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This document provides information to programmers to 
write optimal code for the MPC750, MPC7400, and 
MPC7450 microprocessors that implement the PowerPC™ 
architecture, with particular emphasis on the MPC7450, 
which is significantly different from previous designs. The 
target audience includes performance-oriented writers of 
both compilers and hand-coded assembly.

This document is a companion to the PowerPC Compiler 
Writer’s Guide (CWG), with major updates for new 
implementations not covered by that work; it is not a guide 
for making a basic PowerPC compiler work. For compiler 
guidelines, see the CWG. (However, many of the code 
sequences suggested in the CWG are no longer optimal, 
especially for the MPC7450.)

For details on the three different microprocessors and 
compiler guidelines, consult the following references:

• MPC750 RISC Microprocessor Family User’s 
Manual

• MPC7410 and MPC7400 RISC Microprocessor 
User’s Manual

• MPC7450 RISC Microprocessor Family User’s 
Manual

• The PowerPC Compiler Writer’s Guide (available on 
the IBM web site)
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Terminology and Conventions

Table 1 lists the three main processors referenced in this document and their derivatives. The derivative 
list is not necessarily complete and is subject to change.

1 Terminology and Conventions
This section provides an alphabetical glossary of terms used in this document. Because of the differences 
in the MPC7450, many of these definitions differ slightly from those for previous processors that 
implement the PowerPC architecture, particularly with respect to dispatch, issue, finishing, retirement, and 
write-back:

• Branch prediction—The process of guessing the direction or target of a branch. Branch direction 
prediction involves guessing whether a branch will be taken. Target prediction involves guessing 
the target address of a bclr branch. The PowerPC architecture defines a means for static branch 
prediction as part of the instruction encoding. 

• Branch resolution—The determination of whether a branch prediction is correct. If it is, the 
instructions after the predicted branch that may have been speculatively executed can complete 
(see completion). If the prediction is incorrect, instructions on the mispredicted path and any results 
of speculative execution are purged from the pipeline and fetching continues from the correct path. 

• Complete—An instruction is in the complete stage after it executes and makes its results available 
for the next instruction (see finish). At the end of the complete stage, the instruction is retired from 
the completion queue (CQ). When an instruction completes, it is guaranteed that this instruction 
and all previous instructions can cause no exceptions. 

• Dispatch—The dispatch stage decodes instructions supplied by the instruction queue, renames any 
source/target operands, determines to which issue queue each non-branch instruction is dispatched, 
and determines whether the required space is available in both that issue queue and the completion 
queue.

• Fall-through folding (branch fall-through)—Removal of a not-taken branch. On the MPC7450, 
not-taken branch instructions that do not update LR or CTR can be removed from the instruction 
stream if the branch instruction is in IQ3–IQ7.

• Fetch—The process of bringing instructions from memory (such as a cache or system memory) 
into the instruction queue. 

• Finish—An executed instruction finishes by signaling the completion queue that execution is 
complete and results are available to subsequent instructions. For most execution units, finishing 
occurs at the end of the last cycle of execution; however, FPU, IU2, and VIU2 instructions finish 
at the end of a single-cycle finish stage after the last cycle of execution. 

• Folding (branch folding)—The replacement of a branch instruction and any instructions along the 
not-taken path with target instructions when a branch is either taken or predicted as taken. 

Table 1. Microarchitecture List

First Implementation Derivatives (Similar Devices)

MPC750 MPC740, MPC745, MPC755

MPC7400 MPC7410

MPC7450 MPC7441, MPC7451
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• Issue—The pipeline stage reads source operands from rename registers and register files. This 
stage also assigns and routes instructions to the proper execution unit.

• Latency— The number of clock cycles necessary to execute an instruction and make the results of 
that execution available to subsequent instructions.

• Pipeline—In the context of instruction timing, refers to the interconnection of the stages. The 
events necessary to process an instruction are broken into several cycle-length tasks so work can 
be performed on several instructions simultaneously—analogous to an assembly line. As an 
instruction is processed, it passes from one stage to the next. When it does, the stage becomes 
available for the next instruction. 

Although an individual instruction can take many cycles to make results available (see latency), 
pipelining makes it possible to overlap processing so that the throughput (number of instructions 
processed per cycle) is increased.

• Program order—The order of instructions in an executing program; more specifically, the original 
order in which program instructions are fetched into the instruction queue from the cache. 

• Rename registers—Temporary buffers for holding results of instructions that have finished 
execution but have not completed. 

• Reservation station—A buffer between the issue and execute stages that allows instructions to be 
issued even though the results of other instructions on which the issued instruction may depend are 
not available. 

• Retirement—Removal of a completed instruction from the CQ.

• Speculative instruction—Any instruction that is currently behind an unresolved older branch.

• Stage—An element in the pipeline where specific actions are performed, such as decoding an 
instruction, performing an arithmetic operation, or writing back the results. Typically, the latency 
of a stage is one processor clock cycle. Some events, such as dispatch, writeback, and completion, 
happen instantaneously and may be thought to occur at the end of a stage. 

An instruction can spend multiple cycles in one stage. For example, an integer multiply takes 
multiple cycles in the execute stage. When this occurs, subsequent instructions may stall. 

An instruction can also occupy more than one stage simultaneously, especially in the sense that a 
stage can be viewed as a physical resource—for example, when instructions are dispatched they 
are assigned a place in the CQ at the same time they are passed to the issue queues. 

• Stall—An instruction cannot proceed to the next stage. 

• Superscalar—A superscalar processor can issue multiple instructions concurrently from a 
conventional linear instruction stream. In a superscalar implementation, multiple instructions can 
be in the execute stage at the same time. 

• Throughput—The number of instructions that are processed per cycle. For example, a series of 
mulli instructions have a throughput of one instruction per clock cycle. 

• Write-back—Write-back (in the context of instruction handling) occurs when a result is written 
into the architecture-defined registers (typically the GPRs, FPRs, and VRs). On the MPC7450, 
write-back occurs in the clock cycle after the completion stage. Results in the write-back buffer 
cannot be flushed. If an exception occurs, results from previous instructions must write back before 
the exception is taken.
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2 Processor Overview
This section describes the high-level differences between the MPC750, the MPC7400, and the MPC7450. 
Also, it describes the pipeline differences in these three processors.

