks

The C++ standard requires that the function return type of a template instance to be
included in the mangled name, which can cause incompatibilities. Enabling this
pragma within a prefix file resolves those incompatibilities.

This pragma does not correspond to any panel setting. By default, this pragma is
on.

no_conststringconv

Disables the deprecated implicit const string literal conversion (ISO/IEC 14882-1998
C++, §4.2).

Syntax

#pragma no_conststringconv on | off | reset

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 263



Pragmas for C++

Remarks

When enabled, the compiler generates an error message when it encounters an
implicit const string conversion.

Listing 25.12 Example of const string conversion

#pragma no_conststringconv on

char *cp = "Hello World"; /* Generates an error message. */

This pragma does not correspond to any panel setting. By default, this pragma is
off.

no_static_dtors
Controls the generation of static destructors in C++.

Syntax

#pragma no_static_dtors on | off | reset

Remarks

If you enable this pragma, the compiler does not generate destructor calls for static
data objects. Use this pragma to generate smaller object code for C++ programs
that never exit (and consequently never need to call destructors for static objects).

This pragma does not correspond to any panel setting. By default, this setting is
disabled.

nosyminline
Controls whether debug information is gathered for inline/template functions.

Syntax

#pragma nosyminline on | off | reset

Remarks

When on, debug information is not gathered for inline/template functions.

264 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for C++

This pragma does not correspond to any panel setting. By default, this pragma is
disabled.

old_pods

Permits non-standard handling of classes, structs, and unions containing pointer-to-pointer
members
Syntax

#pragma old_pods on | off | reset

Remarks

According to the ISO/IEC 14882:2003 C++ Standard, classes/structs/unions that
contain ponter-to-pointer members are now considered to be plain old data (POD)
types.

This pragma can be used to get the old behavior.

old_vtable

This pragma is no longer available.

opt_classresults

Controls the omission of the copy constructor call for class return types if all return
statements in a function return the same local class object.

Syntax

#pragma opt_classresults on | off | reset

Remarks
Listing 25.13 shows an example.

Listing 25.13 Example #pragma opt_classresults

#pragma opt_classresults on

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 265



Pragmas for C++

struct X {

X();
X (const X&) ;
//

Y

X £() {

X x; // Object x will be constructed in function result buffer.
//

return x; // Copy constructor is not called.

}

This pragma does not correspond to any panel setting. By default, this pragma is
on.

parse_func_templ

Controls whether or not to use the new parser supported by the CodeWarrior 2.5 C++
compiler.
Syntax

#pragma parse_func_templ on | off | reset

Remarks

If you enable this pragma, your C++ source code is compiled using the newest
version of the parser, which is stricter than earlier versions.

This option actually corresponds to the ISO C++ Template Parser option

(together with pragmas parse _func templ and warn no_typename). By default,
this pragma is disabled.

parse_mfunc_templ

Controls whether or not to use the new parser supported by the CodeWarrior 2.5 C++
compiler for member function bodies.

Syntax

#pragma parse_mfunc_templ on | off | reset

266 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for C++

Remarks

If you enable this pragma, member function bodies within your C++ source code is
compiled using the newest version of the parser, which is stricter than earlier
versions.

This pragma does not correspond to any panel setting. By default, this pragma is
disabled.

RTTI

Controls the availability of runtime type information.

Syntax

#pragma RTTI on | off | reset

Remarks

If you enable this pragma, you can use runtime type information (or RTTI) features
such as dynamic_cast and typeid. The other RTTI expressions are available
even if you disable the Enable RTTI setting. Note that

*type_info: :before(const type_info&) isnotimplemented.

This pragma corresponds to the Enable RTTI setting in the CodeWarrior IDE’s
C/C++ Language settings panel.

suppress_init_code
Controls the suppression of static initialization object code.

Syntax

#pragma suppress_init_code on | off | reset

Remarks
If you enable this pragma, the compiler does not generate any code for static data

initialization such as C++ constructors.

WARNING! Using this pragma because it can produce erratic or unpredictable
behavior in your program.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 267



Pragmas for C++

This pragma does not correspond to any panel setting. By default, this pragma is
disabled.

template_depth

Controls how many nested or recursive class templates you can instantiate.

#pragma template_depth (n)

Remarks

This pragma lets you increase the number of nested or recursive class template
instantiations allowed. By default, n equals 64; it can be set from 1 to 30000. You
should always use the default value unless you receive the error message

template too complex or recursive

This pragma does not correspond to any panel setting.

thread_safe init

Controls the addition of extra code in the binary to ensure that multiple threads cannot
enter a static local initialization at the same time.
Syntax

#pragma thread_safe_init on | off | reset

Remarks

A C++ program that uses multiple threads and static local initializations introduces
the possiblity of contention over which thread initializes static local variable first.
When the pragma is on, the compiler inserts calls to mutex functions around each
static local initialization to avoid this problem. The C++ runtime library provides
these mutex functions.

Listing 25.14 Static local initialization example

int func(void) {
// There may be synchronization problems if this function is
// called by mutliple threads.
static int countdown = 20;

268 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for C++

return countdown--;

}

NOTE  This pragma requires runtime library functions which may not be implemented
on all platforms, due to the possible need for operating system support.

Listing 25.15 shows another example.

Listing 25.15 Example thread_safe_init

#pragma thread_safe_init on

void thread_heavy_ func()

{
// Multiple threads can now safely call this function:
// the static local variable will be constructed only once.
static std::string localstring = thread_unsafe_func();

}

NOTE When an exception is thrown from a static local initializer, the initializer is
retried by the next client that enters the scope of the local.

This pragma does not correspond to any panel setting. By default, this pragma is
off.

warn_hidevirtual

Controls the recognition of a non-virtual member function that hides a virtual function in a
superclass.
Syntax

#pragma warn_hidevirtual on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message if you declare a
non-virtual member function that hides a virtual function in a superclass. One
function hides another if it has the same name but a different argument type.
Listing 25.16 shows an example.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 269



Pragmas for C++

Listing 25.16 Hidden Virtual Functions

class A {
public:
virtual void f (int);
virtual void g(int);
Y

class B: public A {
public:
void f (char); // WARNING: Hides A::f(int)
virtual void g(int); // OK: Overrides A::g(int)
Y

The ISO/IEC 14882-1998 C++ Standard does not require this pragma.

NOTE A warning message normally indicates that the pragma name is not recognized,
but an error indicates either a syntax problem or that the pragma is not valid in
the given context.

This pragma corresponds to the Hidden Virtual Functions setting in the
CodeWarrior IDE’s C/C++ Warnings settings panel.

warn_no_explicit_virtual

Controls the issuing of warning messages if an overriding function is not declared with a
virtual keyword.

Syntax

#pragma warn_no_explicit_virtual on | off | reset

Remarks
Listing 25.17 shows an example.

Listing 25.17 Example of warn_no_explicit_virtual pragma

#pragma warn_no_explicit_virtual on

struct A {
virtual void £f();

Y

struct B {

270 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for C++

void f£();
// WARNING: override B::f() is declared without virtual keyword

TIP  This warning message is not required by the ISO/IEC 14882-1998 C++ standard,
but can help you track down unwanted overrides.

This pragma does not correspond to any panel setting. By default, this pragma is
off.

warn_no_typename

Controls the issuing of warning messages for missing typenames.

Syntax

#pragma warn_no_typename on | off | reset

Remarks

The compiler issues a warning message if a typenames required by the C++
standard is missing but can still be determined by the compiler based on the context
of the surrounding C++ syntax.

This pragma does not correspond to any panel setting. This pragma is enabled by
the ISO/IEC 14882-1998 C++ template parser.

warn_notinlined

Controls the issuing of warning messages for functions the compiler cannot inline.

Syntax

#pragma warn_notinlined on | off | reset

Remarks
The compiler issues a warning message for non-inlined inline (i.e., on those
indicated by the inline keyword or in line in a class declaration) function calls.
This pragma corresponds to the Non-Inlined Functions setting in the
CodeWarrior IDE’s C/C++ Warnings settings panel. By default, this pragma is
disabled.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 271



Pragmas for C++

warn_structclass

Controls the issuing of warning messages for the inconsistent use of the class and
struct keywords.

Syntax

#pragma warn_structclass on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message if you use the
class and struct keywords in the definition and declaration of the same
identifier.

Listing 25.18 Inconsistent use of class and struct

class X;
struct X { int

a; }; // WARNING

Use this warning when using static or dynamic libraries to link with object code
produced by another C++ compiler that distinguishes between class and structure
variables in its name “mangling.”

This pragma corresponds to the Inconsistent “class’” / “struct’ Usage setting in
the CodeWarrior IDE’s C/C++ Warnings settings panel. By default, this pragma is
disabled.

wchar_type

Controls the availability of the wchar_t data type in C++ source code.

Syntax

#pragma wchar_type on | off | reset

Remarks

If you enable this pragma, wchar_t is treated as a built-in type. Otherwise, the
compiler does not recognize this type.

This pragma corresponds to the Enable wchar_t Support setting in the
CodeWarrior IDE’s C/C++ Language settings panel. By default, this pragma is
enabled.

272

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for C++

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 273



Pragmas for C++

274 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



26

Pragmas for Language
Translation

asmpoundcomment

Controls whether the “#” symbol is treated as a comment character in inline assembly.

Syntax

#pragma asmpoundcomment on | off | reset

Remarks

Some targets may have additional comment characters, and may treat these
characters as comments even when

#pragma asmpoundcomment off
is used.
Using this pragma may interfere with the function-level inline assembly language.

This pragma does not correspond to any panel setting. By default, this pragma is
on.

asmsemicolcomment

Controls whether the ““;” symbol is treated as a comment character in inline assembly.

’

Syntax

#pragma asmsemicolcomment on | off | reset

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 275



Pragmas for Language Translation

Remarks

Some targets may have additional comment characters, and may treat these
characters as comments even when

#pragma asmsemicolcomment off
is used.
Using this pragma may interfere with the assembly language of a specific target.

This pragma does not correspond to any panel setting. By default, this pragma is
on.

const_strings

Controls the const-ness of character string literals.

Syntax

#pragma const_strings [ on | off | reset ]

Remarks

If you enable this pragma, the type of string literals is an array const char [n],
or const wchar_t [n] for wide strings, where 7 is the length of the string
literal plus 1 for a terminating NUL character. Otherwise, the type char [n] or
wchar_t [n] is used.

This pragma does not correspond to any setting in the CodeWarrior IDE’s C/C++
Language settings panel. By default, this pragma is on when compiling C++
source code and of £ when compiling C source code.

dollar_identifiers

Controls use of dollar signs ($) in identifiers.

Syntax

#pragma dollar_identifiers on | off | reset

Remarks

If you enable this pragma, the compiler accepts dollar signs ($) in identifiers.
Otherwise, the compiler issues an error if it encounters anything but underscores,

276

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Language Translation

alphabetic, numeric character, and universal characters (\uxxxx, \ UXXXXXXXX)
in an identifier.

This pragma does not correspond to any panel setting. By default, this pragma is

off.

gcc_extensions

Controls the acceptance of GNU C language extensions.

Syntax

#pragma gcc_extensions on | off | reset

Remarks

If you enable this pragma, the compiler accepts GNU C extensions in C source
code. This includes the following non-ANSI C extensions:

Initialization of automatic struct or array variables with non-const
values.

Illegal pointer conversions

sizeof( void ) == 1

sizeof ( function-type ) == 1

Limited support for GCC statements and declarations within expressions.
Macro redefinitions without a previous #undef.
The GCC keyword typeof

Function pointer arithmetic supported

void* arithmetic supported

Void expressions in return statements of void
__builtin_constant_p (expr) supported
Forward declarations of arrays of incomplete type
Forward declarations of empty static arrays
Pre-C99 designated initializer syntax (deprecated)
shortened conditional expression (¢ ?: y)

long _ _builtin_expect (long exp, long c) now accepted

This pragma corresponds to the Enable GCC Extensions setting in the
CodeWarrior IDE’s C/C++ Language settings panel. By default, this pragma is
disabled.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 277



Pragmas for Language Translation

mark

Adds an item to the Function pop-up menu in the IDE editor.

Syntax

#pragma mark itemName

Remarks

This pragma adds itemName to the source file’s Function pop-up menu. If you
open the file in the CodeWarrior Editor and select the item from the Function
pop-up menu, the editor brings you to the pragma. Note that if the pragma is inside
a function definition, the item does not appear in the Function pop-up menu.

If itemName begins with “~-", a menu separator appears in the IDE’s Function
pop-up menu:

#pragma mark --

This pragma does not correspond to any panel setting.

mpwc_newline

Controls the use of newline character convention.

Syntax

#pragma mpwc_newline on | off | reset

Remarks

If you enable this pragma, the compiler translates ' \n' as a Carriage Return
(0x0D) and '\r' as a Line Feed (0x0A). Otherwise, the compiler uses the ISO
standard conventions for these characters.

If you enable this pragma, use ISO standard libraries that were compiled when this
pragma was enabled.

If you enable this pragma and use the standard ISO standard libraries, your
program will not read and write ' \n' and ' \r' properly. For example, printing
"\n' brings your program’s output to the beginning of the current line instead of
inserting a newline.

This pragma does not correspond to any IDE panel setting. By default, this pragma
is disabled.

278

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Language Translation

mpwc_relax
Controls the compatibility of the char* and unsigned char* types.

Syntax

#pragma mpwc_relax on | off | reset

Remarks

If you enable this pragma, the compiler treats char* and unsigned char* as
the same type. Use this setting to compile source code written before the ISO C
standards. Old source code frequently uses these types interchangeably.

