
© Freescale Semiconductor, Inc., 2009. All rights reserved.

Freescale Semiconductor
Application Note

Document Number: AN3899
Rev. 1, 05/2009

1 Introduction
This application note describes how to use the Linker
Control File (LCF) to define the memory layout for an
application executing on the MSC8156 board. The LCF
is a text file created by the application developer and
used by the linker to define the placement of data and
code in memory for a given application. To accomplish
this, the LCF needs to define the initial setup of the
MSC8156 Memory Management Unit (MMU). The
MMU offers a level of sophistication that may prove
challenging for the first-time user. Therefore, this
application note is provided to help you understand how
to use the LCF to set up the MSC8156 MMU to define
an application's memory map.

This document is concerned with the MSC8156 memory
map as it is visible to an application executing on the
SC3850 cores. From this point of view, you must
consider two distinct memory maps when developing an
MSC8156 application. These two maps are defined by
the use of either physical addresses or virtual addresses.
A physical address is the actual address of a device
(memory or peripheral) within the MSC8156 DSP.

Using the SC3000 Linker Control File for
MSC8156 Applications

Contents
1 Introduction . 1
2 Overview . 2
3 Output Section Definitions 2
4 Common Settings . 5
5 Virtual to Physical Space Mappings 10
6 MMU and Cache Configuration 11
7 C++ Support . 13
8 Setting VTB . 13
9 Moving Heap from M2 to M3 14
10 Moving Stack from M2 to M3 15
11 Appendix A — DDR Settings 16
12 Appendix B — MMU Attributes 17
13 Appendix C — Other Descriptor Settings 21
14 Appendix D — MMU Predefines 8156 25

Overview

Using the SC3000 Linker Control File for MSC8156 Applications — Application Note

2 Freescale Semiconductor

2 Overview
Directives in the LCF are used to define the memory for an MSC8156 application. The LCF consists of
three files: mmu_attr.l3k, common.l3k and msc8156.l3k. The first two files are included in the
third one. The subsequent sections focus on their description.

Please note that throughout the linker command files, the assert directives are used to halt the execution in
case of wrong configuration. These directives are used to prevent the execution of the linker with bad input.
Usually, these directives test that a specific value is in a certain range or is one of the values of an
enumeration.

3 Output Section Definitions
This section focuses on the msc8156.l3k file that, among other things, groups input sections into output
sections that are placed together in virtual memory areas. It is important to make a distinction between the
output sections and descriptors in the MMU. The output sections are placed into virtual memories, and a
descriptor is made up of:

• the start of the virtual memory,

• the start of the physical memory, and

• the size

Listing 1 shows how to locate private boot data in M2, M3, or DDR.

Listing 1. Locating private boot data in M2, M3, or DDR

descriptor__xxx__cacheable_wb__sys__private__data__boot
{
 LNK_SECTION (att_mmu, "rw", _MMU_TABLES_size, 0x4, ".att_mmu");
 LNK_SECTION (stack, "rw", _StackSize, 0x4,"stack");
 .ovltab
} > data_boot_c;

The above output section definition groups the .ovltab, att_mmu, and stack input sections. The
".att_mmu" the data section is used in startup file in runtime library and system operation to set the
MMU registers. The .ovltab data section is used by the overlay manager. The LNK_SECTION directive
is explained in a later section. data_boot_c is a virtual memory area in which the output section is
placed.

Listing 2 shows how private data is frequently accessed and placed in M3. It shows how an output section
definition groups a longer list of input sections. The MMU settings are set later for the cacheable write
back policy.

Listing 2. Accessing private data frequently and placing it in M3

descriptor__m3__cacheable_wb__sys__private__data
{
 ".m3__cacheable_wb__sys__private__data",
 "reserved_crt_tls",
 ".data",
 ".rom",

Output Section Definitions

Using the SC3000 Linker Control File for MSC8156 Applications — Application Note

Freescale Semiconductor 3

 ".m3__cacheable_wb__sys__private__rom",
 ".bsstab", ".init_table", ".rom_init",
 ".rom_init_tables", ".exception", ".exception_index", ".staticinit",
 ".m3__cacheable_wb__sys__private__bss",
 ".bss"
}> m3_private_data_c_wb;

The description of the parameters defined in Listing 2 are as follows:

• reserved_crt_tls — Data section that is used in the reentrant runtime library.

• .bsstab — Read-only data section that is used in the startup file to fill the .bss sections with
zeros.

• .init_table — Read-only data section that is used to initialize the ROM global variable to
RAM (-mrom option from scc).

• .rom_init — Compiler generated function, which must be placed in LCF if generated. It
contains the initial values (constants) for non-constant variables.

• .rom_init_tables — Contains the _rom_init_tables symbol. It is used at startup for
initializing the ROM variables to RAM. The difference between the .init_table and
.rom_init_tables is that .rom_init_tables is generated by the linker. Same as
.init_table, the information must be placed in a private descriptor.

• .staticinit — Read-only data section that is used in the startup file/runtime library to
initialize the C++ static objects.

• .rom — Contains constants and is generated by compiler to be able to place constant data at a
place different from writable data.