2.1 High-Level Differences 
To achieve a higher frequency, the MPC7450 design reduces the number of logic levels per cycle, which 
extends the pipeline. More resources are added to reduce the effect of the pipeline length on performance. 
These pipeline length and resource changes can make an important difference in code scheduling. Table 2 
describes high-level differences between MPC750, MPC7400, and MPC7450 processors. 

Table 2. High-Level Differences

Microprocessor Feature MPC750 MPC7400 MPC7450

Basic Pipeline Functions

Logic inversions per cycle 28 28 18

Pipeline stages up to first execute 3 3 5

Minimum total pipeline length 4 4 7

Pipeline maximum instruction throughput 2 + 1 branch 2 + 1 branch 3 + 1 branch

Pipeline Resources

Instruction queue size 6 6 12

Completion queue size 6 8 16

Rename register (integer, vector, FP) 6, N/A, 6 6, 6, 6 16, 16, 16

Branch Prediction Resources/Features

Branch prediction structures BTIC, BHT BTIC, BHT BTIC, BHT, LinkStack

BTIC size, associativity 64-entry, 4-way 64-entry, 4-way 128-entry, 4-way

BTIC instructions/entry 2 2 4

BHT size 512-entry 512-entry 2048-entry

Link stack depth N/A N/A 8

Unresolved branches supported 2 2 3

Branch taken penalty (BTIC hit) 0 0 1

Minimum branch mispredict penalty (cycles) 4 4 6

Available Execution Units

Integer execution units 1 IU1, 1 IU1/IU2, 
1 SRU, 
1 LSU

1 IU1, 1 IU1/IU2,
1 SRU,
1 LSU

3 IU1, 
1 IU2/SRU, 

1 LSU

Floating-point execution units 1 double-precision FPU 1 double-precision FPU 1 double-precision FPU

Vector execution units N/A 2-issue to VPU and 
VALU (VALU has VSIU, 
VCIU, VFPU subunits)

2-issue to any 
2 vector units (VSIU, 
VPU, VCIU, VFPU)
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Typical Execution Unit Latencies

Data cache load hit (integer, vector, float) 2, N/A, 2 2, 2, 2 3, 3, 4

IU1 (add, shift, rotate, logical) 1 1 1

IU2: multiply (32-bit) 6 6 4

IU2: divide 19 19 23

FPU: single (add, mul, madd) 3 3 5

FPU: single (divide) 17 17 21

FPU: double (add) 3 3 5

FPU: double (mul, madd) 4 3 5

FPU: double (divide) 31 31 35

VSIU N/A 1 1

VCIU N/A 3 4

VFPU N/A 4 4

VPU N/A 1 2

L1 Instruction Cache/Data Cache Features

L1 cache size (instruction, data) 32-Kbyte, 32-Kbyte

L1 cache associativity (instruction, data) 8-way, 8-way

L1 cache line size 32 bytes

L1 cache replacement algorithm Pseudo-LRU

Number of outstanding data cache misses 
(load/store)

1 (load or store) 8 (any combination 
load/store)

5 load/1 store

Additional On-Chip Cache Features

Additional on-chip cache level None None L2

Additional on-chip cache size N/A N/A 256-Kbyte

Additional on-chip cache associativity N/A N/A 8-way

Additional on-chip cache line size N/A N/A 64 bytes 
(2 sectors per line)

Additional on-chip cache replacement algorithm N/A N/A Pseudo-random

Off-Chip Cache Support

Off-chip cache level L2 L3

Off-chip cache size 256-Kbyte, 512-Kbyte, 
1-Mbyte

512-Kbyte, 1-Mbyte, 
2-Mbyte

1-Mbyte, 2-Mbyte

Off-chip cache associativity 2-way 2-way 8-way

Off-chip cache line size/sectors per line 64B/2, 64B/2, 128B/4 32B/1, 64B/2, 128B/4 64B/2, 128B/4

Off-chip cache replacement algorithm FIFO FIFO Pseudo-random

Table 2. High-Level Differences (continued)

Microprocessor Feature MPC750 MPC7400 MPC7450
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2.2 Pipeline Differences
The MPC7450 instruction pipeline differs significantly from the MPC750 and MPC7400 pipelines. 
Figure 1 shows the basic pipeline of the MPC750/MPC7400 processors. 

Figure 1. MPC750 and MPC7400 Pipeline Diagram

Table 3 briefly explains the pipeline stages.

Figure 2 shows the basic pipeline of the MPC7450 processor, and Table 4 briefly explains the stages.

Figure 2. MPC7450 Pipeline Diagram

Table 4 briefly explains the MPC7450 pipeline stages.

Table 3. MPC750/MPC7400 Pipeline Stages

Pipeline Stage Abbreviation Comment

Fetch F Read from instruction cache

Branch execution BE Execute branch and redirect fetch if needed

Dispatch D Decode, dispatch to execution units, assigned to rename register, register file read

Execute E, E0, E1, ... Instruction execution and completion

Write-back WB Architectural update
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The MPC7450 pipeline is longer than the MPC750/MPC7400 pipeline, particularly in the primary load 
execution part of the pipeline (3 cycles versis 2 cycles). Faster processor performance often requires 
designs to operate at higher clock speeds. Clock speed is inversely related to the work performance of the 
processor. Therefore, higher clock speeds imply less work to be performed per cycle, which necessitates 
longer pipelines. Also, increased density of the transistors on the chip has enabled the addition of 
sophisticated branch-prediction hardware, additional processor resources, and out-of-order execution 
capability. This industry trend should continue for at least one more microprocessor generation. The longer 
pipelines yield a processor more sensitive to code selection and ordering. Because hardware can add 
additional resources and out-of-order processing ability to reduce this sensitivity, the hardware and the 
software must work together to achieve optimal performance.

3 Overview of Target Microprocessors
This section provides a high-level overview of the three target microprocessors, with first-order details that 
are useful in developing a compiler model of the microprocessor.