This setting has no effect on C++ source code.

NOTE  Turning this option on may prevent the compiler from detecting some
programming errors. We recommend not turning on this option.

Listing 26.1 shows how to use this pragma to relax function pointer checking.

Listing 26.1 Relaxing function pointer checking

#pragma mpwc_relax on
extern void f(char *);

/* Normally an error, but allowed. */
extern void(*fpl) (void *) = &f;

/* Normally an error, but allowed. */
extern void(*fp2) (unsigned char *) = &f;

This pragma does not correspond to any panel setting. By default, this pragma is
disabled.

multibyteaware

Controls how the Source encoding option in the IDE is treated

Syntax

#pragma multibyteaware on | off | reset

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 279



Pragmas for Language Translation

Remarks
This pragma is deprecated. See #pragma text_encoding for more details.

This pragma does not correspond to any panel setting, but the replacement option
Source encoding appears in the CodeWarrior IDE’s C/C++ Preprocessor settings
panel. By default, this pragma is of f.

multibyteaware_preserve_literals

Controls the treatment of multibyte character sequences in narrow character string literals.

Syntax

#pragma multibyteaware_preserve_literals on | off | reset

Remarks

This pragma does not correspond to any panel setting. By default, this pragma is
on.

text_encoding

Identifies the character encoding of source files.

Syntax

#pragma text_encoding ( "name" | unknown reset [, global] )

Parameters
name

The IANA or MIME encoding name or an OS-specific string that identifies the text
encoding. The compiler recognizes these names and maps them to its internal
decoders:

system US-ASCII ASCII ANSI_X3.4-1968
ANSI_X3.4-1968 ANSI_X3.4 UTF-8 UTF8 ISO-2022-JP
CSIS02022JP IS02022JP CSSHIFTJIS SHIFT-JIS
SHIFT_JIS SJIS EUC-JP EUCJP UCS-2 UCS-2BE
UCS-2LE UCS2 UCS2BE UCS2LE UTF-16 UTF-16BE
UTF-16LE UTF16 UTF16BE UTF16LE UCS-4 UCS-4BE

280

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Language Translation

UCS-4LE UCS4 UCS4BE UCS4LE 10646-1:1993
IS0-10646-1 ISO-10646 unicode
global

Tells the compiler that the current and all subsequent files use the same text
encoding. By default, text encoding is effective only to the end of the file.

Remarks

By default, #pragma text_encoding is only effective through the end of file.
To affect the default text encoding assumed for the current and all subsequent files,
supply the “global” modifier.

This pragma corresponds to the Source Encoding option in the CodeWarrior
IDE’s C/C++ Preprocessor settings panel. By default, this setting is ASCIT.

trigraphs
Controls the use trigraph sequences specified in the ISO standards.

Syntax

#pragma trigraphs on | off | reset

Remarks

If you are writing code that must strictly adhere to the ANSI standard, enable this
pragma.

Table 26.1 Trigraph table

Trigraph Character
??= #
??/ \
27’ "
2?2 ( [
?7?) ]
27! |
2?7< {

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 281



Pragmas for Language Translation

Table 26.1 Trigraph table

Trigraph Character
27> }
?27- ~

NOTE  Use of this pragma may cause a portability problem for some targets.

Be careful when initializing strings or multi-character constants that contain
question marks.

Listing 26.2 Example of Pragma trigraphs

char ¢ = '????'; /* ERROR: Trigraph sequence expands to '??" */
char d = "\?\?\?\?'; /* OK */

This pragma corresponds to the Expand Trigraphs setting in the CodeWarrior
IDE’s C/C++ Language settings panel. By default, this pragma is disabled.

unsigned_char
Controls whether or not declarations of type char are treated as unsigned char.

Syntax

#pragma unsigned_char on | off | reset

Remarks

If you enable this pragma, the compiler treats a char declaration as if it were an
unsigned char declaration.

NOTE  If you enable this pragma, your code might not be compatible with libraries
that were compiled when the pragma was disabled. In particular, your code
might not work with the ISO standard libraries included with CodeWarrior.

This pragma corresponds to the Use unsigned chars setting in the CodeWarrior
IDE’s C/C++ Language settings panel. By default, this setting is disabled.

282 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition




g |

27

Pragmas for Diagnostic
Messages

extended errorcheck

Controls the issuing of warning messages for possible unintended logical errors.

Syntax

#pragma extended_errorcheck on | off | reset

Remarks

If you enable this pragma, the compiler generates a warning message (not an error)
if it encounters some common programming errors:

* Aninteger or floating-point value assigned to an enum type. Listing 27.1 shows
an example.

Listing 27.1 Assigning to an Enumerated Type

enum Day { Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday } d;

= 5; /* WARNING */
Monday; /* OK */
= (Day)3; /* OK */

[olgeTiyen
1l

* Anempty return statement in a function that is not declared void. For
example, Listing 27.2 results in a warning message.

Listing 27.2 A non-void function with an empty return statement

int MyInit (void)

{
int err = GetMyResources();
if (err != -1)

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 283



Pragmas for Diagnostic Messages

{
err = GetMoreResources() ;
}

return; /* WARNING: empty return statement */
}

Listing 27.3 shows how to prevent this warning message.

Listing 27.3 A non-void function with a proper return statement

int MyInit(void)

{
int err = GetMyResources|();
if (err !'= -1)
{
err = GetMoreResources() ;
}
return err; /* OK */
}
This pragma corresponds to the Extended Error Checking setting in the
CodeWarrior IDE’s C/C++ Warnings settings panel. By default, this setting is
off.
maxerrorcount

Limits the number of error messages emitted while compiling a single file.

Syntax

#pragma maxerrorcount ( num | off )

Parameters
num

Specifies the maximum number of error messages issued per source file.
off

Does not limit the number of error messages issued per source file.

Remarks

The total number of error messages emitted may include one final message:

Too many errors emitted

284 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Diagnostic Messages

This pragma does not correspond to any panel setting. By default, this pragma is
off.

message
Tells the compiler to issue a text message to the user.

Syntax

#pragma message( msg )

Parameter
msg

Actual message to issue. Does not have to be a string literal.

Remarks

In the CodeWarrior IDE, the message appears in the Errors & Warnings window.
On the command line, the message is sent to the standard error stream.

This pragma does not correspond to any panel setting.

showmessagenumber
Controls the appearance of warning or error numbers in displayed messages.

Syntax

#pragma showmessagenumber on | off | reset

Remarks

When enabled, this pragma causes messages to appear with their numbers visible.
You can then use the warning pragma with a warning number to suppress the
appearance of specific warning messages.

This pragma does not correspond to any panel setting. By default, this pragma is
off.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 285



Pragmas for Diagnostic Messages

show_error_filestack

Controls the appearance of the current #include file stack within error messages
occurring inside deeply-included files.

Syntax

#pragma show_error_filestack on | off | reset

Remarks

This pragma does not correspond to any panel setting. By default, this pragma is
on.

suppress_warnings

Controls the issuing of warning messages.

Syntax

#pragma suppress_warnings on | off | reset

Remarks

If you enable this pragma, the compiler does not generate warning messages,
including those that are enabled.

This pragma does not correspond to any panel setting. By default, this pragma is
off.

sym

Controls the generation of debugger symbol information for subsequent functions.

Syntax

#pragma sym on | off | reset

Remarks

The compiler pays attention to this pragma only if you enable the debug marker for
a file in the IDE project window. If you disable this pragma, the compiler does not

286

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Diagnostic Messages

put debugging information into the source file debugger symbol file (SYM or
DWAREF) for the functions that follow.

The compiler always generates a debugger symbol file for a source file that has a
debug diamond next to it in the IDE project window. This pragma changes only
which functions have information in that symbol file.

This pragma does not correspond to any panel setting. By default, this pragma is
enabled.

unused

Controls the suppression of warning messages for variables and parameters that are not
referenced in a function.

Syntax
#pragma unused ( var_name [, var_name ]... )
var_name

The name of a variable.

Remarks

This pragma suppresses the compile time warning messages for the unused
variables and parameters specified in its argument list. You can use this pragma
only within a function body. The listed variables must be within the scope of the
function.

In C++, you cannot use this pragma with functions defined within a class definition
or with template functions.

Listing 27.4 Example of Pragma unused() in C

#pragma warn_unusedvar on
#pragma warn_unusedarg on

static void ff(int a)
{
int b;
#pragma unused(a,b)
/* Compiler does not warn that a and b are unused. */

}

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 287



Pragmas for Diagnostic Messages

Listing 27.5 Example of Pragma unused() in C++

#pragma warn_unusedvar on
#pragma warn_unusedarg on

static void ff(int /* No warning */)
{
int b;
#pragma unused (b)
/* Compiler does not warn that b is unused. */

}

This pragma does not correspond to any CodeWarrior IDE panel setting.

warning
Controls which warning numbers are displayed during compiling.

Syntax
#pragma warning on | off | reset (num [, ...])
This alternate syntax is allowed but ignored (message numbers do not match):
#pragma warning(warning type
warning num_list )

Parameters
num

The number of the warning message to show or suppress.
warning type

Specifies one of the following settings:

¢« default

e disable

e enable
warning num 1ist

The warning num_ I1ist is a list of warning numbers separated by spaces.

288 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Diagnostic Messages

Remarks

Use the pragma showmessagenumber to display warning messages with their
warning numbers.

The CodeWarrior compiler allows, but ignores, the alternative syntax for
compatibility with Microsoft® compilers.

This pragma does not correspond to any panel setting. By default, this pragma is
on.

warning_errors
Controls whether or not warnings are treated as errors.

Syntax

#pragma warning_errors on | off | reset

Remarks

If you enable this pragma, the compiler treats all warning messages as though they
were errors and does not translate your file until you resolve them.

This pragma corresponds to the Treat All Warnings as Errors setting in the
CodeWarrior IDE’s C/C++ Warnings panel.

warn_any_ptr_int_conv

Controls if the compiler generates a warning message when an integral type is explicitly
converted to a pointer type or vice versa.

Syntax

#pragma warn_any_ptr_int_conv on | off | reset

Remarks

This pragma is useful to identify potential 64-bit pointer portability issues. An
example is shown in.

Listing 27.6 Example of warn_any_ptr_int_conv

#pragma warn_ptr_int_conv on

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 289



Pragmas for Diagnostic Messages

short i, *ip
void func () {

i = (short)ip;

/* WARNING: short type is not large enough to hold pointer. */
}

#pragma warn_any_ptr_int_conv on

void bar() {

i = (int)ip; /* WARNING: pointer to integral conversion. */
ip = (short *)i; /* WARNING: integral to pointer conversion. */
}
Remarks

This pragma corresponds to the Pointer/Integral Conversions setting in the
CodeWarrior IDE’s C/C++ Warnings settings panel. By default, this pragma is
off.

warn_emptydecl
Controls the recognition of declarations without variables.

Syntax

#pragma warn_emptydecl on | off | reset

Remarks

If you enable this pragma, the compiler displays a warning message when it
encounters a declaration with no variables.

Listing 27.7 Examples of empty declarations in C and C++

#pragma warn_emptydecl on
int ; /* WARNING: empty variable declaration. */
int i; /* OK */

long j;; /* WARNING */
long j; /* OK */

290 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Diagnostic Messages

Listing 27.8 Example of empty declaration in C++

#pragma warn_emptydecl on
extern "C" {
}; /* WARNING */

This pragma corresponds to the Empty Declarations setting in the CodeWarrior
IDE’s C/C++ Warnings panel. By default, this pragma is disabled.

warn_extracomma
Controls the recognition of superfluous commas in enumerations.

Syntax

#pragma warn_extracomma on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message when it
encounters a trailing comma in enumerations. For example, Listing 27.9 is
acceptable source code but generates a warning message when you enable this
setting.

Listing 27.9 Warning about extra commas

#pragma warn_extracomma on
enum { mouse, cat, dog, };
/* WARNING: compiler expects an identifier after final comma. */

The compiler ignores terminating commas in enumerations when compiling source
code that conforms to the ISO/IEC 9899-1999 (“C99”) standard.

This pragma corresponds to the Extra Commas setting in the CodeWarrior IDE’s
C/C++ Warnings settings panel. By default, this pragma is disabled.

warn_filenamecaps

Controls the recognition of conflicts involving case-sensitive filenames within user
includes.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 291



Pragmas for Diagnostic Messages

Syntax

#pragma warn_filenamecaps on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message when an
#include directive capitalizes a filename within a user include differently from
the way the filename appears on a disk. It also detects use of “8.3” DOS filenames
in Windows when a long filename is available. Use this pragma to avoid porting
problems to operating systems with case-sensitive file names.

By default, this pragma only checks the spelling of user includes such as the
following:

#include "file"
For more information on checking system includes, see
warn filenamecaps system.

This pragma corresponds to the Include File Capitalization setting in the
CodeWarrior IDE’s C/C++ Warnings settings panel. By default, this pragma is
off.

warn_filenamecaps_system

Controls the recognition of conflicts involving case-sensitive filenames within system
includes.

Syntax

#pragma warn_filenamecaps_system on | off | reset

Remarks

If you enable this pragma along with warn_ filenamecaps, the compiler issues
a warning message when an #include directive capitalizes a filename within a
system include differently from the way the filename appears on a disk. It also
detects use of “8.3” DOS filenames in Windows when a long filename is available.
This pragma helps avoid porting problems to operating systems with case-sensitive
file names.

To check the spelling of system includes such as the following:
#include <file>

Use this pragma along with the warn_filenamecaps pragma.