By means of the compiler application file, the parts of application data can be defined to end up in the
.m3__cacheable_wb__sys__private__data,
.m3__cacheable_wb__sys__private__rom, and
.m3__cacheable_wb__sys__private__bss sections.

Listing 3 shows the output section for M3 non-cacheable shared data. A good example of an input section
to be grouped here is the reserved_crt_mutex data section. This input section is used in the reentrant
runtime library and contains the MUTEX variables defined in the reserved_crt_mutex data section.
Given its synchronization purpose, the reserved_crt_mutex section has to be in a shared region such
as M3 memory. In MSC8156 architecture, it has to be in a non-cacheable output section.

Listing 3. Output section for M3 non-cacheable shared data

descriptor__m3__non_cacheable_wt__sys__shared__data
{
 ".m3__non_cacheable_wt__sys__shared__data"
 "reserved_crt_mutex"
 ".m3__non_cacheable_wt__sys__shared__rom"
 ".m3__non_cacheable_wt__sys__shared__bss"
} > m3_shared_data_nc_wt;

Listing 4 and Listing 5 shows examples of virtual memory areas and the output sections that are placed in
them.

Output Section Definitions

Using the SC3000 Linker Control File for MSC8156 Applications — Application Note

4 Freescale Semiconductor

Listing 4. Output section in private memory

unit private (*)
{
 MEMORY
 {
 data_boot_c ("rw") :
 org = _VIRTUAL_DATA_BOOT_start,
 len = _VIRTUAL_DATA_BOOT_size;

// … other virtual memory entries
 }
 SECTIONS
 {
 descriptor__xxx__cacheable_wb__sys__private__data__boot
 {
 LNK_SECTION (att_mmu, "rw", _MMU_TABLES_size, 0x4, ".att_mmu");
 LNK_SECTION (stack, "rw", _StackSize, 0x4,"stack");
 .ovltab
 }
 // … other output sections
 }
}

Listing 5. Output section in shared memory

unit shared (*)
{
 MEMORY
 {
 m3_shared_textboot_c ("rx"): AFTER (m3_shared_data_c_wb);

// … other virtual memory entries
 }

 SECTIONS
 {
 descriptor__m3__cacheable__sys__shared__text_boot
 {

. = align (0x1000); //restriction due to VBA register.
_VBAddr =.; // Virtual Base Address must be set at beginning of interrupt table
.intvec
.text_boot

 }> m3_shared_textboot_c;
// … other output sections

 }
}

NOTE See Appendix C — Other Descriptor Settings for other examples of output
sections.

Common Settings

Using the SC3000 Linker Control File for MSC8156 Applications — Application Note

Freescale Semiconductor 5

4 Common Settings
The common.l3k file contains definitions, which are common to all cores.

4.1 Application Physical Memory Layout
The architecture is specified as a command line argument or using a directive in the LCF, as shown:

arch (msc8156);

After identifying the architecture, the linker defines the default values for the specified architecture, as
shown below. These values include the size and borders of all physical memories:

_M2_size,_M2_start,_M2_end

_M3_size,_M3_start,_M3_end

_DDR_size,_DDR_start,_DDR_end

All the cores of the specified architecture are used unless you define the number of cores, using the
following directive:

number_of_cores (number);

You can specify the value of the Status Register (SR) after reset, as shown:

_SR_Setting = 0x3e4000c;

You can specify the following settings by using the SR value:

• Exception mode

• Interrupt level 31

• Saturation mode enabled

• Rounding mode: nearest even

In the startup code, the first instruction, shown below, initializes the status register with the default settings.

move.l #_SR_Setting, sr

The common.l3k file defines another critical setting related to M2 memory configuration (referred to as
M2/L2 cache settings in MSC8156).

Table 1shows the association of M2 memory configuration with _M2_Setting.

Table 1. Association of M2 memory configuration with _M2_Setting

M2 Size _M2_Setting

0KB 0x00

64KB 0x01

128KB 0x03

192KB 0x07

256KB 0x0f

Common Settings

Using the SC3000 Linker Control File for MSC8156 Applications — Application Note

6 Freescale Semiconductor

4.2 Application Virtual Memory Layout
There are two distinct virtual spaces; one for program and one for data (due to MMU implementation).
These two spaces may overlap and have the range, 0...4G. You can define the size stack and heap, as
follows:

_StackSize= 0x7f00;

_HeapSize= 0x1000;

The actual heap and stack are declared using the LNK_SECTION directives, as shown in Listing 6.

Listing 6. Declaring heap and stack

LNK_SECTION (stack, //section type
 "rw", //flags
 _StackSize, //length
 0x4, //alignment
 "stack"); //name
LNK_SECTION (heap, "rw", _HeapSize, _HeapSize, "heap");

The LNK_SECTION directive defines an input section of type; stack, heap, att_mmu, or bss of the
given size and alignment.

_StackStart= originof ("stack");

_TopOfStack= (endof ("stack") - 7) & 0xFFFFFFF8;

__BottomOfHeap= originof ("heap");

__TopOfHeap= (endof ("heap") - 7) & 0xFFFFFFF8;

where, originof and endof are intrinsics that return the address of the input section specified. The
input section can be a regular input section (identified by its name) or a special input section (defined using
the LNK_SECTION construct and identified by the name of the LNK_SECTION).