3.1 MPC750 Microprocessor 
Figure 3 shows a functional block diagram of the MPC750.

Table 4. MPC7450 Pipeline Stages

Pipeline Stage Abbreviation Comment

Fetch1 F1 First stage of reading from instruction cache

Fetch2 F2 Second stage of reading from instruction cache

Branch execute BE Execute branch and redirect fetch if needed

Dispatch D Decode, dispatch to IQs, assigned to rename register

Issue I Issue to execution units, register file read

Execute E, E0, E1, ... Instruction execution

Completion C Instruction completion

Write-back WB Architectural update
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Figure 3. MPC750 Microprocessor Block Diagram
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Instructions are fetched from the instruction cache and placed into a six-entry IQ. When the fetch pipeline 
is fully utilized, as many as four instructions can be fetched to the IQ during each clock cycle, subject to 
cache block wrap restrictions.

3.1.1 Dispatch
The bottom two IQ entries are available for dispatch, which involves the following operations:

• Renaming—Six rename registers are available for integer operation and six more are available for 
floating-point operations.

• Dispatching—A reservation station must be available for the correct execution unit.

• CQ check—An entry must be available in the six-entry CQ.

• Branch check—A branch instruction must have executed before being dispatched. Section 3.1.4, 
“Branches,” provides additional information.

3.1.2 Execution
An instruction in the bottom of a reservation station is available for execution. Execution involves the 
following operations:

• Busy check—The unit must be available. For example, some units are not fully pipelined.

• Operand check—All source operands must be available before any execution can start.

• Serialization check—If the instruction is execution serialized, it must wait to become the oldest 
instruction in the machine (bottom of the CQ entry) before it can start execution.

3.1.3 Completion
The bottom two CQ entries are available for completion, which involves the following operations:

• Finish check—Only instructions that have finished or are in the last stage of execution are eligible 
for finishing.

• Rename check—The MPC750 can write back only two rename registers per cycle. Some 
instructions, such as a load-with-update, have multiple renamed targets. If a load-with-update and 
an add instruction are in the bottom two CQ entries, the add cannot complete because the 
load-with-update already requires two rename-register-writeback slots for the subsequent cycle.

NOTE

In the MPC750, execution and completion can occur simultaneously for 
single-cycle execution instructions.

3.1.4 Branches
Branches are handled differently from other instructions. Branch instructions must be executed by the 
branch unit before they can be dispatched. The BPU searches the six-entry IQ for the oldest unexecuted 
branch and executes it. If the branch instruction does not update the architectural state by setting the link 
or count register, it is eligible for folding. In branch execution, the instruction is folded immediately if the 
branch is taken. In this case, folding removes the branch instruction from the IQ, so the branch instruction 
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does not reach the dispatcher. If the branch is not taken, the dispatcher must dispatch the branch. However, 
the branch is not allocated in the CQ, so no completion is required either.

If the branch is either b or bc, a taken branch can get instructions from the BTIC. The BTIC lookup is 
automatically performed based on the instruction address of the executing branch, and produces 
instructions starting at the branch target address. The BTIC supplies two instructions for that cycle, as 
opposed to the normal four from the instruction cache. Indirect branches, such as bcctr or bclr, do not get 
instructions from the BTIC. Thus, a taken branch incurs a one-cycle fetch bubble when it executes.

3.1.5 MPC750 Compiler Model
A good compiler scheduling model for the MPC750 includes the two-instruction-per-clock-cycle dispatch 
limitation, a base model of the CQ with a maximum of six instructions with 
two-instruction-per-clock-cycle completion limitation, and execution units—SRU, IU1, IU2, FPU, and 
LSU with typical unit execution latencies as given in Table 1. 

A full model incorporates full table-driven latency/throughput/serialization specifications given 
instruction by instruction in Appendix A, “MPC7450 Execution Latencies.” The notion of reservation 
stations (particularly, the second LSU reservation station) should be added. Rename registers limitations 
for the GPRs are also needed to allow more accurate modeling of the load/store-with-update instructions. 

3.2 MPC7400 Microprocessor 
The MPC7400 microprocessor is similar to the MPC750 microprocessor. The primary differences include 
the following attributes:

• Eight-entry CQ (although rename registers are still limited to six)

• Vector units (and instructions), which implement the Altivec extensions to the PowerPC 
architecture

• Better latency and pipelining on double-precision floating-point operations

• Increased pipelining of load/store misses in the LSU

Figure 4 shows a functional block diagram of the MPC7400.

3.2.1 Vector Unit

The MPC7400 can dispatch two vector instructions per cycle: one to the VPU and one to the VALU. The 
VPU is a single-cycle execution unit unlike the VALU that has three independent subunits, each with 
different latencies, as follows:

• The VSIU subunit handles simple integer and logical operations with single-cycle latency per 
instruction. 

• The VCIU handles complex integer instructions (mostly multiplies) with a latency of three clocks 
and a throughput of one instruction per cycle. 

• The VFPU subunit handles vector floating-point instructions with a latency of four clocks and a 
throughput of one instruction per cycle. 

The VALU can initiate one instruction per cycle to any of these three subunits. After execution begins, 
these subunits are fully independent.
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Figure 4. MPC7400 Microprocessor Block Diagram
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3.2.2 MPC7400 Compiler Model
A good compiler scheduling model for the MPC7400 includes the dispatch limitations of two instructions 
per clock, a base model of the CQ with a maximum of eight instructions, the completion limitation of two 
instructions per clock, and the execution units—SRU, IU1, IU2, FPU, VPU, VALU (VSIU, VCIU, VFPU), 
and LSU with typical execution unit latencies as given in Appendix A, “MPC7450 Execution Latencies.”

A full model incorporates full table-driven latency/throughput/serialization specifications given 
instruction by instruction in Appendix A, “MPC7450 Execution Latencies.” The concept of reservation 
stations (especially the second LSU reservation station) should be added. The rename registers limitations 
are much more important than in the MPC750, since the number of rename registers (six) does not match 
the number of completion entries (eight).

3.3 MPC7450 Microprocessor 
Different resource sizes, issue queues, and the splitting of the completion and execution stages are the main 
differences between the MPC7450 and the MPC750/MPC7400 models. Also, the MPC7450 can dispatch 
up to three instructions per cycle (compared to two on the MPC7400) and can complete a maximum of 
three instructions per cycle (compared to two on the MPC7400).