292

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Diagnostic Messages

This pragma corresponds to the Check System Includes setting in the
CodeWarrior IDE’s C/C++ Warnings settings panel. By default, this pragma is
off.

NOTE  Some SDKs (Software Developer Kits) use “colorful” capitalization, so this
pragma may issue a lot of unwanted messages.

warn_hiddenlocals
Controls the recognition of a local variable that hides another local variable.

Syntax

#pragma warn_hiddenlocals on | off | reset

Remarks

When on, the compiler issues a warning message when it encounters a local
variable that hides another local variable. An example appears in Listing 27.10.

Listing 27.10 Example of hidden local variables warning

#pragma warn_hiddenlocals on

void func (int a)
{
{
int a; /* WARNING: this 'a' obscures argument 'a’'.

}

This pragma does not correspond to any CodeWarrior IDE panel setting. By
default, this setting is of £.

warn_illpragma
Controls the recognition of illegal pragma directives.

Syntax

#pragma warn_illpragma on | off | reset

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 293



Pragmas for Diagnostic Messages

Remarks

If you enable this pragma, the compiler displays a warning message when it
encounters a pragma it does not recognize.

This pragma corresponds to the Illegal Pragmas setting in the CodeWarrior
IDE’s C/C++ Warnings settings panel. By default, this setting is of £.

warn_illtokenpasting

Controls whether or not to issue a warning message for improper preprocessor token
pasting.

Syntax

#pragma warn_illtokenpasting on | off | reset

Remarks

An example of this is shown below:
#define PTR(x) x##* / PTR(y)

Token pasting is used to create a single token. In this example, v and x cannot be
combined. Often the warning message indicates the macros uses “##”
unnecessarily.

This pragma does not correspond to any panel setting. By default, this pragma is
on.

warn_illunionmembers

Controls whether or not to issue a warning message when illegal union members are
made, such as unions with reference or non-trivial class members.

Syntax

#pragma warn_illunionmembers on | off | reset

Remarks

This pragma does not correspond to any panel setting. By default, this pragma is
on.

294

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Diagnostic Messages

warn_impl_f2i_conv
Controls the issuing of warning messages for implicit £1oat-to-int conversions.

Syntax

#pragma warn_impl_f2i_conv on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message for implicitly
converting floating-point values to integral values. Listing 27.11 provides an
example.

Listing 27.11 Example of Implicit £1oat-to-int Conversion

#pragma warn_impl_£f2i_conv on

float f;
signed int si;

int main()

{
f = si; /* WARNING */

#pragma warn_impl_f2i_conv off
si = £; /* OK */
}

This pragma corresponds to the Float to Integer setting in the CodeWarrior IDE’s
C/C++ Warnings settings panel. By default, this pragma is on.

warn_impl_i2f_conv
Controls the issuing of warning messages for implicit int-to-f1loat conversions.

Syntax

#pragma warn_impl_i2f conv on | off | reset

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 295



Pragmas for Diagnostic Messages

Remarks

If you enable this pragma, the compiler issues a warning message for implicitly

converting integral values to floating-point values. Listing 27.12 shows an
example.

Listing 27.12 Example of implicit int-to-f1oat conversion

#pragma warn_impl_i2f_ conv on

float f;
signed int si;

int main()
{
si = £; /* WARNING */

#pragma warn_impl_i2f_ conv off
f = si; /* OK */

This pragma corresponds to the Integer to Float setting in the CodeWarrior IDE’s
C/C++ Warnings settings panel. By default, this pragma is of £.

warn_impl_s2u_conv

Controls the issuing of warning messages for implicit conversions between the signed
int and unsigned int data types.

Syntax

#pragma warn_impl_s2u_conv on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message for implicitly
converting either from signed int tounsigned int or vice versa. Listing
27.13 provides an example.

Listing 27.13 Example of implicit conversions between signed int and unsigned int

#pragma warn_impl_s2u_conv on

signed int si;

296 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Diagnostic Messages

unsigned int ui;

int main()

{

ui =
si

#pragma warn_impl_s2u_conv off
ui = si;
si

/* WARNING

This pragma corresponds to the Signed / Unsigned setting in the CodeWarrior
IDE’s C/C++ Warnings settings panel. By default, this pragma is enabled.

warn_implicitconv

Listing 27.14 Example of Implicit Conversion

Controls the issuing of warning messages for all implicit arithmetic conversions.

#pragma warn_implicitconv on | off | reset

If you enable this pragma, the compiler issues a warning message for all implicit
arithmetic conversions when the destination type might not represent the source
value. Listing 27.14 provides an example.

#pragma warn_implicitconv on
float f;
signed int si;

unsigned int ui;

int main()

si =

{
f
si
ui
}

/* WARNING

/* WARNING

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 297



Pragmas for Diagnostic Messages

NOTE  This option “opens the gate” for the checking of implicit conversions. The sub-
pragmas warn_impl_f2i_conv,warn_impl_i2f_ conv, and
warn_impl_s2u_conv control the classes of conversions checked.

This pragma corresponds to the Implicit Arithmetic Conversions setting in the
CodeWarrior IDE’s C/C++ Warnings settings panel. By default, this pragma is
off.

warn_largeargs

Controls the issuing of warning messages for passing non-"int” numeric values to
unprototyped functions.

Syntax

#pragma warn_largeargs on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message if you attempt to
pass a non-integer numeric value, such as a float or long long, to an
unprototyped function when the require_prototypes pragma is disabled.

This pragma does not correspond to any panel setting. By default, this pragma is
off.

warn_missingreturn

Issues a warning message when a function that returns a value is missing a return
statement.

Syntax

#pragma warn_missingreturn on | off | reset

Remarks
An example is shown in Listing 27.15.

Listing 27.15 Example of warn_missingreturn pragma

#pragma warn_missingreturn on

298 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Diagnostic Messages

int func/()

{
/* WARNING: no return statement. */

}

This pragma corresponds to the Missing ‘return’ Statements option in the
CodeWarrior IDE’s C/C++ Warnings settings panel.

warn_no_side_effect

Controls the issuing of warning messages for redundant statements.

Syntax

#pragma warn_no_side_effect on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message when it
encounters a statement that produces no side effect. To suppress this warning
message, cast the statement with (void). Listing 27.16 provides an example.

Listing 27.16 Example of Pragma warn_no_side_effect

#pragma warn_no_side_effect on

void func(int a,int b)

{
a+b; /* WARNING: expression has no side effect */
(void) (a+b); /* OK: void cast suppresses warning. */

This pragma corresponds to the Expression Has No Side Effect panel setting in
the CodeWarrior IDE’s C/C++ Warnings settings panel. By default, this pragma is
off.

warn_padding

Controls the issuing of warning messages for data structure padding.

Syntax

#pragma warn_padding on | off | reset

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 299



Pragmas for Diagnostic Messages

Remarks

If you enable this pragma, the compiler warns about any bytes that were implicitly
added after an ANSI C struct member to improve memory alignment. Refer to
the appropriate Targeting manual for more information on how the compiler pads
data structures for a particular processor or operating system.

This pragma corresponds to the Pad Bytes Added setting in the CodeWarrior
IDE’s C/C++ Warnings settings panel. By default, this setting is of £.

warn_pch_portability

Controls whether or not to issue a warning message when #pragma once on is used in a
precompiled header.

Syntax

#pragma warn_pch_portability on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message when you use
#pragma once onin a precompiled header. This helps you avoid
situations in which transferring a precompiled header from machine to machine
causes the precompiled header to produce different results. For more information,
see pragma Once.

This pragma does not correspond to any panel setting. By default, this setting is
off.

warn_possunwant

Controls the recognition of possible unintentional logical errors.

Syntax

#pragma warn_possunwant on | off | reset

Remarks

If you enable this pragma, the compiler checks for common, unintended logical
errors:

300

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Diagnostic Messages

¢ An assignment in either a logical expression or the conditional portion of an 1 £,
while, or for expression. This warning message is useful if you use = when
you mean to use ==. Listing 27.17 shows an example.

Listing 27.17 Confusing = and == in Comparisons

if (a=b) f£(); /* WARNING: a=b is an assignment. */
if ((a=b)!=0) f£(); /* OK: (a=b)!=0 is a comparison. */
if (a==b) f£(); /* OK: (a==b) is a comparison. */

* An equal comparison in a statement that contains a single expression. This
check is useful if you use == when you meant to use =. Listing 27.18 shows an
example.

Listing 27.18 Confusing = and == Operators in Assignments

a == 0; // WARNING: This is a comparison.
a = 0; // OK: This is an assignment, no warning

* A semicolon (; ) directly after awhile, if, or for statement.

For example, Listing 27.19 generates a warning message.

Listing 27.19 Empty statement

i = sockcount () ;
while (--1i); /* WARNING: empty loop. */
matchsock (i) ;

If you intended to create an infinite loop, put white space or a comment between
the while statement and the semicolon. The statements in Listing 27.20
suppress the above error or warning messages.

Listing 27.20 Intentional empty statements

while (i++) ; /* OK: White space separation. */
while (i++) /* OK: Comment separation */ ;

This pragma corresponds to the Possible Errors setting in the CodeWarrior IDE’s
C/C++ Warnings settings panel. By default, this pragma is of £.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 301



Pragmas for Diagnostic Messages

warn_ptr_int_conv

Controls the recognition the conversion of pointer values to incorrectly-sized integral
values.
Syntax

#pragma warn_ptr_int_conv on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message if an expression
attempts to convert a pointer value to an integral type that is not large enough to
hold the pointer value.

Listing 27.21 Example for #pragma warn_ptr_int_conv

#pragma warn_ptr_int_conv on

char *my_ptr;
char too_small = (char)my_ptr; /* WARNING: char is too small. */

See also “warn_any_ptr_int_conv” on page 289.

This pragma corresponds to the Pointer / Integral Conversions setting in the
CodeWarrior IDE’s C/C++ Warnings settings panel. By default, this pragma is
off.

warn_resultnotused

Controls the issuing of warning messages when function results are ignored.

Syntax

#pragma warn_resultnotused on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message when it
encounters a statement that calls a function without using its result. To prevent this,
cast the statement with (void). Listing 27.22 provides an example.

302 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Diagnostic Messages

Listing 27.22 Example of Function Calls with Unused Results

#pragma warn_resultnotused on

extern int bar();
void func ()

{
bar(); /* WARNING: result of function call is not used. */

void(bar()); /* OK: void cast suppresses warning. */

This pragma does not correspond to any panel setting. By default, this pragma is
off.

warn_undefmacro

Controls the detection of undefined macros in #1 f and #elif directives.

Syntax

#pragma warn_undefmacro on | off | reset

Remarks
Listing 27.23 provides an example.

Listing 27.23 Example of Undefined Macro

#if BADMACRO == 4 /* WARNING: undefined macro. */

Use this pragma to detect the use of undefined macros (especially expressions)
where the default value O is used. To suppress this warning message, check if
defined first.

NOTE A warning message is only issued when a macro is evaluated. A short-circuited
“&&” or “| | test or unevaluated “? :” will not produce a warning message.

This pragma corresponds to the Undefined Macro in #if setting in the
CodeWarrior IDE’s C/C++ Warnings settings panel. By default, this pragma is
off.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 303



Pragmas for Diagnostic Messages

warn_uninitializedvar

Controls the compiler to perform some dataflow analysis and emits warning messages
whenever local variables are initialized before being used.

Syntax

#pragma warn_uninitializedvar on | off | reset

Remarks

This pragma has no corresponding setting in the CodeWarrior IDE. By default, this
pragma is on.

warn_unusedarg
Controls the recognition of unreferenced arguments.

Syntax

#pragma warn_unusedarg on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message when it encounters an
argument you declare but do not use.

This check helps you find arguments that you either misspelled or did not use in your
program. Listing 27.24 shows an example.

Listing 27.24 Warning about unused function arguments

void func(int temp, int error);
{
error = do_something(); /* WARNING: temp is unused. */

}

To prevent this warning, you can declare an argument in a few ways:

* Use the pragma unused, as in Listing 27.25.

304 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Diagnostic Messages

Listing 27.25 Using pragma unused() to prevent unused argument messages

void func(int temp, int error)
{
#pragma unused (temp)
/* Compiler does not warn that temp is not used. */

error=do_something() ;

}

* Do not give the unused argument a name. Listing 27.26 shows an example.

The compiler allows this feature in C++ source code. To allow this feature in C
source code, disable ANSI strict checking.

Listing 27.26 Unused, Unnamed Arguments

void func(int /* temp */, int error)
{

/* Compiler does not warn that "temp" is not used. */

error=do_something () ;

}

This pragma corresponds to the Unused Arguments setting in the C/C++
Warnings Panel. By default, this pragma is of f.

warn_unusedvar
Controls the recognition of unreferenced variables.

Syntax

#pragma warn_unusedvar on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message when it
encounters a variable you declare but do not use.

This check helps you find variables that you either misspelled or did not use in
your program. Listing 27.27 shows an example.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 305



Pragmas for Diagnostic Messages

Listing 27.27 Unused Local Variables Example

int error;
void func(void)
{
int temp, errer; /* NOTE: errer is misspelled. */
error = do_something(); /* WARNING: temp and errer are unused. */

If you want to use this warning but need to declare a variable that you do not use, include
the pragma unused, as in Listing 27.28.

Listing 27.28 Suppressing Unused Variable Warnings

void func (void)
{

int i, temp, error;

#pragma unused (i, temp) /* Do not warn that i and temp */
error = do_something() ; /* are not used */

}

This pragma corresponds to the Unused Variables setting in the CodeWarrior
IDE’s C/C++ Warnings settings panel. By default, this pragma is off.