The private code is placed in M2 and its size is defined as:

_PRIVATE_M2_TEXT_size = 0x2000;

The size for private data to be placed in M2, M3, and DDR memory can be modified using the following
symbols:

_PRIVATE_M2_DATA_size = _M2_size -

_PRIVATE_M2_TEXT_size - _DATA_BOOT_size;

320KB 0x1f

384KB 0x3f

448KB 0x7f

512KB 0xff

Table 1. Association of M2 memory configuration with _M2_Setting

M2 Size _M2_Setting

Common Settings

Using the SC3000 Linker Control File for MSC8156 Applications — Application Note

Freescale Semiconductor 7

_PRIVATE_M3_DATA_size= 0x10000;

_PRIVATE_DDR_DATA_size= 0x80000;

The boot descriptor in the common.l3k file is placed in M2, M3, or DDR memory, and contains the stack
and MMU table. The boot descriptor size must be a power of 2 and it is represented by the following
expression.

_DATA_BOOT_size = _MMU_TABLES_size + _StackSize;

NOTE The boot descriptor must be the first descriptor in the Memory Attributes
and Translation Table (MATT).

By default, the boot descriptor is placed in the output section as:

descriptor__xxx__cacheable_wb__sys__private__data__boot

Figure 1. shows the virtual memory view of the boot descriptor in dynamic stack-heap configuration,
where:

_LocalData_b = _VIRTUAL_DATA_BOOT_start;

_LocalData_size = _DATA_BOOT_size;

_LocalData_e = _LocalData_b +_LocalData_size - 1;

Common Settings

Using the SC3000 Linker Control File for MSC8156 Applications — Application Note

8 Freescale Semiconductor

Figure 1. Virtual Memory View of Boot Descriptor in Dynamic Stack-Heap Configuration

The virtual memory map placement is done according to the following definitions:

_VIRTUAL_PRIVATE_MEM_DATA_start= 0x70000000;

_VIRTUAL_DATA_BOOT_start= 0x20000000;

_VIRTUAL_M2_PRIVATE_text_start= 0x38000000;

Figure 2. shows a visual representation of the virtual memory for a sample configuration.

Common Settings

Using the SC3000 Linker Control File for MSC8156 Applications — Application Note

Freescale Semiconductor 9

Figure 2. Virtual Memory Layout

In physical space, code and data are mapped to the specific memories, for example:

• shared IPC data is mapped in M3

• private data is mapped to M2, M3, and DDR

• shared data and code is mapped to M3 and DDR

• private code stays in M2

The descriptor for att_mmu tables and stack is placed at the end of M2, as shown:

_PRIVATE_DATA_BOOT_start =_M2_end - _DATA_BOOT_size + 1;

_PRIVATE_DATA_BOOT_end =_PRIVATE_DATA_BOOT_start +
_LocalData_size;

The startup code uses some special symbols, such as _LocalData_Phys_b, to create the first
descriptor. The following directive defines _LocalData_Phys_b:

_LocalData_Phys_b = _PRIVATE_DATA_BOOT_start-(core_id
()*0x01000000);

Figure 3. shows a visual representation of the physical memory for a sample configuration.

Figure 3. Physical Memory Layout

Virtual to Physical Space Mappings

Using the SC3000 Linker Control File for MSC8156 Applications — Application Note

10 Freescale Semiconductor

5 Virtual to Physical Space Mappings
The address_translation directive is used to map virtual memories to physical memories.

Listing 7 shows an example of the address_translation directive for a private data boot descriptor.

Listing 7. The address_translation directive for private data boot descriptor

address_translation (*)
{
 // … other address_translation entries
 data_boot_c (SYSTEM_DATA_MMU_DEF): M2,org = _PRIVATE_DATA_BOOT_start;
}

The address_translation directive maps the data_boot_c virtual memory to the M2 physical
memory, starting at the address in _PRIVATE_DATA_BOOT_start. The attributes are also specified by
an expression enclosed in parentheses. All the information about the virtual memory is extracted from its
definition in the MEMORY section of the unit directive.

The descriptor__m3__cacheable__sys__shared__text_boot descriptor need to be mapped 1:1 (physical
and virtual shared the same value), because the boot code and interrupt vector are put in this descriptor.
The following listing shows another example of the address_translation directive.

MMU and Cache Configuration

Using the SC3000 Linker Control File for MSC8156 Applications — Application Note

Freescale Semiconductor 11

address_translation (*) map11

{ // ... other address_translation entries

 m3_shared_textboot_c (SYSTEM_PROG_MMU_DEF): M3;

}

Because the first 12 least significant bits in the VBA Reset Value register (VBA_RST_VAL) are reserved
and must have the value zero, the first directive in the descriptor must be

. = align (0x1000);

The map11 keyword placed in the address_translation directive applies to all address translation
entries and enforces one to one mapping. Figure 4. shows the mapping between virtual and physical
memory.