With the addition of extra integer units, the MPC7450 has more integer computing capacity available for 
scheduling. The MPC7450 has three single-cycle IUs (IU1a, IU1b, IU1c) that execute all integer 
(fixed-point) instructions (addition, subtraction, logical operations—AND, OR, shift, and rotate) except 
multiply, divide, and move to/from special-purpose register instructions. Note that all IU1 instructions 
execute in one cycle, except for some instructions like tw[i] and sraw[i][.], which take two. In addition, it 
has one multiple-cycle IU (IU2) that executes miscellaneous instructions including the CR logical 
operations, integer multiplication and division instructions, and move to/from special-purpose register 
instructions. The issue requirements for the vector subunits are also improved which is described in detail 
in Section 6.2, “Vector Issue Queue (VIQ).”

The longer pipeline of the MPC7450 is more sensitive to branch mispredictions. Taken branches of 
MPC7450 cause a single-cycle fetch bubble, whereas most taken branches on the MPC750/MPC7400 
were nearly free. The MPC7450 also changes the load-use latency, which is critical to adjust to achieve 
best performance on many applications. Also, serialized instructions are more costly in terms of 
performance on this microprocessor.

Figure 5 is a functional block diagram of the MPC7450.
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Figure 5. MPC7450 Microprocessor Block Diagram
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3.3.1 Dispatch
The bottom three IQ entries are available for dispatch, which involves the following:

• Renaming—16 rename registers are available for each of the integer, floating-point, and vector 
operations.

• Dispatching—Available issue queue entries must be available for each dispatched instruction.

• CQ check—An entry must be available in the 16-entry CQ.

• Branch check—A branch instruction must execute before it is dispatched. Section 3.3.8, 
“Branches,” provides more information on branching.

3.3.2 Issue Queues
Each issue queue handles issuing slightly differently and is described separately as follows.

3.3.3 General-Purpose Issue Queue
The six-entry general-purpose issue queue (GIQ in Figure 5) handles integer instructions, including all 
load/store instructions. The GIQ accepts as many as three instructions from the dispatch unit each cycle. 
All IU1s, IU2, and LSU instructions (including floating-point and AltiVec loads and stores) are dispatched 
to the GIQ. Instructions can be issued out-of-order from the bottom three GIQ entries (GIQ2–GIQ0). An 
instruction in GIQ1 destined to one of the IU1s does not have to wait for an instruction stalled in GIQ0 
that is behind a long-latency integer divide instruction in the IU2. The primary check is that a reservation 
station must be available.

3.3.4 Floating-Point Issue Queue
The two-entry floating-point issue queue (FIQ) can accept one dispatched instruction per cycle for the 
FPU, and if an FPU reservation station is available, it can also issue one instruction from the bottom FIQ 
entry.

3.3.5 Vector Issue Queue
The four-entry vector issue queue (VIQ) accepts as many as two vector instructions from the dispatch unit 
each cycle. All AltiVec instructions (other than load, store, and vector touch instructions) are dispatched 
to the VIQ. The bottom two entries are allowed to issue as many as two instructions to the four AltiVec 
execution unit’s reservation stations, but unlike the GIQ, instructions in the VIQ cannot be issued out of 
order. The primary check determines if a reservation station is available. 

NOTE

The VIQ can issue to any two vector units, unlike the MPC7400. For 
example, the MPC7450 can issue to the VSIU and VCIU simultaneously, 
whereas the MPC7400 allows pairing between the VPU and one of the other 
three VALU subunits. 
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3.3.6 Execution
The instruction in the bottom of the reservation station is available for execution. Execution involves the 
following:

• Busy check—The unit must not be busy. For example, some units are not fully pipelined and so 
cannot accept a new instruction on every clock.

• Operand check—All source operands must be available before any execution can start.

• Serialization check—If the instruction is execution serialized, it must wait to become the oldest 
instruction in the machine (bottom of the CQ entry) before it can start execution.

The MPC7450 has two more IUs than the MPC750/MPC7400. However, the integer unit capabilities have 
changed slightly from the MPC750/MPC7400 to the MPC7450, as shown in Table 5. Appendix A, 
“MPC7450 Execution Latencies,” compares latencies between MPC750, MPC7400, and MPC7450 for 
various instructions. 

3.3.7 Completion
The bottom three CQ entries are available for retiring instructions. Completion involves the following 
operations:

• Finish check—Only instructions that finish can complete (except store instructions, which finish 
and complete simultaneously to allow pipelining).

• Rename check—An MPC7450 can write back only three rename registers per cycle. Some 
instructions, such as load-with-update, have multiple renamed targets. If a load-with-update is 
followed by two adds, only the load-with-update and the first add can complete at the same time 
(although all three instructions are finished executing). The load-with-update requires two of the 
three rename-register-writeback resources. Due to this resource constraint, the second add waits 
until the second cycle is completed.

3.3.8 Branches
Branches are handled differently from other instructions. Branch instructions must be executed by the 
branch unit before they can be dispatched. The BPU searches the bottom eight entries of the IQ for the 
oldest unexecuted branch and executes it. A branch instruction is eligible for folding if it does not update 
the architectural state by setting the link or count register. In branch execution, the instruction is folded 
immediately if the branch is taken. In this case, folding removes the branch instruction from the IQ, so the 
branch instruction does not reach the dispatcher. If the branch is not taken, the dispatcher must dispatch 
the branch, and the branch is placed in the CQ.

Table 5. MPC750/MPC7400 vs. MPC7450 Integer Unit Breakdown

Instruction Class MPC750/MPC7400 MPC7450

add, subtract, logical, shift/rotate IU1 or IU2 IU1 (any of 3)

mul, div IU2 IU2

mtspr, mfspr, CR logical, and other miscellaneous instructions SRU IU2
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NOTE

Note that in the MPC750, the dispatched (fall-through) foldable branches 
are not allocated in the CQ.