306 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



28

Pragmas for Preprocessing
and Precompilation

check_header_flags

Controls whether or not to ensure that a precompiled header’s data matches a project’s
target settings.

Syntax
#pragma check_header_flags on | off | reset

Remarks
This pragma affects precompiled headers only.

If you enable this pragma, the compiler verifies that the precompiled header’s
preferences for double size, int size, and floating point math correspond to the
build target’s settings. If they do not match, the compiler generates an error
message.

If your precompiled header file depends on these settings, enable this pragma.
Otherwise, disable it.

This pragma does not correspond to any CodeWarrior IDE panel setting. By
default, this pragma is of f.

faster_pch_gen

Controls the performance of precompiled header generation.

Syntax
#pragma faster_pch gen on | off | reset

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 307



Pragmas for Preprocessing and Precompilation

Remarks

If you enable this pragma, generating a precompiled header can be much faster,
depending on the header structure. However, the precompiled file can also be
slightly larger.

This pragma does not correspond to any panel setting. By default, this setting is
off.

flat_include
Controls whether or not to ignore relative path names in #include directives.

Syntax

#pragma flat_include on | off | reset

Remarks
For example, when on, the compiler converts this directive
#include <sys/stat.h>
to
#include <stat.h>

Use this pragma when porting source code from a different operating system, or
when a CodeWarrior IDE project’s access paths cannot reach a given file.

By default, this pragma is of f.

fullpath_file

Controls if __FILE___ macro expands to a full path or the base file name.

Syntax

#pragma fullpath_file on | off | reset

Remarks

When this pragma on, the _ FILE___ macro returns a full path to the file being
compiled, otherwise it returns the base file name.

308 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Preprocessing and Precompilation

fullpath_prepdump
Shows the full path of included files in preprocessor output.

Syntax

#pragma fullpath_prepdump on | off | reset

Remarks

If you enable this pragma, the compiler shows the full paths of files specified by
the #include directive as comments in the preprocessor output. Otherwise, only
the file name portion of the path appears.

This pragma corresponds to the Show full paths option in the CodeWarrior IDE’s
C/C++ Preprocessor settings panel. By default, this pragma is of f.

keepcomments
Controls whether comments are emitted in the preprocessor output.

Syntax

#pragma keepcomments on | off | reset

Remarks

This pragma corresponds to the Keep comments option in the CodeWarrior
IDE’s C/C++ Preprocessor settings panel. By default, this pragma is of £.

line_prepdump
Shows #1ine directives in preprocessor output.

Syntax
#pragma line_prepdump on | off | reset
Remarks

If you enable this pragma, #1ine directives appear in preprocessing output. The
compiler also adjusts line spacing by inserting empty lines.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 309



Pragmas for Preprocessing and Precompilation

Use this pragma with the command-line compiler’s -E option to make sure that
#1line directives are inserted in the preprocessor output.

This pragma corresponds to the Use #line option in the CodeWarrior IDE’s C/C++
Preprocessor settings panel. By default, this pragma is of f.

macro_prepdump

Controls whether the compiler emits #define and #undef directives in preprocessing
output.

Syntax

#pragma macro_prepdump on | off | reset

Remarks

Use this pragma to help unravel confusing problems like macros that are aliasing
identifiers or where headers are redefining macros unexpectedly.

msg_show_lineref

Controls diagnostic output involving #1 ine directives to show line numbers specified by
the #1ine directives in error and warning messages.

Syntax

#pragma msg_show_lineref on | off | reset

Remarks

This pragma does not correspond to any CodeWarrior IDE panel setting. By
default, this pragma is on.

msg_show_realref

Controls diagnostic output involving #1ine directives to show actual line numbers in
error and warning messages.

Syntax

#pragma msg_show_realref on | off | reset

310

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Preprocessing and Precompilation

Remarks

This pragma does not correspond to any CodeWarrior IDE panel setting. By
default, this pragma is on.

notonce

Controls whether or not the compiler lets included files be repeatedly included, even with
#pragma once on.

Syntax

#pragma notonce

Remarks

If you enable this pragma, files can be repeatedly #included, even if you have
enabled #pragma once on. For more information, see “‘once” on page 311.

This pragma does not correspond to any CodeWarrior IDE panel setting.

old_pragma_once

This pragma is no longer available.

once

Controls whether or not a header file can be included more than once in the same
compilation unit.
Syntax

#pragma once [ on |

Remarks

Use this pragma to ensure that the compiler includes header files only once in a
source file. This pragma is especially useful in precompiled header files.

There are two versions of this pragma:

#pragma once

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 311



Pragmas for Preprocessing and Precompilation

and
#pragma once on

Use #pragma once in a header file to ensure that the header file is included only
once in a source file. Use #pragma once on in a header file or source file to
insure that any file is included only once in a source file.

Beware that when using #pragma once on, precompiled headers transferred
from one host machine to another might not give the same results during
compilation. This inconsistency is because the compiler stores the full paths of
included files to distinguish between two distinct files that have identical file
names but different paths. Use the warn_pch_portability pragma to issue a
warning message when you use #pragma once on in a precompiled header.

Also, if you enable the 01d_pragma_once on pragma, the once pragma
completely ignores path names.

This pragma does not correspond to any panel setting. By default, this pragma is
off.

pop, push

Saves and restores pragma settings.

Syntax
#pragma push
#pragma pop

Remarks

The pragma push saves all the current pragma settings. The pragma pop restores
all the pragma settings that resulted from the last push pragma. For example, see

Listing 28.1.

Listing 28.1 push and pop example

#pragma ANSI_strict on

#pragma push /* Saves all compiler settings. */
#pragma ANSI_strict off

#pragma pop /* Restores ANSI_strict to on. */

This pragma does not correspond to any panel setting. By default, this pragma is
off.

312 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Preprocessing and Precompilation

TIP  Pragmas directives that accept on | of £ | reset already form a stack of previous

option values. It is not necessary to use #pragma pop or #pragma push with
such pragmas.

pragma_prepdump
Controls whether pragma directives in the source text appear in the preprocessing output.
Syntax
#pragma pragma_prepdump on | off | reset
Remarks

This pragma corresponds to the Emit #pragmas option in the CodeWarrior IDE’s
C/C++ Preprocessor settings panel. By default, this pragma is of .

TIP  When submitting bug reports with a preprocessor dump, be sure this option is
enabled.

precompile_target
Specifies the file name for a precompiled header file.

Syntax

#pragma precompile_target filename

Parameters

filename

A simple file name or an absolute path name. If filename is a simple file name, the
compiler saves the file in the same folder as the source file. If filename is a path
name, the compiler saves the file in the specified folder.

Remarks

If you do not specify the file name, the compiler gives the precompiled header file
the same name as its source file.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 313



Pragmas for Preprocessing and Precompilation

Listing 28.2 shows sample source code from a precompiled header source file. By
using the predefined symbols ___cplusplus and the pragma
precompile_target, the compiler can use the same source code to create
different precompiled header files for C and C++.

Listing 28.2 Using #pragma precompile_target

#ifdef _ cplusplus

#pragma precompile_target "MyCPPHeaders"
#else

#pragma precompile_target "MyCHeaders"
#endif

This pragma does not correspond to any panel setting.

simple_prepdump
Controls the suppression of comments in preprocessing output.

Syntax

#pragma simple_prepdump on | off | reset

Remarks

By default, the compiler adds comments about the current include file being in
preprocessing output. Enabling this pragma disables these comments.

This pragma corresponds to the Emit file changes option in the CodeWarrior
IDE’s C/C++ Preprocessor settings panel. By default, this pragma is of £.

space_prepdump

Controls whether or not the compiler removes or preserves whitespace in the
preprocessor’s output.

Syntax

#pragma space_prepdump on | off | reset

314 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Preprocessing and Precompilation

Remarks

This pragma is useful for keeping the starting column aligned with the original
source code, though the compiler attempts to preserve space within the line. This
pragma does not apply to expanded macros.

This pragma corresponds to the Keep whitespace option in the CodeWarrior
IDE’s C/C++ Preprocessor settings panel. By default, this pragma is of £.

srcrelincludes
Controls the lookup of #include files.

Syntax

#pragma srcrelincludes on | off | reset

Remarks

When on, the compiler looks for #include files relative to the previously
included file (not just the source file). When of £, the compiler uses the
CodeWarrior IDE’s access paths or the access paths specified with the —ir option.

Use this pragma when multiple files use the same file name and are intended to be
included by another header file in that directory. This is a common practice in
UNIX programming.

This pragma corresponds to the Source-relative includes option in the Access
Paths panel. By default, this pragma is of £.

syspath_once
Controls how included files are treated when #pragma once is enabled.

Syntax

#pragma syspath_once on | off | reset

Remarks

When this pragma and pragma once are set to on, the compiler distinguishes
between identically-named header files referred to in

#include <file-name>

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 315



Pragmas for Preprocessing and Precompilation

and
#include "file-name".

When this pragma is of £ and pragma once is on, the compiler will ignore a file
that uses a

#include <file-name>
directive if it has previously encountered another directive of the form
#include "file-name"
for an identically-named header file.
shows an example.
This pragma does not correspond to any panel setting. By default, this setting is

on.

Listing 28.3 Pragma syspath_once example

#pragma syspath_once off

#pragma once on /* Include all subsequent files only once. */
#include "sock.h"

#include <sock.h> /* Skipped because syspath_once is off. */

316 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



g |

29

Pragmas for Library and
Linking

always_import

Controls whether or not #include directives are treated as #pragma import
directives.

Syntax

#pragma always_import on | off | reset

Remarks

If you enable this pragma, the compiler treats all #include statements as
#pragma import statements.

This pragma does not correspond to any CodeWarrior IDE panel setting. By
default, this pragma is of f.

export

Controls the exporting of data and functions to be accessible from outside a program or
library.

Syntax

#pragma export on | off | reset

#pragma export list namel [, name2, ...]

namel, nameZ2

Names of functions or global variables to export.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 317



Pragmas for Library and Linking

Remarks

When using the #pragma export on format, all functions in the source file
being compiled will be accessible from outside the program or library that the
compiler and linker are building.

Use the #pragma export list format to specify global variables and
functions for exporting. In C++, this form of the pragma applies to all variants of
an overloaded function. You cannot use this pragma for C++ member functions or
static class members. Listing 29.1 shows an example:

Listing 29.1 Example of an Exported List

extern int f£(),g;
#pragma export list f,g

force_active

Controls how “dead” functions and global variables are linked.

Syntax

#pragma force_active on | off | reset

Remarks

If you enable this pragma, the linker leaves functions and global in the finished
application, even if the functions are never called in the program.

This pragma does not correspond to any CodeWarrior IDE panel setting. By
default, this pragma is of £.

import

Controls the importing of global data or functions.

Syntax

#pragma import on | off | reset

#pragma import list namel [, name2, ...]
namel, nameZ2

Names of functions or global variables to import.

318

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Library and Linking

Remarks

When using the #pragma import on format, all functions are automatically
imported.

Use the #pragma import list format to specify data or functions for
importing. In C++, this form of the pragma applies to all variants of an overloaded
function. You cannot use this pragma for C++ member functions or static class
members.

Listing 29.2 shows an example:

Listing 29.2 Example of an Imported List

extern int f£(),g;
#pragma import list f,g

This pragma does not correspond to any CodeWarrior IDE panel setting. By
default, this pragma is of f.

lib_export
Controls the exporting of data or functions.

Syntax
#pragma lib_export on | off | reset

#pragma lib_export list namel [, name2 ]1*

Remarks

When using the #pragma 1lib_export on format, the linker marks all data
and functions that are within the pragma’s scope for export.

Use the #pragma 1lib_export list format to tag specific data or functions
for exporting. In C++, this form of the pragma applies to all variants of an
overloaded function. You cannot use this pragma for C++ member functions or
static class members.

Listing 29.3 shows an example:

Listing 29.3 Example of a 1ib_export List

extern int f£(),g;
#pragma lib_export list f,g

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 319



Pragmas for Library and Linking

This pragma does not correspond to any panel setting. By default, this pragma is
disabled.

320 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



30

Pragmas for Code
Generation

dont_reuse_strings

Controls whether or not to store identical character string literals separately in object code.

Syntax

#pragma dont_reuse_strings on | off | reset

Remarks

Normally, C and C++ programs should not modify character string literals. Enable
this pragma if your source code follows the unconventional practice of modifying
them.

If you enable this pragma, the compiler separately stores identical occurrences of
character string literals in a source file.

If this pragma is disabled, the compiler stores a single instance of identical string
literals in a source file. The compiler reduces the size of the object code it
generates for a file if the source file has identical string literals.

The compiler always stores a separate instance of a string literal that is used to
initialize a character array. Listing 30.1 shows an example.

Although the source code contains 3 identical string literals, "cat", the compiler
will generate 2 instances of the string in object code. The compiler will initialize
strl and str2 to point to the first instance of the string and will initialize str3
to contain the second instance of the string.

Using str2 to modify the string it points to also modifies the string that str1
points to. The array str3 may be safely used to modify the string it points to
without inadvertently changing any other strings.

This pragma corresponds to the Reuse Strings setting in the CodeWarrior IDE’s
C/C++ Language settings panel. By default, this pragma is of £.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 321



Pragmas for Code Generation

Listing 30.1 Reusing string literals

#pragma dont_reuse_strings off
void strchange (void)

{
const char* strl = "cat";
char* str2 = "cat";
char str3[] = “cat”;
*str2 = 'h'; /* strl and str2 point to "hat"! */
str3[0] = 'b';
/* OK: str3 contains "bat", *strl and *str2 unchanged.
}
enumsalwaysint

Specifies the size of enumerated types.