Figure 4. Mapping Between Virtual and Physical Memory

6 MMU and Cache Configuration
The mmu_attr.l3k file provides symbol definitions for MMU configuration and cache enablement.
The following naming conventions are used for defining symbols in the mmu_aatr.13k file for
individual settings in MMU descriptors:

• the symbol name starts with MMU, followed by PROG for program/text descriptors and DATA for
data descriptors

• the symbol name is suffixed with one of the following:

— cache attribute, for example, CACHEABLE, L2CACHEABLE

— burst size, for example, BURST_SIZE_4, BURST_SIZE_2

MMU and Cache Configuration

Using the SC3000 Linker Control File for MSC8156 Applications — Application Note

12 Freescale Semiconductor

— access permissions, such as:

– read(RPERM), write(WPERM) or execute(XPERM)

– USER or SUPER

– SHARED, for example, RPERM_USER, WPERM_SUPER, SHARED

Listing 8 shows a sample of M_PSDAx (Program Segment Descriptor Registers A) symbol definitions in
the mmu_attr.l3k file.

Listing 8. M_PSDAx sample symbol definitions

MMU_PROG_DEF_SHARED=0x00000010;// SSVPM bit [4]
MMU_PROG_DEF_CACHEABLE=0x00000008;// IC bit [3]
MMU_PROG_DEF_XPERM_USER=0x00000004;// PAPU bit [2]
MMU_PROG_DEF_XPERM_SUPER=0x00000002;// PAPS bit [1]

Figure 5. shows how the M_PSDAx register is stored in memory.

Figure 5. M_PSDAx Register

The mmu_attr.l3k file contains the definitions for other parameters as well, such as default attributes for
user program descriptors. Listing 9 shows an example.

Listing 9. Default attributes for user program descriptors

USER_PROG_MMU_DEF=MMU_PROG_DEF_CACHEABLE |
 MMU_PROG_PREFETCH_ENABLE |
 MMU_PROG_L2CACHEABLE |
 MMU_PROG_NEXT_LINE_PFETCH|
 MMU_PROG_DEF_XPERM_USER |
 MMU_PROG_DEF_XPERM_SUPER |
 MMU_PROG_BURST_SIZE_4

NOTE The rest of the symbols defined for MMU attributes are described in
Appendix B — MMU Attributes.

You can specify protection, translation and alignment for MMU and cache by modifying the default
symbol definitions that Listing 10 shows.

Listing 10. Default symbol definitions for protection, translation, and alignment for MMU and cache

_ENABLE_MMU_PROTECTION =1;// MPE [3]
 // -1 = the MMU memory protection is off

_ENABLE_MMU_TRANSLATION =1;// ATE [2]

C++ Support

Using the SC3000 Linker Control File for MSC8156 Applications — Application Note

Freescale Semiconductor 13

 // -1 = the MMU translation is off

_ENABLE_MMU_DATA_NON_ALIGNED =1; // DNAMEE [6]
// -1 = Data Non-aligned Memory Exception is off

_ENABLE_CACHE =1;
 // -1 = all types of cache are not enabled. Enables L2_CR2 [CE], IC_CR2 [CE], DC_CR2 [CE]

Similarly, you can modify the _ENABLE_VTB symbol for Virtual Trace Buffer (VTB) reservation, such
that:

• when the value is set to 1, the VTB gets reserved in M2 memory

• when the value is set to 2, the VTB gets reserved in M3 memory

• for any other value, the VTB is not configured automatically

7 C++ Support
Add the source code of Listing 11 to the LCF to add C++ support.

Listing 11. Adding C++ support to the LCF

// By default exception support is enabled
// This value can be overwritten by linker cmd line options
ENABLE_EXCEPTION = 0x1;

// Define the static initializer section required for C++ startup
_cpp_staticinit_start = originof (".staticinit");
_cpp_staticinit_end = _cpp_staticinit_start + sizeof (".staticinit");

__exception_table_start__ = ENABLE_EXCEPTION ? originof (".exception_index") : 0;
__exception_table_end__ = ENABLE_EXCEPTION ? (__exception_table_start__+
sizeof(".exception_index")) : 0;

8 Setting VTB
VTB can be reserved in M2 or M3 memory. The actual placement is done according to the _ENABLE_VTB
symbol, as shown in Table 2.

Listing 12 shows how to reserve memory for VTB.

Table 2. VTB Reservation in Physical Memory

_ENABLE_VTB Physical Memory

0 M2

1 M3

2 -

Moving Heap from M2 to M3

Using the SC3000 Linker Control File for MSC8156 Applications — Application Note

14 Freescale Semiconductor

Listing 12. Reserving VTM in M2 and M3 memory

//set VTB start address and size for M2 and M3
_M2_VTB_size = 0x800;// 4K for each core
_M3_VTB_size = 0x8000;// 32K for each core

_VTB_size = (_ENABLE_VTB == 1) ? _M2_VTB_size : (_ENABLE_VTB == 2) ? _M3_VTB_size : 0x0;

_VTB_start = (_ENABLE_VTB == 1) ? _PRIVATE_DATA_BOOT_start - _M2_VTB_size : (_ENABLE_VTB == 2)
? _M3_PRIVATE_end - _M3_VTB_size + 1 : 0x0;

physical_memory private (*)
{
 reserve : org = _VTB_start, len = _VTB_size;
}

9 Moving Heap from M2 to M3
To move the heap section from M2 to M3, the LNK_SECTION directive that places the heap in a virtual
memory (which is mapped to M2) must be moved to a descriptor placed into this virtual memory.
Listing 13 shows how to move the heap from M2 to M3.