If the branch is either b or bc, a taken branch can get instructions from the BTIC. The BTIC lookup is 
automatically performed based on the instruction address of the executing branch and produces 
instructions starting at the branch target address. Taken branches have a minimum one-cycle fetch bubble, 
since the BTIC supplies four instructions on the following cycle. Indirect branches such as bcctr or bclr 
do not get instructions from the BTIC. Thus, taken branches incur a two-cycle fetch bubble when they 
execute. From a code performance point of view, the need for biasing the branch to be fall-through has 
increased to avoid the 1- or 2-cycle fetch bubble of a taken branch. The longer pipeline makes the 
MPC7450 more sensitive to branch misprediction than earlier designs.

3.3.9 MPC7450 Compiler Model
A good scheduling model for the MPC7450 should take into account the dispatch limitations of the three 
instructions per cycle, the 16-entry CQ’s completion limitation of three instructions per cycle, and the 
various execution units with the latencies discussed earlier.

A full model would also incorporate the full table-driven latency/throughput/serialization specifications 
for each instruction listed in Appendix A, “MPC7450 Execution Latencies.” The usage and availability of 
reservation stations and rename registers should also be incorporated. Finally, attention should be given to 
the issue limitations of the various issue queues—for example, it is important to note that AltiVec 
instructions must be issued in-order out of the vector issue queue. This means that a few poorly scheduled 
instructions can potentially stall the entire vector unit for many cycles.

4 MPC7450 Microprocessor Details
This section describes many architectural details of the MPC7450 and gives examples of the pipeline 
behavior. These attributes are also described in the MPC7450 RISC Microprocessor Family User’s 
Manual.

4.1 Fetch/Branch Considerations
The following is a list of branch instructions and the resources required to avoid stalling the fetch unit in 
the course of branch resolution:

• The bclr instruction requires LR availability for resolution. However, it uses the link stack to 
predict the target address in order to avoid stalling the fetch unit.

• The bcctr instruction requires CTR availability.

• The branch conditional on counter decrement and the CR condition require CTR availability, or the 
CR condition must be false. 

• A fourth conditional branch instruction cannot be executed following three unresolved predicted 
branch instructions.
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4.2 Fetching
Branches that target an instruction at or near the end of a cache block can cause instruction supply 
problems. Consider a tight loop branch where the loop entry point is the last word of the cache block, and 
the loop contains a total of four instructions (including the branch). For this code, any MPC750/MPC7400 
class machine needs at least two cycles to fetch the four instructions, because the cache block boundary 
breaks the fetch group into two groups of accesses. For the MPC750/MPC7400, realigning this loop to not 
cross the cache block boundary significantly increases the instruction supply.

Additionally, on the MPC7450 this tight loop encounters the branch-taken bubble problem. That is, the 
BTIC supplies instructions one cycle after the branch executes. For the instructions in the cache block 
crossing case, four instructions are fetched every three cycles. Aligning instructions to be within a cache 
block increases the number of instructions fetched to four every two cycles. For loops with more 
instructions, this branch-taken bubble overhead can be better amortized or in some cases can disappear 
(because the branch is executed early and the bubble disappears by the time the instructions reach the 
dispatch point). One way to increase the number of instructions per branch is software loop unrolling.

NOTE

The BTIC on all MPC750/MPC7400/MPC7450 microprocessors contains 
targets for only b and bc branches. Indirect branches (bcctr and bclr) must 
go to the instruction cache for instructions, which incurs an additional cycle 
of fetch latency (another branch-taken bubble).

In future generations of these high performance microprocessors, expect a further bias—instruction fetch 
groupings that do not cross quad-word boundaries are preferable. In particular, this means that branch 
targets should be biased to be the first instruction in a quad word (instruction address = 0xxxxx_xxx0) 
when optimizing for performance (as opposed to code footprint).

4.2.1 Fetch Alignment Example

The following code loop is a simple array accumulation operation. 

xxxxxx18  loop: lwzu r10,0x4(R9)
xxxxxx1C add r11,r11,r10
xxxxxx20 bdnz loop

The lwzu and add are the last two instructions in one cache block, and the bdnz is the first instruction in 
the next. In this example, the fetch supply is the primary restriction. Table 6 assumes instruction cache and 
BTIC hits. The lwzu/add of the second iteration are available for dispatch in cycle 3, as a result of a BTIC 
hit for the bdnz executed in cycle 1. The bdnz of the second iteration is available in the IQ one cycle later 
(cycle 4) because the cache block break forced a fetch from the instruction cache. Overall, the loop is 
limited to one iteration for every three cycles.

Table 6. MPC7450 Fetch Alignment Example

Instruction 0 1 2 3 4 5 6 7 8 9 10 11

lwzu (1) D I E0 E1 E2 C

add (1) D I — — — E C

bdnz (1) F2 BE D — — — C
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Performance can be increased if the loop is aligned so that all three instructions are in the same cache 
block, as in the following example.

xxxxxx00  loop: lwzu r10,0x4(r9)
xxxxxx04 add r11,r11,r10
xxxxxx08 bdnz loop

The fact that the loop fits in the same cache block allows the BTIC entry to provide all three instructions. 
Table 7 shows pipelined execution results (again assuming BTIC and instruction cache hits). While fetch 
supply is still a bottleneck, it is improved by proper alignment. The loop is now limited to one iteration 
every two cycles, increasing performance by 50 percent.

Loop unrolling and vectorization can further increase performance. These are described in Section 11.4.3, 
“Loop Unrolling for Long Pipelines,” and Section 11.4.4, “Vectorization.”

4.2.2 Branch-Taken Bubble Example
The following code shows how favoring taken branches affects fetch supply.

xxxxxx00 lwz r10,0x4(r9)
xxxxxx04 cmpi 4,r10,0x0
xxxxxx08 bne 4, targ

lwzu (2) D I E0 E1 E2 C

add (2) D I — — — E C

bdnz (2) F1 F2 BE D — — — C

lwzu (3) D I E0 E1 E2 C

add (3) D I — — — E

bdnz (3) F1 F2 BE D — — —

Table 7. MPC7450 Loop Example—Three Iterations

Instruction 0 1 2 3 4 5 6 7 8 9

lwzu (1) D I E0 E1 E2 C

add (1) D I — — — E C

bdnz (1) BE D — — — — C

lwzu (2) D I E0 E1 E2 C

add (2) D I — — — E C

bdnz (2) BE D — — — — C

lwzu (3) D I E0 E1 E2 C

add (3) D I — — — E

bdnz (3) BE D — — — —

Table 6. MPC7450 Fetch Alignment Example

Instruction 0 1 2 3 4 5 6 7 8 9 10 11
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xxxxxx0C stw r11,0x4(r9)
xxxxxx10  targ add (next basic block)

This example assumes the bne is usually taken (that is, most of the data in the array is non-zero). Table 8 
assumes correct prediction of the bne, and cache and BTIC hits. 