Syntax

#pragma enumsalwaysint on | off | reset

Remarks

If you enable this pragma, the C/C++ compiler makes an enumerated type the same
size as an int. If an enumerated constant is larger than int, the compiler
generates an error message. Otherwise, the compiler makes an enumerated type the
size of any integral type. It chooses the integral type with the size that most closely
matches the size of the largest enumerated constant. The type could be as small as a
char oras large as a long long.

Listing 30.2 shows an example.

Listing 30.2 Example of Enumerations the Same as Size as int

enum SmallNumber { One = 1, Two = 2 };
/* If you enable enumsalwaysint, this type is
the same size as an int. Otherwise, this type is
the same size as a char. */

enum BigNumber
{ ThreeThousandMillion = 3000000000 };
/* If you enable enumsalwaysint, the compiler might

322 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Code Generation

generate an error message. Otherwise, this type is
the same size as a long long. */

This pragma corresponds to the Enums Always Int setting in the CodeWarrior
IDE’s C/C++ Language settings panel. By default, this pragma is of .

errno_name
Tells the optimizer how to find the errno identifier.

Syntax

#pragma errno_name id |

Remarks

When this pragma is used, the optimizer can use the identifier errno (either a
macro or a function call) to optimize standard C library functions better. If not
used, the optimizer makes worst-case assumptions about the effects of calls to the
standard C library.

NOTE  The MSL C library already includes a use of this pragma, so you would only
need to use it for third-party C libraries.

If errno resolves to a variable name, specify it like this:
#pragma errno_name _Errno

If errno is a function call accessing ordinarily inaccessible global variables, use
this form:

#pragma errno_name
Otherwise, do not use this pragma to prevent incorrect optimizations.

This pragma does not correspond to any panel setting. By default, this pragma is
unspecified (worst case assumption).

explicit_zero_data

Controls the placement of zero-initialized data.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 323



Pragmas for Code Generation

Syntax

#pragma explicit_zero_data on | off | reset

Remarks

Places zero-initialized data into the initialized data section instead of the BSS
section when on.

By default, this pragma is of f.

float_constants

Controls how floating pointing constants are treated.

Syntax

#pragma float_constants on | off | reset

Remarks

If you enable this pragma, the compiler assumes that all unqualified floating point
constant values are of type £1oat, not double. This pragma is useful when
porting source code for programs optimized for the “f1oat” rather than the
“double” type.

When you enable this pragma, you can still explicitly declare a constant value as
double by appending a “D” suffix.

This pragma does not correspond to any panel setting. By default, this pragma is
disabled.

instmgr_file

Controls where the instance manager database is written, to the target data directory or to a
separate file.
Syntax

#pragma instmgr_file "name"

Remarks

When the Use Instance Manager option is on, the IDE writes the instance
manager database to the project’s data directory. If the #pragma
instmgr_file is used, the database is written to a separate file.

324 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Code Generation

Also, a separate instance file is always written when the command-line tools are
used.

NOTE  Should you need to report a bug, you can use this option to create a separate
instance manager database, which can then be sent to technical support with
your bug report.

longlong
Controls the availability of the long long type.

Syntax

#pragma longlong on | off | reset

Remarks

When this pragma is enabled and the compiler is translating C89 source code (ISO/
IEC 9899-1990 standard), the compiler recognizes a data type named long
long. The long long type holds twice as many bits as the 1ong data type.

This pragma does not correspond to any CodeWarrior IDE panel setting.

By default, this pragma is On for processors that support this type. It is of £ when
generating code for processors that do not support, or cannot turn on, the long
long type.

longlong_enums
Controls whether or not enumerated types may have the size of the 1 ong 1l ong type.

Syntax

#pragma longlong_enums on | off | reset

Remarks

This pragma lets you use enumerators that are large enoughtobe long long
integers. It is ignored if you enable the enumsalwaysint pragma
(described in “‘enumsalwaysint” on page 322).

This pragma does not correspond to any panel setting. By default, this setting is
enabled.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 325



Pragmas for Code Generation

min_enum_size
Specifies the size, in bytes, of enumeration types.

Syntax
#pragma min_enum_size 1 | 2 | 4
Remarks

Turning on the enumsalwaysint pragma overrides this pragma. The default is
1.

options
Specifies how to align structure and class data.

Syntax
#pragma options align= alignment
Parameter
alignment
Specifies the boundary on which structure and class data is aligned in memory.

Values for alignment range from 1 to 16, or use one of the following preset values:

Table 30.1 Structs and Classes Alignment

If alignment is ... The compiler ...

mac68k Aligns every field on a 2-byte boundaries, unless a field is
only 1 byte long. This is the standard alignment for 68K
Mac OS.

mac68kdbyte Aligns every field on 4-byte boundaries.

326 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Code Generation

Table 30.1 Structs and Classes Alignment

If alignment s ...

The compiler ...

power

Aligns every field on its natural boundary. This is the
standard alignment for PowerPC Mac OS. For example, it
aligns a character on a 1-byte boundary and a 16-bit
integer on a 2-byte boundary. The compiler applies this
alignment recursively to structured data and arrays
containing structured data. So, for example, it aligns an
array of structured types containing an 4-byte floating
point member on an 4-byte boundary.

native

Aligns every field using the standard alignment. It is
equivalent to using mac 6 8k for 68K Mac OS and
power for PowerPC Mac OS.

packed

Aligns every field on a 1-byte boundary. It is not available
in any panel. This alignment causes your code to crash or
run slowly on many platforms. Use it with caution.

reset

Resets to the value in the previous #pragma options
align statement.

NOTE  There is a space between options and align.

pool_strings

Controls how string literals are stored.

Syntax

#pragma pool_strings on | off | reset

Remarks

If you enable this pragma, the compiler collects all string constants into a single
data object so your program needs one data section for all of them. If you disable
this pragma, the compiler creates a unique data object for each string constant.
While this decreases the number of data sections in your program, on some
processors it also makes your program bigger because it uses a less efficient
method to store the address of the string.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 327



Pragmas for Code Generation

This pragma is especially useful if your program is large and has many string
constants or uses the CodeWarrior Profiler.

NOTE  If you enable this pragma, the compiler ignores the setting of the
pcrelstrings pragma.

This pragma corresponds to the Pool Strings setting in the CodeWarrior IDE’s C/
C++ Language settings panel.

readonly_strings

Controls whether string objects are placed in a read-write or a read-only data section.

Syntax

#pragma readonly_strings on | off | reset

Remarks

If you enable this pragma, C strings used in your source code (for example,
"hello") are output to the read-only data section instead of the global data section.
In effect, these strings act like const char *, even though their type is really
char *.

This pragma does not correspond to any IDE panel setting.

reverse_bitfields

Controls whether or not the compiler reverses the bitfield allocation.

Syntax

#pragma reverse_bitfields on | off | reset

Remarks

This pragma reverses the bitfield allocation, so that bitfields are arranged from the
opposite side of the storage unit from that ordinarily used on the target. The
compiler still orders the bits within a single bitfield such that the lowest-valued bit
is in the right-most position.

This pragma does not correspond to any panel setting. By default, this pragma is
disabled.

328

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Code Generation

store_object_files

Controls the storage location of object data, either in the target data directory or as a
separate file.

Syntax

#pragma store_object_files on | off | reset

Remarks
By default, the IDE writes object data to the project’s target data directory. When

this pragma is on, the object data is written to a separate object file.

NOTE  For some targets, the object file emitted may not be recognized as actual object
data.

This pragma does not correspond to any panel setting. By default, this pragma is
off.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 329



Pragmas for Code Generation

330 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



g |

31

Pragmas for Optimization

global_optimizer

Controls whether the Global Optimizer is invoked by the compiler.

Syntax

#pragma global_optimizer on | off | reset

Remarks

In most compilers, this #pragma determines whether the Global Optimizer is
invoked (configured by options in the panel of the same name). If disabled, only
simple optimizations and back-end optimizations are performed.

NOTE This is not the same as #pragma optimization_level. The Global
Optimizer is invoked even at optimization_level 0 if #pragma
global_optimizer is enabled.

This pragma corresponds to the settings in the Global Optimizations panel. By
default, this setting is on.

ipa

Specifies how to apply interprocedural analysis optimizations.

Syntax

#pragma ipa program | file | on | function | off

Remarks

See “Interprocedural Analysis” on page 167.

Place this pragma at the beginning of a source file, before any functions or data
have been defined. There are three levels of interprocedural analysis:

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 331



Pragmas for Optimization

* program-level: the compiler translates all source files in a program then
optimizes object code for the entire program

« file-level: the compiler translates each file and applies this optimization to the
file

» function-level: the compiler does not apply interprocedural optimization

The options £ile and on are equivalent. The options function and off are
equivalent.

opt_common_subs

Controls the use of common subexpression optimization.

Syntax

#pragma opt_common_subs on | off | reset

Remarks

If you enable this pragma, the compiler replaces similar redundant expressions
with a single expression. For example, if two statements in a function both use the
expression

a *b *c+ 10

the compiler generates object code that computes the expression only once and
applies the resulting value to both statements.

The compiler applies this optimization to its own internal representation of the
object code it produces.

This pragma does not correspond to any panel setting. By default, this settings is
related to the global optimizer pragma.

opt_dead_assignments
Controls the use of dead store optimization.

Syntax

#pragma opt_dead_assignments on | off | reset

332 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Optimization

Remarks

If you enable this pragma, the compiler removes assignments to unused variables
before reassigning them.

This pragma does not correspond to any panel setting. By default, this settings is
related to the “global optimizer” on page 331 level.

opt_dead_code
Controls the use of dead code optimization.

Syntax

#pragma opt_dead_code on | off | reset

Remarks

If you enable this pragma, the compiler removes a statement that other statements
never execute or call.

This pragma does not correspond to any panel setting. By default, this settings is
related to the “global optimizer” on page 331 level.

opt_lifetimes
Controls the use of lifetime analysis optimization.

Syntax

#pragma opt_lifetimes on | off | reset

Remarks

If you enable this pragma, the compiler uses the same processor register for
different variables that exist in the same routine but not in the same statement.

This pragma does not correspond to any panel setting. By default, this settings is
related to the “global optimizer” on page 331 level.

opt_loop_invariants

Controls the use of loop invariant optimization.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 333



Pragmas for Optimization

Syntax

#pragma opt_loop_invariants on | off | reset

Remarks

If you enable this pragma, the compiler moves all computations that do not change
inside a loop outside the loop, which then runs faster.

This pragma does not correspond to any panel setting.

opt_propagation

Controls the use of copy and constant propagation optimization.

Syntax

#pragma opt_propagation on | off | reset

Remarks

If you enable this pragma, the compiler replaces multiple occurrences of one
variable with a single occurrence.

This pragma does not correspond to any panel setting. By default, this settings is
related to the “global optimizer” on page 331 level.

opt_strength_reduction

Controls the use of strength reduction optimization.

Syntax

#pragma opt_strength_reduction on | off | reset

Remarks

If you enable this pragma, the compiler replaces array element arithmetic
instructions with pointer arithmetic instructions to make loops faster.

This pragma does not correspond to any panel setting. By default, this settings is
related to the “global_optimizer” on page 331 level.

334

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Optimization

opt_strength_reduction_strict
Uses a safer variation of strength reduction optimization.

Syntax

#pragma opt_strength_reduction_strict on | off | reset

Remarks

Like the opt strength reduction pragma, this setting replaces
multiplication instructions that are inside loops with addition instructions to speed
up the loops. However, unlike the regular strength reduction optimization, this
variation ensures that the optimization is only applied when the array element
arithmetic is not of an unsigned type that is smaller than a pointer type.

This pragma does not correspond to any panel setting. The default varies according
to the compiler.

opt_unroll_loops
Controls the use of loop unrolling optimization.

Syntax

#pragma opt_unroll_loops on | off | reset

Remarks

If you enable this pragma, the compiler places multiple copies of a loop’s
statements inside a loop to improve its speed.

This pragma does not correspond to any panel setting. By default, this settings is
related to the “global optimizer” on page 331 level.

opt_vectorize_loops
Controls the use of loop vectorizing optimization.

Syntax

#pragma opt_vectorize_loops on | off | reset

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 335



Pragmas for Optimization

Remarks
If you enable this pragma, the compiler improves loop performance.
NOTE Do not confuse loop vectorizing with the vector instructions available in some
processors. Loop vectorizing is the rearrangement of instructions in loops to

improve performance. This optimization does not optimize a processor’s
vector data types.

By default, this pragma is of £.

optimization_level

Controls global optimization.

Syntax
#pragma optimization level 0 | 1 | 2 | 3 | 4

Remarks

This pragma specifies the degree of optimization that the global optimizer
performs.

To select optimizations, use the pragma optimization_level with an
argument from 0 to 4. The higher the argument, the more optimizations performed
by the global optimizer.

For more information on the optimization the compiler performs for each
optimization level, refer to the Targeting manual for your target platform.

These pragmas correspond to the settings in the Global Optimizations panel. By
default, this pragma is disabled.

optimize_for_size

Controls optimization to reduce the size of object code.

#pragma optimize_for_size on | off | reset

Remarks

This setting lets you choose what the compiler does when it must decide between
creating small code or fast code. If you enable this pragma, the compiler creates
smaller object code at the expense of speed. It also ignores the 1nline directive

336

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for Optimization

and generates function calls to call any function declared inl ine. If you disable
this pragma, the compiler creates faster object code at the expense of size.