Listing 13. Moving heap from M2 to M3

descriptor__m2__cacheable_wb__sys__private__data
{
 .zdata
 .m2__cacheable_wb__sys__private__rom
 .m2__cacheable_wb__sys__private__data
 .m2__cacheable_wb__sys__private__bss
 LNK_SECTION (heap, "rw", _HeapSize, _HeapSize, "heap");
}> m2_private_data_c_wb;

descriptor__m3__cacheable_wb__sys__private__data
{
 .m3__cacheable_wb__sys__private__data
 reserved_crt_tls
 .data
 .m3__cacheable_wb__sys__private__rom
 .bsstab
 .init_table
 .rom_init
 .rom_init_tables
 .exception
 .exception_index
 .staticinit
 .m3__cacheable_wb__sys__private__bss
 .bss
 // place LNK_SECTION anywhere in this descriptor
}> m3_private_data_c_wb;

Moving Stack from M2 to M3

Using the SC3000 Linker Control File for MSC8156 Applications — Application Note

Freescale Semiconductor 15

NOTE It is recommended to place heap, stack, and bss sections at the end of
an output section. Otherwise, the output file grows in size because these
sections require space, which is reserved in the output file using padding.

10 Moving Stack from M2 to M3
The stack and att_mmu sections are placed in the data_boot_c virtual memory. The moving of the
stack section implies mapping this virtual memory area to M3 memory, as shown in the following
listing. The stack and att_mmu sections must be placed together so that they can be moved together.

address_translation (*)

{

data_boot_c (SYSTEM_DATA_MMU_DEF) : M3, org =
_PRIVATE_DATA_BOOT_start;

// ... other address translation entries

}

In addition, you need to update the symbols defined in Listing 14. In Listing 14, the stack and att_mmu
sections are placed at the end of the shared part of M3 memory.

Listing 14. Updating symbols to move stack from M2 to M3

_PRIVATE_DATA_BOOT_start = _M2_end - _DATA_BOOT_size + 1;
_LocalData_Phys_b = _PRIVATE_DATA_BOOT_start - (core_id () * 0x01000000);
_PRIVATE_DATA_BOOT_start = _M3_SHARED_end - (_NUMBER_OF_CORES * _DATA_BOOT_size) +
core_id () * _DATA_BOOT_size + 1;
_LocalData_Phys_b = _PRIVATE_DATA_BOOT_start - (core_id () * _DATA_BOOT_size);

M3 is not an on-core memory like M2; therefore, _PRIVATE_DATA_BOOT_start must be different
for each core and must depend on the core_id () intrinsic.

Appendix A — DDR Settings

Using the SC3000 Linker Control File for MSC8156 Applications — Application Note

16 Freescale Semiconductor

11 Appendix A — DDR Settings

11.1 Defining Physical Memory for DDR Private Data
The private space is placed at the beginning of the DDR memory if the size of private space is bigger than
the size of shared space (see Listing 15).

Listing 15. Defining physical memory for DDR private data

_DDR_PRIVATE_start =
 (_PRIVATE_DDR_DATA_size < _DDR_size -
 (_NUMBER_OF_CORES * _PRIVATE_DDR_DATA_size)) ?
 _DDR_start + _DDR_size -
 (_NUMBER_OF_CORES * _PRIVATE_DDR_DATA_size) +
 (core_id() * _PRIVATE_DDR_DATA_size) :
 _DDR_start + (core_id() * _PRIVATE_DDR_DATA_size);

11.2 Defining Physical Memory for DDR Shared Data and Code
The shared space is placed at the beginning of DDR if the size of shared space is bigger than the size of
private space (see Listing 16).

Listing 16. Defining physical memory for DDR shared data and code

_DDR_SHARED_start =
 (_PRIVATE_DDR_DATA_size < _DDR_size -
 (_NUMBER_OF_CORES * _PRIVATE_DDR_DATA_size)) ?

 _DDR_start :
DDR_start + (_NUMBER_OF_CORES * _PRIVATE_DDR_DATA_size);

Appendix B — MMU Attributes

Using the SC3000 Linker Control File for MSC8156 Applications — Application Note

Freescale Semiconductor 17

12 Appendix B — MMU Attributes

12.1 M_PSDBx (Program Segment Descriptor Registers B)
Listing 17 shows a sample of M_PSDBx register’s symbol definitions.

Listing 17. M_PSDBx register’s symbol definitions

MMU_PROG_L2CACHEABLE =0x00080000; // PL2CP bit [3, 4]
MMU_PROG_PREFETCH_ENABLE = 0x00040000; // PPFE bit [2]
MMU_PROG_BURST_SIZE_4 =0x00020000; // PBS bit [1, 0] VBR =4
MMU_PROG_BURST_SIZE_2 =0x00010000; // PBS bit [1, 0] VBR =2
MMU_PROG_BURST_SIZE_1 =0x00000000; // PBS bit [1, 0] VBR =1

Figure 6. shows how M_PSDBx is reserved in memory.