Rearranging the code as follows improves the fetch supply.

xxxxxx00 lwz r10,0x4(r9)
xxxxxx04 cmpi 4,r10,0x0
xxxxxx08 beq 4,targ
xxxxxx0C  targ2 add (next basic block)
...
yyyyyy00  targ stw r11,0x4(r9)
yyyyyy04 b targ2

Using the same assumptions as before, Table 9 shows the performance improvement. Note that the first 
instruction of the next basic block (add) completes in the same cycle as before. However, by avoiding the 
branch-taken bubble (because the branch is usually not taken), it also dispatches one cycle earlier, so that 
the next basic block begins executing one cycle sooner.

4.3 Branch Conditionals
The cost of mispredictions increases with pipeline length. The following section shows common problems 
and suggests how to minimize them.

4.3.1 Branch Mispredict Example
Table 10 uses the same code as the two previous examples but assumes that the bne mispredicts. The 
compare executes in cycle 5, which means the branch mispredicts in cycle 6 and the fetch pipeline restarts 
at that correct target for the add in cycle 7. This particular mispredict effectively costs seven cycles (add 
dispatches in cycle 2 in Table 8 and in cycle 9 in Table 10).

Table 8. Branch-Taken Bubble Example

Instruction 0 1 2 3 4 5 6

lwz D I E0 E1 E2 C

cmpi D I — — — E C

bne BE

add D I E — C

Table 9. Eliminating the Branch-Taken Bubble

Instruction 0 1 2 3 4 5 6

lwz D I E0 E1 E2 C

cmpi D I — — — E C

beq BE D — — — — C

add D I E — — C
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4.3.2 Branch Loop Example
CTR should be used whenever possible for branch loops, especially for tight inner loops. After the CTR 
is loaded (using mtctr), a branch dependent on the CTR requires no directional prediction in any of the 
MPC750/MPC7400 devices. Additionally, loop termination conditions are always predicted correctly, 
which is not so with the normal branch predictor. 

xxxxxx18 outer_loop:addi. r6,r6,#FFFF
xxxxxx1C cmpi 1,r6,#0
xxxxxx20 inner_loop:addic. r7,r7,#FFFF
xxxxxx24 lwzu r10,0x4(r9)
xxxxxx28 add r11,r11,r10
xxxxxx2C bne inner_loop
xxxxxx30 stwu r11,0x4(r8)
xxxxxx34 xor r11,r11,r11
xxxxxx38 ori r7,r0,#4
xxxxxx3C bne cr1,outer_loop

For the example, assume the inner loop executes four times per outer iteration. On a MPC7450 and also 
on MPC750/MPC7400 microprocessors, inner loop termination is always mispredicted because the 
branch predictor learns to predict the inner bne as taken, which is wrong every fourth time. Table 11 shows 
that the misprediction causes the outer loop code to be dispatched in cycle 13. If the branch had been 
correctly predicted as not taken, these instructions would have dispatched five cycles earlier in cycle 8. 

Table 11 shows this example transformed when using CTR for the inner loop.

Table 10. Misprediction Example

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12

lwz D I E0 E1 E2 C

cmpi D I — — — E C

bne BE M

add F1 F2 D I E C
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The following code uses the CTR, which shortens the loop because the compare test (done by the addic. 
at xxxxxx20 in the previous code example) is combined into the bdnz branch. Note that in the previous 
example, the outer loop required an addi/cmpi sequence to save the compare results into CRF1, rather than 
an addic., since the inner loop used CRF0. In the example below, since the inner loop no longer uses CRF0, 
the outer loop compare code can be simplified to just an addic. instruction.

xxxxxx1C outer_loop:addic. r6,r6,#FFFF
xxxxxx20 inner_loop:lwzu r10,0x4(r9)
xxxxxx24 add r11,r11,r10
xxxxxx28 bdnz inner_loop
xxxxxx2C mtctr r7
xxxxxx30 stwu r11,0x4(r8)
xxxxxx34 xor r11,r11,r11
xxxxxx38 bne 0,outer_loop

Table 11. Three Iterations of Code Loop

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

addi D I E C

cmp D I — E C

addic (1) F2 D I E C

lwzu (1) F2 D I E0 E1 E2 C

add (1) F2 D I — — — E C

bne (1) F2 BE

addic. (2) D I E — C

lwzu (2) D I E0 E1 E2 C

add (2) D I — — — E C

bne (2) BE

addic. (3) D I E — C

lwzu (3) D I E0 E1 E2 C

add (3) D I — — — E C

bne (3) BE

addic. (4) D I E — C

lwzu (4) D I E0 E1 E2 C

add (4) D I — — — E C

bne (4) BE M

stwu F1 F2 D I

xor F1 F2 D I

ori F1 F2 D I

bne F1 F2 BE



MPC7450 RISC Microprocessor Family Software Optimization Guide, Rev. 2

22 Freescale Semiconductor
 

MPC7450 Microprocessor Details

As Table 12 shows, the inner loop termination branch does not need to be predicted and is executed as a 
fall-through branch. Instructions in the outer loop start dispatching in cycle 8, saving five cycles over the 
code in Table 11. Note that because mtctr is execution serialized, it does not complete until cycle 16; 
nevertheless, the CTR value is forwarded to the BPU by cycle 11. This early forwarding starts for a 
mtctr/mtlr when the instruction reaches reservation station 0 of the IU2 and the source register for the 
mtctr/mtlr is available.

4.4 Static Versus Dynamic Prediction Trade-Offs
On the MPC750/MPC7400/MPC7450 microprocessors, using static branch prediction (clearing 
HID0[BHT]) means that the hint bit in the branch opcode predicts the branch and the dynamic predictor 
(the BHT) is ignored. 