The pragma corresponds to the Optimize for Size setting on the Global
Optimizations panel.

optimizewithasm

Controls optimization of assembly language.

Syntax

#pragma optimizewithasm on | off | reset

Remarks

If you enable this pragma, the compiler also optimizes assembly language
statements in C/C++ source code.

This pragma does not correspond to any panel setting. By default, this pragma is
disabled.

strictheaderchecking

Controls how strict the compiler checks headers for standard C library functions.

Syntax

#pragma strictheaderchecking on | off | reset

Remarks

The 3.2 version compiler recognizes standard C library functions. If the correct
prototype is used, and, in C++, if the function appears in the “std” or root
namespace, the compiler recognizes the function, and is able to optimize calls to it
based on its documented effects.

When this #pragma is on (default), in addition to having the correct prototype, the
declaration must also appear in the proper standard header file (and not in a user
header or source file).

This pragma does not correspond to any panel setting. By default, this pragma is
on.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 337



Pragmas for Optimization

338 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



32

Pragmas for ColdFire

This chapter is a a placeholder for a chapter containing target-specific material.

ColdFire Diagnostic Pragmas

SDS_debug_support

Tries to make the DWAREF output file compatible with the Software Development System
(SDS) debugger. The default value is OFF.

#pragma SDS_debug_support [ on | off | reset ]

ColdFire Library and Linking Pragmas

define_section

Specifies a predefined section or defines a new section for compiled object code.

#pragma define_section sname ".istr" [.ustr] [addrmode]
[accmode]

Parameters
sname
Identifier for source references to this user-defined section.
istr
Section-name string for initialized data assigned to this section. Double quotes

must surround this parameter value, which must begin with a period. (Also applies
to uninitialized data if there is no ustr value.)

ustr

Optional: ELF section name for uninitialized data assigned to this section. Must
begin with a period. Default value is the 1 str value.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 339



A 4
4\

Pragmas for ColdFire
ColdFire Library and Linking Pragmas

addrmode

Optional: any of these address-mode values:

¢ standard — 32-bit absolute address (default)

e near_absolute — 16-bit absolute address

e far_ absolute — 32-bit absolute address

¢ near_code — 16-bit offset from the PC address

e far code — 32-bit offset from the PC address

* near_data — 16-bit offset from the AS register address

e far_data — 32-bit offset from the A5 register address

accmode

Optional: any of these letter combinations:

¢ R — readable

¢ RW — readable and writable

¢ RX — readable and executable

e RWX — readable, writable, and executable (default)
(No other letter orders are valid: WR, XR, or XRW would be an error.)

Remarks

The compiler predefines the common ColdFire sections that Table 32.1 lists.

Table 32.1 ColdFire Predefined Sections

Applicability Definition Pragmas

Absolute #pragma define_section text ".text" far_absolute RX

Addressing

Mode #pragma define_section data ".data" ".bss" far_absolute RW
#pragma define_section sdata ".sdata" ".sbss" near_data RW
#pragma define_section const ".rodata" far_absolute R

C++, #pragma define section exception ".exception" far_absolute R

Regardless of

Addressing #pragma define_section exceptlist ".exceptlist" far_absolute R

Mode

340

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition




Pragmas for ColdFire
ColdFire Code Generation Pragmas

Table 32.1 ColdFire Predefined Sections (continued)

PID Addressing
Mode

#pragma define_section text ".text" far_ absolute RX
#pragma define_section data ".data" ".bss" far_data RW
#pragma define_section sdata ".sdata" ".sbss" near_data RW

#pragma define_section const ".rodata" far_absolute R

PIC Addressing
Mode

#pragma define_section text ".text" far_code RX
#pragma define_section data ".data" ".bss" far_absolute RW
#pragma define_section sdata ".sdata" ".sbss" near_data RW

#pragma define_section const ".rodata" far_code R

NOTE

Another use for #pragma define_section is redefining the attributes of
predefined sections:

* To force 16-bit absolute addressing for all data, use
#pragma define_section data ".data" near_absolute
* To force 32-bit TP-relative addressing for exception tables, use:

#pragma define_section exceptlist ".exceptlist" far_code
#pragma define_section exception ".exception" far_code

You should put any such attribute-redefinition pragmas a prefix file or other header
that all your program’s source files will include.

The ELF linker’s Section Mappings settings panel must map any user-
defined compiler section to an appropriate segment.

ColdFire Code Generation Pragmas

codeColdFire

Controls organization and generation of ColdFire object code.

#pragma codeColdFire processor

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 341



A 4
4\

Pragmas for ColdFire
ColdFire Code Generation Pragmas

Parameter

processor

Any of these specifier values: MCF521x, MCF5206e, MCF5249, MCF5272,

MCF5282, MCF5307, MCF5407, MCF547x, MCF548x — or reset, which
specifies the default processor.

const_multiply
Enables support for constant multiplies, using shifts and add/subtracts.
#pragma const_multiply [ on | off | reset ]

Remarks

The default value is on.

emac
Enables EMAC assembly instructions in inline assembly.
#pragma emac [ on | off | reset ]
Remarks

Enables inline-assembly instructions mac, msac, macl, msacl, move, and
movclr for the ColdFire EMAC unit.

The default value is OFF.

explicit_zero_data
Specifies storage area for zero-initialized data.
#pragma explicit_zero_data [ on | off | reset ]
Remarks

The default value OFF specifies storage in the . sbss or .bss section. The value

ON specifies storage in the . data section. The value reset specifies storage in
the most-recent previously specified section.

342 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for ColdFire
ColdFire Code Generation Pragmas

Example
#pragma explicit_zero_data on

int in_data_section = 0;

#pragma explicit_zero_data off

int in_bss_section = 0;

inline_intrinsics

Controls support for inline intrinsic optimizations strcopy and strlen.

#pragma inline_intrinsics [ on | off | reset ]

Remarks

In the strcopy optimization, the system copies the string via a set of move-
immediate commands to the source address. The system applies this optimization
if the source is a string constant of fewer than 64 characters, and optimizing is set
for speed.

In the strlen optimization, a move immediate of the length of the string to the
result replaces the function call. The system applies this optimization if the source
is a string constant.

The default value is ON.

interrupt

Controls compilation for interrupt-routine object code.

#pragma interrupt [ on | off | reset ]

Remarks

For the value ON, the compiler generates special prologues and epilogues for the
functions this pragma encapsulates The compiler saves or restores all modified
registers (both nonvolatile and scratch). Functions return via RTE instead of RTS.

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 343



y
A

Pragmas for ColdFire
ColdFire Code Generation Pragmas

You also can also use __declspec (interrupt) to mark functions as
interrupt routines, for example:

_ declspec (interrupt) void alpha/()
{
//enter code here

}

readonly_strings

Enables the compiler to place strings in the . rodata section.

#pragma readonly_strings [ on | off | reset ]

Remarks
The default value is ON.

For the OFF value, the compiler puts strings in initialized data sections .data or
.sdata, according to the string size.

section

Activates or deactivates a user-defined or predefined section.

#pragma section smame begin | end

Parameters
sname

Identifier for a user-defined or predefined section.
begin

Activates the specified section from this point in program execution.

end
Deactivates the specified section from this point in program execution; the section
returns to its default state.

Remarks

Each call to this pragma must include a begin parameter or an end parameter, but
not both.

344 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



Pragmas for ColdFire
ColdFire Optimization Pragmas

You may use this pragma with #pragma push and #pragma pop to ease
complex or frequent changes to section settings.

NOTE A simpler alternative to #pragma sectionisthe _declspec ()
declaration specifier.

ColdFire Optimization Pragmas

opt_unroll_count

Limits the number of times a loop can be unrolled; fine-tunes the loop-unrolling
optimization.

#pragma opt_unroll_count [ 0..127 | reset ]

Remarks
The default value is 8.

opt_unroll_instr_count

Limits the number of pseudo-instructions; fine-tunes the loop-unrolling optimization.

#pragma opt_unroll_instr_count [ 0..127 | reset ]

Remarks

There is not always a one-to-one mapping between pseudo-instructions and actual
ColdFire instructions.

The default value is 100.

profile

Organizes object code for the profiler library and enables simple profiling.

#pragma profile [on| off| reset]

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 345



V¥ ¢
i

Pragmas for ColdFire
ColdFire Optimization Pragmas

Remarks

Corresponds to the Generate code for profiling checkbox of the ColdFire
Processor settings panel.

346 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



g |

Index

Symbols

#include
diagnosing error messages 286
GCC policy 71
IDE 30
importing linker symbols 317
including once 311
letter case 36, 67,291, 292, 36
levels 155
other operating systems 69
paths 308, 309
precompiled files 149, 162
reducing compiler time 161
searching 70, 315

#1line 309

$ 276

. (location counter) linker command 102

.1cf 43

See also assignment, equals.

See also equals, assignment.
__embedded_cplusplus 157,228
__ide_target () 229
__ INTEL__ 231
___PRETTY_ FUNCTION__ 150

A

access_errors 249
addition 180

ADDR linker command 103
ALIGN linker command 104
ALIGNALL linker command 104
alignment, LCF 125

allocation, variable 200
always_import 317
always_inline 249

-ansi 45

ANSI Keywords Only option 28
ANSI_strict 243
arg_dep_lookup 249

arguments

list 245
arguments, inline assembly 189-191
arithmetic operators, LCF 124, 125
-ARM 47
ARM_scoping 250
array_new_delete 251
asmpoundcomment 275
asmsemicolcomment 275
assignment

accidental 301

unused 176
auto_inline 251
auto_inline pragma 27

B

bitfield 328
board-independent code 225
-bool 47

bool 251

C
C
GNU Compiler Collection extensions 142
-c 81
C fully compliant console IO MSL files 209
C fully compliant UART IO MSL files 208
C hardware floating point console IO MSL
files 212
C hardware floating point UART 10 MSL
files 211
C small console IO MSL files 211
C small UART IO MSL files 210
C++
embedded 157
precompiling 149
C++ fully compliant MSL files 213
C++ hardware floating point MSL files 215
C++ hardware floating point UART 10 MSL
files 214
C++ small working set MSL files 214

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 347



C/C++ Warnings panel 32 -I+ 72

c99 243 -include 73

calling conventions 199 -inline 85

catch statement 26, 257 -instmgr 49

-char 51 -ir 73

char type 30 -iso_templates 49

character strings -keepobjects 79
See strings. -M 54

check_header_flags 307 -make 54

closure segments, LCF 121, 122 -mapcr 54

code -maxerrors 60
board-independent 225 -maxwarnings 61
position-independent 224,225 -MD 55

code motion 178 -min_enum_size 82

codeColdFire pragma 341 -MM 55

-codegen 81 -MMD 55

command files 43 -msext 56

command-line options -msgstyle 61
-ansi 45 -multibyteaware 56
-ARM 47 -nofail 62
-bool 47 -nolink 79
-c 81 -noprecompile 76
-char 51 -nosyspath 76
-codegen 81 -0 86
-convertpaths 69 -o 80
-Cpp_exceptions 47 -0+ 86
-cwd 70 -once 56
-D+ 70 -opt 87
-defaults 51 -P 73
-define 70 -ppopt 75
-dialect 48 -pragma 57
-disassemble 59 -precompile 74
-E 71 -prefix 75
-encoding 52 -preprocess 74
—enum 81 -progress 62
-EP 71 -relax_pointers 57
-ext 82 -requireprotos 57
-flag 53 -RTTI 50
-for_scoping 48 -S 62
-gcc_extensions 53 -search 58
-gccext 53 -som 50
-gccincludes 71 -som_env_check 50
-help 59 -stderr 62
-I- 72 -stdinc 76

348 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



-stdkeywords 45
-strict 46
-strings 83
-timing 63
-trigraphs 58
-U+ 76
-undefine 77
-verbose 63
-version 63
-warnings 64
-wchar_t 50
-wraplines 67
commands
linker 119
comment operators, LCF 124, 125
common subexpression elimination 174
compilers ?7?-203
compound literal 137
configuration flag functionality 219
const_multiply pragma 342
const_strings 276
conventions, calling 199
-convertpaths 69
copy propagation 175
cplusplus 252
-Cpp_exceptions 47
cpp_extensions 252
cryptographic acceleration instructions 201-??
CSE. See optimization.
custom modifications 225, 226
-cwd 70
CWFolder 40
cwinst.db 49

D

-D+ 70

dc inline assembly directive 192
dead code 171

dead store elimination 176
deadstripping, linker 119
debuginline 253
def_inherited 254
-defaults 51
defer_defarg_parsing 255

deferred

code generation 255

inlining 255
-define 70
define_section pragma 339-341
-dialect 48
directives

#1line 309

inline assembly 191-196

linker 119
-disassemble 59
DLL

See libraries.
dollar sign 276
dollar_identifiers 276
Don’t Inline option 27
dont_inline 256
dont_inline pragma 27
dont_reuse_strings 321
dont_reuse_strings pragma 30
double type 324
ds inline assembly directive 192, 193
dynamic libraries