Figure 6. M_PSDBx Register

12.2 M_PSDCx (Program Segment Descriptor Registers C)
The symbol definitions for M_PSDCx are defined as:

MMU_PROG_NEXT_LINE_PFETCH =0x00004000; //PNLP bit [30]

Figure 7. shows how M_PSDCx is reserved in memory.

Figure 7. M_PSDCx Register

Appendix B — MMU Attributes

Using the SC3000 Linker Control File for MSC8156 Applications — Application Note

18 Freescale Semiconductor

12.3 M_DSDAx (Data Segment Descriptor Registers A)
Listing 18 shows a sample of M_DSDAx register’s symbol definitions.

Listing 18. M_DSDAx register’s symbol definitions

MMU_DATA_DEF_SHARED=0x00000020; // SSVDM [5]
MMU_DATA_DEF_RPERM_USER=0x00000010; // DAPU [4, 3]
MMU_DATA_DEF_WPERM_USER=0x00000008; // DAPU [4, 3]
MMU_DATA_DEF_RWPERM_USER=0x00000018; // DAPU [4, 3]
MMU_DATA_DEF_RPERM_SUPER=0x00000004; // DAPS [2, 1]
MMU_DATA_DEF_WPERM_SUPER=0x00000002; // DAPS [2, 1]

Figure 8. shows how M_DSDAx is reserved in memory.

Figure 8. M_DSDAx Register

12.4 M_DSDBx (Data Segment Descriptor Registers B)
Listing 19 shows a sample of M_DSDBx register’s symbol definitions.

Listing 19. M_DSDBx register’s symbol definitions

MMU_DATA_NONCACHEABLE_WRITE_THROUGH = 0x00800000; // DWP [6, 7]
MMU_DATA_CACHEABLE_WRITE_BACK = 0x00400000; // DWP [6, 7]
MMU_DATA_CACHEABLE_WRITE_THROUGH = 0x00000000; // DWP [6, 7]
MMU_DATA_L2CACHEABLE_WRITE_THROUGH = 0x00000000; // DL2CP [5, 3]
MMU_DATA_L2CACHEABLE_ADAPTIVE_WRITE = 0x00180000; // DL2CP [5, 3]
MMU_DATA_L2NONCACHEABLE= 0x00100000; // DL2CP [5, 3]
MMU_DATA_L2CACHEABLE_WRITE_BACK = 0x00080000; // DL2CP [5, 3]
MMU_DATA_PREFETCH_ENABLE =0x00040000; // DPFE [2]
MMU_DATA_BURST_SIZE_4=0x00020000; // DBS [1, 0]
MMU_DATA_BURST_SIZE_2=0x00010000; // DBS [1, 0]
MMU_DATA_BURST_SIZE_1=0x00000000; // DBS [1, 0]

Figure 9. shows how M_DSDBx is reserved in memory.

Appendix B — MMU Attributes

Using the SC3000 Linker Control File for MSC8156 Applications — Application Note

Freescale Semiconductor 19

Figure 9. M_DSDBx Register

12.5 Default Attributes for Shared Program Descriptors
Listing 20 shows how to set the default attributes for shared program descriptors.

Listing 20. Default attributes for shared program descriptors

SHARED_PROG_MMU_DEF =MMU_PROG_DEF_CACHEABLE|
 MMU_PROG_PREFETCH_ENABLE|
 MMU_PROG_L2CACHEABLE|
 MMU_PROG_NEXT_LINE_PFETCH|
 MMU_PROG_DEF_SHARED|
 MMU_PROG_DEF_XPERM_USER|
 MMU_PROG_DEF_XPERM_SUPER|
 MMU_PROG_BURST_SIZE_4;

12.6 Default Attributes for System Program Descriptors
To set the default attributes for system program descriptors, set:

SYSTEM_PROG_MMU_DEF=SHARED_PROG_MMU_DEF;

12.7 Cacheable Private Settings
Listing 21 shows how to define the cacheable private settings.

Listing 21. Cacheable private settings

USER_DATA_MMU_DEF= MMU_DATA_CACHEABLE_WRITE_BACK|
 MMU_DATA_PREFETCH_ENABLE|
 MMU_DATA_L2CACHEABLE_WRITE_BACK|
 MMU_DATA_DEF_RWPERM_USER|
 MMU_DATA_DEF_RWPERM_SUPER|
MMU_DATA_BURST_SIZE_4;

12.8 Non-Cacheable Shared Data Settings
Listing 22 shows how to define the non-cacheable shared data settings.

Appendix B — MMU Attributes

Using the SC3000 Linker Control File for MSC8156 Applications — Application Note

20 Freescale Semiconductor

Listing 22. Non-cacheable shared data settings

SHARED_DATA_MMU_DEF= MMU_DATA_NONCACHEABLE_WRITE_THROUGH|
 MMU_DATA_L2NONCACHEABLE|
 MMU_DATA_PREFETCH_ENABLE|
 MMU_DATA_DEF_SHARED|
 MMU_DATA_DEF_RWPERM_USER|
 MMU_DATA_DEF_RWPERM_SUPER|
 MMU_DATA_BURST_SIZE_4;