In general, dynamic branch prediction is likely to outperform static branch prediction for several reasons. 
With static branch prediction, the compiler may have guessed wrongly about a particular branch. With 
dynamic branch prediction, the hardware can detect the branch’s dominant behavior after a few executions 
and predict it properly in the future. Dynamic branch prediction can also adapt its prediction for a branch 
whose behavior changes over time from mostly taken to mostly not taken.

Table 12. Code Loop Example Using CTR 

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

addic D I E C

lwzu (1) F2 D I E0 E1 E2 C

add (1) F2 D I — — — E C

bdnz (1) F2 BE D — — — — C

lwzu (2) D I E0 E1 E2 C

add (2) D I — — — E C

bdnz (2) BE D — — — — C

lwzu (3) D I E0 E1 E2 C

add (3) D I — — — E C

bdnz (3) BE D — — — — C

lwzu (4) D I E0 E1 E2 C

add (4) D I — — — E C

bdnz (4) BE D — — — — C

mtctr D I E C

stwu D I E0 — — — — — — C

xor — D I E — — — — — C

bne BE
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Sometimes static prediction is superior, either through informed guessing or through available 
profile-directed feedback. Run-time for code using static prediction is more nearly deterministic, which 
can be useful in an embedded system.

4.5 Using the Link Register (LR) Versus the Count Register (CTR) for 
Branch Indirect Instructions

On the MPC7450, a bclr uses the link stack to predict the target. To use the link stack correctly, each 
branch-and-link (bl) instruction must be paired with a branch-to-link-register (blr) instruction. Using the 
architected LR for computed targets corrupts the link stack. A number of compilers are currently 
generating code in this format. 

In general, the CTR should be used for computed target addresses and the LR should be used only for 
call/return addresses. If using the CTR for a loop conflicts with a computed goto, the computed goto should 
be used and the loop should be converted to a GPR form. 

Note that the PowerPC Compiler Writer’s Guide (Section 3.1.3.3) suggests using either CTR or LR for a 
computed branch, and suggests that using the LR is acceptable when the CTR is used for a loop. This 
suggestion is inappropriate for the MPC7450. For the MPC7450, the rules given in the preceding 
paragraphs should be followed.

When generating position-independent code, many compilers use an instruction sequence such as the 
following to obtain the current instruction address (CIA). 

bcl 20,31,$+4
mflr r3

Note that this is not a true call and is not paired with a return. The MPC7450 is optimized so the link stack 
ignores position-independent code when the bcl 20,31,$+4 form is used. This conditional call, which is 
used only for putting the instruction address in a program-visible register, does not force a push on the link 
stack and is treated as a non-taken branch.

4.5.1 Link Stack Example
The following code sequence is a common code sequence for a subroutine call/return sequence, where 
main calls foo, foo calls ack, and ack possibly calls additional functions (not shown).

main: ...
mflr  r5
stwu  r5,-4(r1)
bl    foo

5 add   r3,r3,r20
....

foo:  stwu  r31,-4(r1)
stwu  r30,-4(r1)
....
mflr  r4
stwu  r4,-4(r1)
bl    ack
add   r3,r3,r6
....

0 lwzu  r30,4(r1)
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1 lwzu  r31,4(r1)
2 lwzu  r5,4(r1)
3 mtlr  r5
4 bclr

ack:  ....
(possible calls to other functions)
....
lwzu  r4,4(r1)
mtlr  r4
bclr

The bl in main pushes a value onto the hardware managed link stack (in addition to the 
architecturally-defined link register). Then the bl in foo pushes a second value onto the stack. 

When ack later returns through the bclr, the hardware link stack is used to predict the value of the LR, if 
the actual value of the LR is not available when the branch is executed (typically because the lwzu/mtlr 
pair has not finished executing). It also pops a value off of the stack, leaving only the first value on the 
stack. This occurs again with the bclr in foo which returns to main, and this pop leaves the stack empty.

Table 13 shows the performance implications of the link stack. The following code starts executing from 
instruction 0 in procedure foo.

With the link stack prediction, the BPU can successfully predict the target of the bclr (instruction 4), which 
allows the instruction at the return address (instruction 5) to be executed in cycle 8. The IU2 forwarded the 
LR value to the BPU in cycle 9 (which implies that the branch resolution occurs in cycle 10), even though 
it is not able to execute from an execution serialization viewpoint until cycle 11.

Without the link stack prediction, the branch would stall on the link register dependency and not execute 
until after the LR is forwarded (that is, branch execution would occur in cycle 10), which allows 
instruction 5 not to execute until cycle 15 (seven cycles later than it executes with link stack prediction).

4.5.2 Position-Independent Code Example
Position-independent code is used when not all addresses are known at compile time or link time. Because 
performance is typically not good, position-independent code should be avoided when possible. The 
following example expands on the code sequence, which is described in Section 4.2.4.2, “Conditional 

Table 13. Link Stack Example

Instr.
No.

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12

0 lwzu r30, 4(r1) F1 F2 D I E0 E1 E2 C

1 lwzu r31, 4(r1) F1 F2 — D I E0 E1 E2 C

2 lwzu r5, 4(r1) F1 F2 — — D I E0 E1 E2 C

3 mtlr F1 F2 — D I — — — — — E C

4 bclr F1 F2 BE D

...

5 add r3,r3,r20 F1 F2 D I E — — — C
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Branch Control” in the Programming Environments for 32-Bit Implementations of the PowerPC 
Architecture.

Because a return (bclr) is never paired with this bcl (instruction 0), the MPC7450 takes two special actions 
when it recognizes this special form (“bcl 20,31,$+4”):

• Although the bcl does update the link register as architecturally required, it does not push the value 
onto the link stack. Not pairing a return with this bcl prevents the link stack from being corrupted, 
which would likely require a later branch mispredict for some later bclr.

• Because the branch has the same next instruction address whether it is taken or fall-through, the 
branch is forced as a fall-through branch. This avoids a potential branch-taken bubble and saves a 
cycle.