See libraries.
dynamic_cast keyword 26,267

E

-E 71

-E option 310

EC++ fully compliant MSL files 216

EC++ hardware floating point MSL files 217

EC++ hardware floating point UART 10 MSL
files 216

ecplusplus 256

ecplusplus pragma 157

emac pragma 342

embedded C++ 157

Enable Exception Handling option 26

-encoding 52

entry inline assembly directive 193, 194

-enum 81

enumalwaysint 322

enumerated types 283

Environment tab 39

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition

349



-EP 71
equals

instead of assignment 301
errno_name 323
error messages

diagnosing #include directives 286
exception handling 26
EXCEPTION linker command 105
exception tables, LCF 128
exceptions 257
executable files, linker 120
explicit_zero_data 323
explicit_zero_data pragma 342
export 317
EXPORTSTRTAB linker command 105
EXPORTSYMTAB linker command 106
expression

common elimination 174

simplification 172
expressions, LCF 123, 124
-ext 82
extended_errorcheck 257,283
extensions

GNU C 277

GNU Compiler Collection 142

F

faster_pch_gen 307

file specification, LCF 126
filename parameters 206

-flag 53

flat_include 308

FlexILM 40

float type 324
float_constants 324

for statement 301
-for_scoping 48
force_active 318
FORCE_ACTIVE linker command 107
formats, integer 198

fralloc inline assembly directive 194
frfree inline assembly directive 194
fullpath_file 308

fullpath prepdump 309

function

declarations 245

prototypes 245
function specification, LCF 126
functionality, configuration flag 219

G

GCC. See Gnu Compiler Collection.
-gcc_extensions 53
gcc_extensions 277
-gccext 53
-gccincludes 71
global_optimizer 331
GNU C extensions 277
GNU Compiler Collection
extension to C 142
file include policy 71

H

header files
including once 311
searching 315
heap, LCF 127
-help 59

|
-I- 72
-I+ 72
identifier
$ 276
dollar signs in 276
if statement 301
ignore_oldstyle 245
import 318
IMPORTSTRTAB linker command 107
IMPORTSYMTAB linker command 108
inaccessible code 171
-include 73
INCLUDE linker command 109
infinite loop, creating 301
-inline 85
inline assembly
directives 191-196

350 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



dc 192
ds 192,193
entry 193,194
fralloc 194
frfree 194
machine 195
naked 195
opword 196
return 196
local variables, arguments 189-191
returning from routine 191
syntax 187-189
inline_bottom_up 259
inline_bottom_up_once 260
inline_depth 260
inline_intrinsics pragma 343
inline_max_auto_size 261
inline_max_size 261
inline_max_total_size 262
inlining
C++ 150
choosing functions 182
introduction 182
policies 184
reducing object code size 149
instance manager 149
-instmgr 150
-instmgr 49
instmgr_file 324
instmgr_file pragma 150
integer formats 198
integrals, LCF 123, 124
__INTEL__ 231
internal 262
interprocedural analysis
declarations 169
enumerations 170
file level 168
introduction 167
invoking 168
program level 168
requirements 168
source dependencies 169
structures 170

type definitions 170
interrupt pragma 343
ipa 331
-ir 73
-iso_templates 49

K
KEEP_SECTION linker command 109
keepcomments 309
-keepobjects 79
keywords
additional 28
dynamic_cast 26,267
standard 134
typeid 26,267
keywords, linker 119

L
LCF
alignment 125

arithmetic, comment operators 124, 125

closure segments 121, 122
exception tables 128
expressions 123, 124
file specification 126
function specification 126
heap, stack 127
integrals 123, 124
memory segment 120
position-independent code, data 128
ROM-RAM copying 129-130
sections segment 122
specifying files, functions 126
stack, heap 127
static initializers 127
structure 120-2?
syntax 123-132
variables 123, 124
writing to memory 130, 132

lib_export 319

libraries 205-226
dynamic 272
heaps 219
memory 219

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition

351



A
Metrowerks standard 205-220 local variables, inline assembly 189-191
reduced working set 218,219 location counter linker command 102
runtime 220-226 longlong 325
serial I/O 217 longlong_enums 325
static 272 loop
UART 217 infinite 301

license 40 invariant code motion 178

line_prepdump 309
link order 91
linker
and executable files 91
commands
ADDR 103
ALIGN 104
ALIGNALL 104
EXCEPTION 105
EXPORTSTRTAB 105
EXPORTSYMTAB 106
FORCE_ACTIVE 107
IMPORTSTRTAB 107
IMPORTSYMTAB 108
INCLUDE 109
KEEP_SECTION 109
location counter 102
MEMORY 110-111
OBJECT 111
REF_INCLUDE 112
SECTIONS 112,113
SIZEOF 113
SIZEOF_ROM 114
WRITEOCOMMENT 115
WRITEB 114
WRITEH 114
WRITEW 115
ZERO_FILLED_UNINITIALIZED 11
6
commands, directives, keywords 119
deadstripping 119
executable files 120
importing with #include 317
S-record comments 120
linker command files 43
live range splitting 177
LM_LICENSE_FILE 40

unrolling 181

M
-M 54
machine inline assembly directive 195
macro_prepdump 310
-make 54
Makefile 54,55
mangled names 150, 272
-mapcr 54
mark 278
maxerrorcount 284
-maxerrors 60
-maxwarnings 61
-MD 55
MEMORY linker command 110-111
memory segment, LCF 120
message 285
Metrowerks standard libraries 205-220
Microsoft Windows™ 39
-min_enum_size 82
min_enum_size 326
-MM 55
-MMD 55
modifications, custom 225, 226
mpwc_newline 278
mpwc_relax 279
-msext 56
msg_show_lineref 310
msg_show_realref 310
-msgstyle 61
MSL 205-220
MSL filename parameters 206
MSL files
fully compliant C++ 213
fully compliant console IO C 209
fully compliant EC++ 216

352 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



fully compliant UART IO C 208
hardware floating point C++ 215
hardware floating point console IO C 212
hardware floating point EC++ 217
hardware floating point UART 10 C 211
hardware floating point UART IO C++ 214
hardware floating point UART IO
EC++ 216
small console 10 C 211
small UART IO C 210
small working set C++ 214
-multibyteaware 56
multibyteaware 279
multibyteaware_preserve_literals
280
multiplication 180

N

naked inline assembly directive 195
new_mangler 263
no_conststringconv 263
no_static_dtors 264
-nofail 62

-nolink 79

-noprecompile 76
nosyminline 264
-nosyspath 76

notonce 311

(0]
-0 86
-o 80
-0+ 86
object code

reducing size 149
OBIJECT linker command 111
o0ld_pods 265
-once 56
once 311
only_std_keywords 245
only_std_keywords pragma 134
operators, LCF 124, 125
-opt 87
opt_classresults 265

opt_common_subs 332
opt_common_subs pragma 174
opt_dead_assignments 332
opt_dead_assignments pragma 176
opt_dead_code 333
opt_dead_code pragma 172
opt_lifetimes 333
opt_loop_invariants pragma 179
opt_propagation 334
opt_propagation pragma 175
opt_strength_reduction 334
opt_strength_reduction pragma 180
opt_strength_reduction_strict 335
opt_unroll_count pragma 345
opt_unroll_instr_count pragma 345
opt_unroll_loops 335
opt_unroll_loops pragma 181
opt_vectorize_loops 335
optimization

common subexpression elimination 174

copy propagation 175

dead code 171

dead store elimination 176

expression simplification 172

inlining 184

intermediate 171

interprocedural analysis 167

live range splitting 177

loop unrolling 181

loop-invariant code motion 178

loops 181

stack size 175,177

strength reduction 180
optimization_level 336
optimize_for_size 336
optimizewithasm 337
options 326
opword inline assembly directive 196

P

-P 73
parse_func_templ 266
parse_mfunc_templ 266
PATH 40

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 353



PIC 201
LCF 128

PID, LCF 128

pointer
unqualified 253

pool_strings 327

pop 312

position-independent code 201, 224, 225

-ppopt 75

-pragma 57

pragma_prepdump 313

pragmas ??-345
access_errors 249
always_import 317
always_inline 249
ANSI strict 243
arg_dep_lookup 249
ARM_scoping 250
array_new_delete 251
asmpoundcomment 275
asmsemicolcomment 275
auto_inline 251
bool 251
c99 243
check_header_flags 307
codeColdFire 341
const_multiply 342
const_strings 276
cplusplus 252
cpp_extensions 252
debuginline 253
def_inherited 254
defer_defarg parsing 255
define_section 339-341
dollar_identifiers 276
dont_inline 256
dont_reuse_strings 321
ecplusplus 256
emac 342
enumalwaysint 322
errno_name 323
exceptions 257
explicit_zero_data 342
explicit_zero_data 323

export 317
extended_errorcheck 257,283
faster_pch_gen 307
flat_include 308
float_constants 324
force_active 318
fullpath_file 308
fullpath_prepdump 309
gcc_extensions 277
global_optimizer 331
ignore_oldstyle 245
import 318
inline_bottom_up 259
inline_bottom_up_once 260
inline_depth 260
inline_intrinsics 343
inline_max_auto_size 261
inline_max_size 261
inline_max_total_size 262
instmgr_file 324
internal 262
interrupt 343
ipa 331
keepcomments 309
lib_export 319
line_prepdump 309
longlong 325
longlong_enums 325
macro_prepdump 310
mark 278
maxerrorcount 284
message 285
min_enum_size 326
mpwc_newline 278
mpwc_relax 279
msg_show_lineref 310
msg_show_realref 310
multibyteaware 279
multibyteaware_preserve_litera
1s 280
new_mangler 263
no_conststringconv 263
no_static_dtors 264
nosyminline 264

354 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



notonce 311
o0ld_pods 265
once 311
only_std_keywords 245
opt_classresults 265
opt_common_subs 332
opt_dead_assignments 332
opt_dead_code 333
opt_lifetimes 333
opt_loop_invariantsopt_loop_in
variants 333
opt_propagation 334
opt_strength_reduction 334
opt_strength_reduction_strict
335
opt_unroll_count 345
opt_unroll_instr_count 345
opt_unroll_loops 335
opt_vectorize_loops 335
optimization_level 336
optimize_for_size 336
optimizewithasm 337
options 326
parse_func_templ 266
parse_mfunc_templ 266
pool_strings 327
pop 312
pragma_prepdump 313
precompile_target 313
profile 345
push 312
readonly_strings 344
readonly_ strings 328
require_prototypes 246
reverse_bitfields 328
RTTI 267
scope of 240
SDS_debug_support 339
section 344
show_error_filestack 286
showmessagenumber 285
simple_prepdump 314
space_prepdump 314
srcrelincludes 315

store_object_files 329
strictheaderchecking 337
suppress_init_code 267
suppress_warnings 286
sym 286
syspath_once 315
template_depth 268
text_encoding 280
thread_safe_init 268
trigraphs 281
unsigned_char 282
unused 287
warn_any_ptr_int_conv 289
warn_emptydecl 290
warn_extracomma 291
warn_filenamecaps 291
warn_filenamecaps_system 292
warn_hiddenlocals 293
warn_hidevirtual 269
warn_illpragma 293
warn_illtokenpasting 294
warn_illunionmembers 294
warn_impl_f2i_conv 295
warn_impl_i2f_ conv 295
warn_impl_s2u_conv 296
warn_implicitconv 297
warn_largeargs 298
warn_missingreturn 298
warn_no_explicit_virtual 270
warn_no_side_effectwarn_no_sid
e_effect 299
warn_no_typename 271
warn_notinlined 271
warn_padding 299
warn_pch_portability 300
warn_possunwant 300
warn_ptr_int_conv 302
warn_resultnotused 302
warn_structclass 272
warn_undefmacro 303
warn_uninitializedvar 304
warn_unusedarg 304
warn_unusedvar 305
warning 288

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 355



warning_errors 289

wchar_type 272
pragmas, deprecated

always_inline 249

def_inherited 254

multibyteaware 279
-precompile 74
Precompile command 164
precompile_target 313
precompiling

C++ 149

including files 149
-prefix 75
-preprocess 74
___PRETTY FUNCTION_ _ 150
profile pragma 345
-progress 62
prototypes

and old-style declarations 245

not requiring 245

requiring 29
push 312

R

readonly_ strings 328
readonly_strings pragma 344
reduced working set libraries 218,219
REF_INCLUDE linker command 112
register variables 200
-relax_pointers 57
Require Function Prototypes option 29
require_prototypes 246
-requireprotos 57
return inline assembly directive 196
return statement

empty 258,283
returning from a routine, inline assembly 191
reverse_bitfields 328
ROM-RAM copying, LCF 129-130
-RTTI 50
RTTI 267
runtime code 205-226
runtime libraries 220-226

C files 221

C floating point files 222

C++, E++ files 223

C++, E++ floating point files 224
run-time type information (RTTI) 26, 50, 267

S
-S 62
SDS_debug_support pragma 339
-search 58
section pragma 344
SECTIONS linker command 112, 113
sections segment, LCF 122
semicolon

accidental 301
serial I/O libraries 217
settings panel

C/C++ Warnings 32
show_error_filestack 286
showmessagenumber 285
simple_prepdump 314
SIZEOF linker command 113
SIZEOF_ROM linker command 114
-som 50
-som_env_check 50
space_prepdump 314
srcrelincludes 315
S-record comments, linker 120
stack size 175,177
stack, LCF 127
statements

catch 26,257

for 301

if 301

return 258,283

throw 26

try 26,257

while 301
static initializers, LCF 127
static libraries

See libraries.
-stderr 62
-stdinc 76
-stdkeywords 45
store_object_files 329

356 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



strength reduction 180 U

-strict 46 —U+ 76
strictheaderchecking 337 UART libraries 217
—s.trings 83 -undefine 77
strings . unsigned char type 30
reusing 30 unsigned_char 282
struct keyword unused 287
anonymous 253
unnamed 253 \Y
structure, LCF 120-?? .