12.9 Cacheable Shared Settings
Listing 23 shows how to define the cacheable shared settings.

Listing 23. Cacheable shared settings

SYSTEM_DATA_MMU_DEF =MMU_DATA_CACHEABLE_WRITE_BACK|
 MMU_DATA_PREFETCH_ENABLE|
 MMU_DATA_L2CACHEABLE_WRITE_BACK|
 MMU_DATA_DEF_SHARED|
 MMU_DATA_DEF_RWPERM_USER|
 MMU_DATA_DEF_RWPERM_SUPER|
 MMU_DATA_BURST_SIZE_4;

Appendix C — Other Descriptor Settings

Using the SC3000 Linker Control File for MSC8156 Applications — Application Note

Freescale Semiconductor 21

13 Appendix C — Other Descriptor Settings

13.1 Shared Data in M3
The descriptor properties for shared data in M3 memory are:

• cacheable write back

• prefetch is enabled

• read and write access in both user and supervisor mode

• burst size 4

• system task (shared between tasks)

Listing 24 shows the descriptor settings defined for shared data in M3.

Listing 24. Descriptor settings for shared data in M3

descriptor__m3__cacheable_wb__sys__shared__data
{
 .m3__cacheable_wb__sys__shared__data
 .m3__cacheable_wb__sys__shared__rom
 .m3__cacheable_wb__sys__shared__bss
} > m3_shared_data_c_wb;

13.2 Private Text in M2
The descriptor properties for private text in M2 memory are:

• cacheable

• prefetch is enabled

• execute access in both user and supervisor mode

• burst size 4

• system task (shared between tasks)

Listing 25 shows the descriptor settings defined for private text in M2.

Listing 25. Descriptor settings for private text in M2

descriptor__m2__cacheable__sys__private__text
{
 .m2__cacheable__sys__private__text
} > m2_private_text_c;

13.3 Shared Text in M3
The descriptor properties for shared text in M3 memory are:

• cacheable

• prefetch is enabled

Appendix C — Other Descriptor Settings

Using the SC3000 Linker Control File for MSC8156 Applications — Application Note

22 Freescale Semiconductor

• execute access in both user and supervisor mode

• burst size 4

• system task (shared between tasks)

Listing 26 shows the descriptor settings defined for shared text in M3.

Listing 26. Descriptor settings for shared text in M3

descriptor__m3__cacheable__sys__shared__text
{
 .m3__cacheable__sys__shared__text
 .text
 .default
} > m3_shared_text_c;

13.4 Private Data in DDR
The descriptor properties for private data in DDR memory are:

• cacheable write back

• prefetch is enabled

• read and write access in both user and supervisor mode

• burst size 4

• system task (shared between tasks)

Listing 27 shows the descriptor settings defined for private data in DDR.

Listing 27. Descriptor settings for private data in DDR

descriptor__ddr__cacheable_wb__sys__private__data
{
 .ddr__cacheable_wb__sys__private__data
 .ddr__cacheable_wb__sys__private__rom
 .ddr__cacheable_wb__sys__private__bss
} > ddr_private_data_c_wb;

13.5 Non-Cacheable Shared Data in DDR
The descriptor properties for non-cacheable shared data in DDR memory are:

• non-cacheable write through

• prefetch is enabled

• read and write access in both user and supervisor mode

• burst size 4

• system task (shared between tasks)

Listing 28 shows the descriptor settings defined for non-cacheable shared data in DDR.

Appendix C — Other Descriptor Settings

Using the SC3000 Linker Control File for MSC8156 Applications — Application Note

Freescale Semiconductor 23

Listing 28. Descriptor settings for non-cacheable shared data in DDR

descriptor__ddr__non_cacheable_wt__sys__shared__data
{
 .ddr__non_cacheable_wt__sys__shared__data
 .ddr__non_cacheable_wt__sys__shared__rom
 .ddr__non_cacheable_wt__sys__shared__bss
} > ddr_shared_data_nc_wt;

13.6 Cacheable Shared Data in DDR
The descriptor properties for cacheable shared data in DDR memory are:

• cacheable write back

• prefetch is enabled

• read and write access in both user and supervisor mode

• burst size 4

• system task (shared between tasks)

Listing 29 shows the descriptor settings defined for cacheable shared data in DDR.

Listing 29. Descriptor settings for cacheable shared data in DDR

descriptor__ddr__cacheable_wb__sys__shared__data
{
 .ddr__cacheable_wb__sys__shared__data
 .ddr__cacheable_wb__sys__shared__rom
 .ddr__cacheable_wb__sys__shared__bss
} > ddr_shared_data_c_wb;

13.7 Shared Text in DDR
The descriptor properties for shared text in DDR memory are:

• cacheable

• prefetch is enabled

• execute access in both user and supervisor mode

• burst size 4

• system task (shared between tasks)

Listing 30 shows the descriptor settings defined for shared text in DDR.

Listing 30. Descriptor settings for shared text in DDR

descriptor__ddr__cacheable__sys__shared__text
{
 .ddr__cacheable__sys__shared__text
 .unlikely
} > ddr_shared_text_c;

Appendix C — Other Descriptor Settings

Using the SC3000 Linker Control File for MSC8156 Applications — Application Note

24 Freescale Semiconductor

13.8 Private Data in M2
The descriptor properties for private data in M3 memory are:

• cacheable write back

• prefetch is enabled

• read and write access in both user and supervisor mode

• burst size 4

• system task (shared between tasks)

Listing 31 shows the descriptor settings defined for private data in M2.

Listing 31. Descriptor settings for private data in M2

descriptor__m2__cacheable_wb__sys__private__data
{
 .zdata
 .m2__cacheable_wb__sys__private__rom
 .m2__cacheable_wb__sys__private__data
 .m2__cacheable_wb__sys__private__bss
} > m2_private_data_c_wb;

NOTE The .zdata section may be generated while using -Xllt -zdata1.
Otherwise it is zero.

Appendix D — MMU Predefines 8156

Using the SC3000 Linker Control File for MSC8156 Applications — Application Note

Freescale Semiconductor 25

14 Appendix D — MMU Predefines 8156
The MMU predefines shown in Listing 32 are used for the MSC8156 architecture.

Listing 32. MMU predefines for the MSC8156 architecture

// temporary LCF for msc8156
_M2_Setting = 0x0f;
_M2_size =(_M2_Setting == 0x01) ? 0x10000:
 (_M2_Setting == 0x03) ? 0x20000:
 (_M2_Setting == 0x07) ? 0x30000:
 (_M2_Setting == 0x0f) ? 0x40000:
 (_M2_Setting == 0x1f) ? 0x50000:
 (_M2_Setting == 0x3f) ? 0x60000:
 (_M2_Setting == 0x7f) ? 0x70000:
 (_M2_Setting == 0xff) ? 0x80000:
 0x0; // M2 size.

physical_memory shared (*)
{
 M3: org = _M3_start, len = _M3_size;
 DDR: org = _DDR_start, len = _DDR_size;
 DDR2: org = _DDR2_start, len = _DDR2_size;
}

physical_memory private (*)
{
 M2: org = _M2_start, len = _M2_size;
}

_M2_start = 0x30000000 + 0x1000000 * core_id();
_M2_end = _M2_start + _M2_size - 1;
_M3_start = 0xC0000000;
_M3_size = 0x00100000; // M3 size. (1M)
_M3_end = _M3_start + _M3_size - 1;
_DDR_start = 0x40000000;
_DDR_size = 0x20000000; // DDR size (512M)
_DDR_end = _DDR_start + _DDR_size -1;
_DDR2_start = 0x80000000;
_DDR2_size = 0x20000000;// DDR2 size (512M)
_DDR2_end = _DDR2_start + _DDR2_size -1;

// MMU ATTRIBUTES
MMU_PROG_L2CACHEABLE=0x00080000;
MMU_PROG_PREFETCH_ENABLE=0x00040000;
MMU_PROG_BURST_SIZE_4=0x00020000;
MMU_PROG_BURST_SIZE_1=0x00000000;
MMU_PROG_DEF_SHARED=0x00000010;
MMU_PROG_DEF_CACHEABLE=0x00000008;
MMU_PROG_DEF_XPERM_USER=0x00000004;
MMU_PROG_DEF_XPERM_SUPER=0x00000002;
MMU_PROG_DEF_SYSTEM=MMU_PROG_DEF_SHARED;
_MMU_PROG_DEF_SYSTEM=MMU_PROG_DEF_SHARED;
MMU_PROG_NEXT_LINE_PFETCH=0x00004000;

MMU_DATA_NONCACHEABLE_WRITE_THROUGH=0x00800000;
MMU_DATA_CACHEABLE_WRITE_BACK=0x00400000;
MMU_DATA_CACHEABLE_WRITE_THROUGH=0x00000000;
MMU_DATA_L2CACHEABLE_WRITE_THROUGH=0x00000000;
MMU_DATA_L2CACHEABLE_ADAPTIVE_WRITE=0x00180000;
MMU_DATA_L2NONCACHEABLE=0x00100000;
MMU_DATA_L2CACHEABLE_WRITE_BACK=0x00080000;

Appendix D — MMU Predefines 8156

Using the SC3000 Linker Control File for MSC8156 Applications — Application Note

26 Freescale Semiconductor

MMU_DATA_PREFETCH_ENABLE=0x00040000;
MMU_DATA_BURST_SIZE_4=0x00020000;
MMU_DATA_BURST_SIZE_1=0x00000000;

MMU_DATA_DEF_SHARED=0x00000020;
MMU_DATA_DEF_RPERM_USER=0x00000010;
MMU_DATA_DEF_WPERM_USER=0x00000008;
MMU_DATA_DEF_RPERM_SUPER=0x00000004;
MMU_DATA_DEF_WPERM_SUPER=0x00000002;
MMU_DATA_DEF_SYSTEM=MMU_DATA_DEF_SHARED;
_MMU_DATA_DEF_SYSTEM=MMU_DATA_DEF_SHARED;

Document Number: AN3899

June 1, 2009

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical experts.
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. CodeWarrior™
is a trademark or registered trademark of Freescale Semiconductor, Inc. StarCore® is a registered
trademark of Freescale Semiconductor, Inc. in the United States and/or other countries. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2009. All rights reserved.