o variable
suppress_init_code 267 reducing 177
suppress_warnings 286 . &

536 variables
:}Z::ax allocation 200
LCF 123,124
inline assembly 187-189 register 200
LCF 123-132 g

-verbose 63
-version 63

w

warn_any_ptr_int_conv 289
warn_emptydecl 290
warn_extracomma 291
warn_filenamecaps 291
warn_filenamecaps_system 292
warn_hiddenlocals 293
warn_hidevirtual 269
warn_illpragma 293
warn_illtokenpasting 294
warn_illunionmembers 294
warn_impl_f2i_conv 295
warn_impl_i2f_ conv 295
warn_impl_s2u_conv 296
warn_implicitconv 297
warn_largeargs 298

syspath_once 315
System control panel 39

T

Target Settings window 39
template 151
template_depth 268
templates

reducing object code size 149
terminate () 257
text_encoding 280
thread_safe_init 268
throw statement 26
-timing 63
trigraph characters 28
-trigraphs 58
trigraphs 281
try statement 26, 257

type warn_missingreturn 298
char 30 .. .
warn_no_explicit_virtual 270
double 324 warn_no_typename 271
float 324 —no_=vb

warn_notinlined 271
warn_padding 299
warn_pch_portability 300
warn_possunwant 300
warn_ptr_int_conv 302
warn_resultnotused 302

unsigned char 30
typeid keyword 26, 267
typename 151
typeof 277

CodeWarrior Build Tools Reference ColdFire™ Architectures Edition 357



warn_structclass 272
warn_undefmacro 303
warn_uninitializedvar 304
warn_unusedarg 304
warn_unusedvar 305
warning 288
warning pragma 64, 65, 66, 67
warning_errors 289
-warnings 64
warnings

setting in the IDE 32
-wchar_t 50
wchar_type 272
while statement 301
Windows™ operating system 39
-wraplines 67
WRITEOCOMMENT linker command 115
WRITEB linker command 114
WRITEH linker command 114
WRITEW linker command 115
writing to memory, LCF 130, 132

Z

ZERO_FILLED_UNINITIALIZED linker
command 116

358 CodeWarrior Build Tools Reference ColdFire™ Architectures Edition



	Introduction
	CodeWarrior Build Tools Versions
	Compiler Architecture
	Linker Architecture

	Using Build Tools with the CodeWarrior IDE
	Invoking CodeWarrior Compilers and Linkers
	Specifying File Locations
	IDE Options and Pragmas
	IDE Settings Panels
	C/C++ Language Settings Panel
	C/C++ Preprocessor Panel
	C/C++ Warnings Panel


	Using Build Tools on the Command Line
	Configuring Command-Line Tools
	CWFolder Environment Variable
	Setting the PATH Environment Variable

	Invoking Command-Line Tools
	Getting Help
	Help Guidelines

	File Name Extensions

	Command-Line Standard C Conformance
	-ansi
	-stdkeywords
	-strict

	Command-Line Standard C++ Conformance
	-ARM
	-bool
	-Cpp_exceptions
	-dialect
	-for_scoping
	-instmgr
	-iso_templates
	-RTTI
	-som
	-som_env_check
	-wchar_t

	Command-Line Language Translation
	-char
	-defaults
	-encoding
	-flag
	-gccext
	-gcc_extensions
	-M
	-make
	-mapcr
	-MM
	-MD
	-MMD
	-msext
	-multibyteaware
	-once
	-pragma
	-relax_pointers
	-requireprotos
	-search
	-trigraphs

	Command-Line Diagnostic Messages
	-disassemble
	-help
	-maxerrors
	-maxwarnings
	-msgstyle
	-nofail
	-progress
	-S
	-stderr
	-verbose
	-version
	-timing
	-warnings
	-wraplines

	Command-Line Preprocessing and Precompilation
	-convertpaths
	-cwd
	-D+
	-define
	-E
	-EP
	-gccincludes
	-I-
	-I+
	-include
	-ir
	-P
	-precompile
	-preprocess
	-ppopt
	-prefix
	-noprecompile
	-nosyspath
	-stdinc
	-U+
	-undefine

	Command-Line Library and Linking
	-keepobjects
	-nolink
	-o

	Command-Line Object Code
	-c
	-codegen
	-enum
	-min_enum_size
	-ext
	-strings

	Command-Line for Optimization
	-inline
	-O
	-O+
	-opt

	Linker
	Speciyfing Link Order in the IDE
	Defining Sections in Source Code
	Using a Linker Command File
	Dead-Stripping
	Defining the Target’s Memory Map
	Defining Sections in the Output File
	Associating Input Sections With Output Sections
	Controlling Alignment
	Specifying Memory Area Locations and Sizes

	Linker Command File Syntax
	Commands, Directives, and Keywords
	. (location counter)
	ADDR
	ALIGN
	ALIGNALL
	EXCEPTION
	EXPORTSTRTAB
	EXPORTSYMTAB
	FORCE_ACTIVE
	IMPORTSTRTAB
	IMPORTSYMTAB
	INCLUDE
	KEEP_SECTION
	MEMORY
	OBJECT
	REF_INCLUDE
	SECTIONS
	SIZEOF
	SIZEOF_ROM
	WRITEB
	WRITEH
	WRITEW
	WRITES0COMMENT
	ZERO_FILL_UNINITIALIZED


	ColdFire Linker
	Deadstripping
	Executable files in Projects
	S-Record Comments
	LCF Structure
	Memory Segment
	Closure Segments
	Sections Segment

	LCF Syntax
	Variables, Expressions, and Integrals
	Arithmetic, Comment Operators
	Alignment
	Specifying Files and Functions
	Stack and Heap
	Static Initializers
	Exception Tables
	Position-Independent Code and Data
	ROM-RAM Copying
	Writing Data Directly to Memory


	C Compiler
	Extensions to Standard C
	Controlling Standard C Conformance
	C++-style Comments
	Unnamed Arguments
	Extensions to the Preprocessor
	Non-Standard Keywords

	C99 Extensions
	Controlling C99 Extensions
	Trailing Commas in Enumerations
	Compound Literal Values
	Designated Initializers
	Predefined Symbol __func__
	Implicit Return From main()
	Non-constant Static Data Initialization
	Variable Argument Macros
	Extra C99 Keywords
	C++-Style Comments
	C++-Style Digraphs
	Empty Arrays in Structures
	Hexadecimal Floating-Point Constants
	Variable-Length Arrays
	Unsuffixed Decimal Literal Values

	GCC Extensions
	Controlling GCC Extensions
	Initializing Automatic Arrays and Structures
	The sizeof() Operator
	Statements in Expressions
	Redefining Macros
	The typeof() Operator
	Void and Function Pointer Arithmetic
	The __builtin_constant_p() Operator
	Forward Declarations of Static Arrays
	Omitted Operands in Conditional Expressions
	The __builtin_expect() Operator
	Void Return Statements
	Minimum and Maximum Operators


	C++ Compiler
	C++ Compiler Performance
	Precompiling C++ Source Code
	Using the Instance Manager

	Extensions to Standard C++
	__PRETTY_FUNCTION__ Identifier
	Standard and Non-Standard Template Parsing

	Implementation-Defined Behavior
	GCC Extensions
	Using the :: Operator in Class Declarations

	Embedded C++
	Activating EC++
	Differences Between ISO C++ and EC++
	EC++ Specifications


	Tool Performance
	Precompiling
	When to Use Precompiled Files
	What Can be Precompiled
	Using a Precompiled Header File
	Preprocessing and Precompiling

	Pragma Scope in Precompiled Files
	Precompiling a File in the CodeWarrior IDE
	Updating a Precompiled File Automatically


	Intermediate Optimizations
	Interprocedural Analysis
	Invoking Interprocedural Analysis
	File-Level Optimizations
	Program-Level Optimizations
	Program-Level Requirements

	Intermediate Optimizations
	Dead Code Elimination
	Expression Simplification
	Common Subexpression Elimination
	Copy Propagation
	Dead Store Elimination
	Live Range Splitting
	Loop-Invariant Code Motion
	Strength Reduction
	Loop Unrolling

	Inlining
	Choosing Which Functions to Inline
	Inlining Techniques


	Inline Assembly
	Inline Assembly Syntax
	Statements
	Additional Syntax Rules
	Preprocessor Features
	Local Variables and Arguments
	Returning From a Routine

	Inline Assembly Directives
	dc
	ds
	entry
	fralloc
	frfree
	machine
	naked
	opword
	return


	ColdFire Code Generation
	Code Generation Limits
	Integer Representation
	Calling Conventions
	Variable Allocation
	Register Variables
	Position-Independent Code
	Cryptographic Acceleration Instructions

	ColdFire Runtime Libraries
	MSL for ColdFire Development
	Customizing MSL Libraries
	Using MSL for ColdFire
	Serial I/O and UART Libraries
	Reduced Working Set Libraries
	Memory, Heaps, and Other Libraries

	Runtime Libraries
	Position-Independent Code
	Board Initialization Code
	Custom Modifications


	Predefined Symbols
	__cplusplus
	__DATE__
	__embedded_cplusplus
	__FILE__
	__func__
	__FUNCTION__
	__ide_target()
	__LINE__
	__MWERKS__
	__PRETTY_FUNCTION__
	__profile__
	__STDC__
	__TIME__

	ColdFire Predefined Symbols
	__BACKENDVERSION__
	__COLDFIRE__
	__STDABI__
	__REGABI__

	Using Pragmas
	Checking Pragma Settings
	Saving and Restoring Pragma Settings
	Determining Which Settings Are Saved and Restored
	Illegal Pragmas
	Pragma Scope

	Pragmas for Standard C Conformance
	ANSI_strict
	c99
	ignore_oldstyle
	only_std_keywords
	require_prototypes

	Pragmas for C++
	access_errors
	always_inline
	arg_dep_lookup
	ARM_conform
	ARM_scoping
	array_new_delete
	auto_inline
	bool
	cplusplus
	cpp_extensions
	debuginline
	def_inherited
	defer_codegen
	defer_defarg_parsing
	direct_destruction
	direct_to_som
	dont_inline
	ecplusplus
	exceptions
	extended_errorcheck
	inline_bottom_up
	inline_bottom_up_once
	inline_depth
	inline_max_auto_size
	inline_max_size
	inline_max_total_size
	internal
	new_mangler
	no_conststringconv
	no_static_dtors
	nosyminline
	old_pods
	old_vtable
	opt_classresults
	parse_func_templ
	parse_mfunc_templ
	RTTI
	suppress_init_code
	template_depth
	thread_safe_init
	warn_hidevirtual
	warn_no_explicit_virtual
	warn_no_typename
	warn_notinlined
	warn_structclass
	wchar_type

	Pragmas for Language Translation
	asmpoundcomment
	asmsemicolcomment
	const_strings
	dollar_identifiers
	gcc_extensions
	mark
	mpwc_newline
	mpwc_relax
	multibyteaware
	multibyteaware_preserve_literals
	text_encoding
	trigraphs
	unsigned_char

	Pragmas for Diagnostic Messages
	extended_errorcheck
	maxerrorcount
	message
	showmessagenumber
	show_error_filestack
	suppress_warnings
	sym
	unused
	warning
	warning_errors
	warn_any_ptr_int_conv
	warn_emptydecl
	warn_extracomma
	warn_filenamecaps
	warn_filenamecaps_system
	warn_hiddenlocals
	warn_illpragma
	warn_illtokenpasting
	warn_illunionmembers
	warn_impl_f2i_conv
	warn_impl_i2f_conv
	warn_impl_s2u_conv
	warn_implicitconv
	warn_largeargs
	warn_missingreturn
	warn_no_side_effect
	warn_padding
	warn_pch_portability
	warn_possunwant
	warn_ptr_int_conv
	warn_resultnotused
	warn_undefmacro
	warn_uninitializedvar
	warn_unusedarg
	warn_unusedvar

	Pragmas for Preprocessing and Precompilation
	check_header_flags
	faster_pch_gen
	flat_include
	fullpath_file
	fullpath_prepdump
	keepcomments
	line_prepdump
	macro_prepdump
	msg_show_lineref
	msg_show_realref
	notonce
	old_pragma_once
	once
	pop, push
	pragma_prepdump
	precompile_target
	simple_prepdump
	space_prepdump
	srcrelincludes
	syspath_once

	Pragmas for Library and Linking
	always_import
	export
	force_active
	import
	lib_export

	Pragmas for Code Generation
	dont_reuse_strings
	enumsalwaysint
	errno_name
	explicit_zero_data
	float_constants
	instmgr_file
	longlong
	longlong_enums
	min_enum_size
	options
	pool_strings
	readonly_strings
	reverse_bitfields
	store_object_files

	Pragmas for Optimization
	global_optimizer
	ipa
	opt_common_subs
	opt_dead_assignments
	opt_dead_code
	opt_lifetimes
	opt_loop_invariants
	opt_propagation
	opt_strength_reduction
	opt_strength_reduction_strict
	opt_unroll_loops
	opt_vectorize_loops
	optimization_level
	optimize_for_size
	optimizewithasm
	strictheaderchecking

	Pragmas for ColdFire
	ColdFire Diagnostic Pragmas
	SDS_debug_support

	ColdFire Library and Linking Pragmas
	define_section

	ColdFire Code Generation Pragmas
	codeColdFire
	const_multiply
	emac
	explicit_zero_data
	inline_intrinsics
	interrupt
	readonly_strings
	section

	ColdFire Optimization Pragmas
	opt_unroll_count
	opt_unroll_instr_count
	profile


	Index