The instruction address is available for executing a subsequent operation (instruction 2, addi) in cycle 10, 
primarily due to the long latency of the execution serialized mflr. However, the data has to be transferred 
back to the BPU through the CTR register, which prevents the bcctr from executing until cycle 12, so its 
target instruction (5) cannot start execution until cycle 17.

Note that it is important that instructions 3 and 4 be a mtctr/bcctr pair rather than a mtlr/bclr pair. A bclr 
would try to use the link stack to predict the target address, which would almost certainly be an address 
mispredict. This would be even more costly than the 7-cycle branch execution stall for instruction 4 shown 
in this example. In addition, an address mispredict would require that the link stack be flushed, which 
would mean that bclr instructions that occur later in the program would have to stall rather than use the 
link stack address prediction. This would further degrade performance.

4.5.3 Computed Branch and Function Pointer Examples
Computed branches are used in switch statements with enough different entries to warrant a table-lookup 
approach (instead of creating a series of if-else tests). The following example shows a typical 
implementation of such a switch statement using the CTR register.

Source code in C:

switch(x){

Table 14. Position-Independent Code Example

Instr.
No.

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 bcl 20, 31, $+4 F1 F2 BE D C

1 mflr r2 F1 F2 — D I — E0 E1 E2 E3 F C

2 addi r2, r2,#constant F1 F2 — D I — — — — — E C

3 mtctr r2 F1 F2 — — D I — — — — — — — E C

4 bcctr F1 F2 — — — — — — — — — BE

...

5 add r3, r3, r20 F1 F2 D I E
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case 0: /* code for case 0. */
break;

case 1: /* code for case 1. */
break;

case 2: /* code for case 2. */
break;

...
default: /* code for default case. */

break;
}

Assume r6 holds the address of SWITCH_TABLE for the following assembly code:

lwz r4,x
slwi r4, r4, 2 # Multiply by 4 to create word index.
lwzx r5, r4, r6 # r5 = SWITCH_TABLE[r4].
mtctr r5 # Move r5 to CTR.
bctr # Perform indirect branch.

Function pointers and virtual function calls should also use the CTR for their indirection, to avoid 
corrupting the hardware link stack. The following example shows a typical indirect function call. Note that 
the CTR is used to hold the target address, and the link form of the branch (bctrl) is used to save the return 
address.

Source code in C:

extern int (*funcptr)();
...
a = funcptr();

Assume r9 holds the address of funcptr for the following assembly code:

lwz r0, 0(r9) # Load the value at funcptr.
mtctr r0 # Move it to the CTR.
bctrl # Perform indir. branch, save return address.

4.6 Branch Folding
Branches that do not set the LR or update the CTR are eligible for folding. In all three architectures, taken 
branches are folded immediately. For the MPC750 or the MPC7400, non-taken branches are folded at 
dispatch. In the MPC7450, not-taken branches cannot be fall-through folded if they are in IQ0–IQ2; 
however, branches are removed in the cycle after execution if they are in IQ3–IQ7.

5 Dispatch Considerations
The following is a list of resources required for MPC7450 to avoid stalls in the dispatch unit (IQ0–IQ2 are 
the three dispatch entries in the instruction queue):

• The appropriate issue queue is available.

• The CQ is not full.

• Previous instructions in the IQ must dispatch. For example, IQ0 must dispatch for IQ1 to be able 
to dispatch.

• Needed rename registers are available.
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The following sections describe how to optimize code for dispatch. 

5.1 Dispatch Groupings
MPC7450 can dispatch a maximum throughput of three instructions per cycle. The dispatch process 
includes a CQ available check, an issue queue available check, a branch ready check, and a rename check.

The dispatcher can send three instructions to the various issues queues, with a maximum of three to the 
GIQ, two to the VIQ, and one to the FIQ. Thus only two instructions can be dispatched per cycle to the 
AltiVec units (VIU1, VIU2, VPU, and VFPU). Only one FPU instruction can be dispatched per cycle, so 
three fadds take three cycles to dispatch.

The dispatcher also enforces a rule that only one load/store instruction can dispatch in any given cycle.

The dispatcher can rename as many as four GPRs, three VRs, and two FPRs per cycle, so a 
three-instruction dispatch window composed of vaddfp, vaddfp, and lvewx could be dispatched in one 
cycle.

Note that a load/store update form instruction (for example, lwzu), requires a GPR rename for the update. 
This means that an lwzu needs two GPR rename registers and an lfdu needs one FPU rename and one GPR 
rename. The possibility that one instruction may need two GPR rename registers means that even though 
the MPC7450 has a 16-entry CQ and 16 GPR rename registers, GPR rename registers could run out even 
though there is space in the CQ, as when eight lwzu instructions are in the CQ. Eight CQ entries are 
available, but because all 16 GPR rename registers are in use, no instruction needing a GPR target can be 
dispatched.The restriction of four GPR rename registers in a dispatch group means that the sequence lwzu, 
add, add can be dispatched in one cycle. The instruction pair lwzu, lwzu also uses four GPR rename 
registers and passes this rule but is disallowed by the rule that enforces a dispatch of only one load/store 
per cycle.

Table 15 contains a code example that shows a dispatch stall due to rename availability.

Table 15. Dispatch Stall Due to Rename Availability

Instr.
No.

Instruction 0 1 2 3 4 5 6 7 8 9 ... 25 26 27 28 29 30

0 divw  r4,r3,r2 F1 F2 D I E0 E1 E2 E3 E4 E5 ... E21 E22 C WB

1 lwzu r22,0x04(r1) F1 F2 D I E0 E1 E2 — — — ... — — C WB

2 lwzu r23,0x04(r1) F1 F2 — D I E0 E1 E2 — — ... — — — C WB

3 lwzu r24,0x04(r1) F1 F2 — — D I E0 E1 E2 — ... — — — — C WB

4 lwzu r25,0x04(r1) F1 F2 — — D I E0 E1 E2 ... — — — — — C

5 lwzu r26,0x04(r1) F1 F2 — — — D I E0 E1 ... — — — — —

6 lwzu r27,0x04(r1) F1 F2 — — — — D I E0 ... — — — — —

7 lwzu r28,0x04(r1) F1 F2 — — — — — D I ... — — — — —

8 lwzu r29,0x04(r1) F1 F2 — — — — — — ... — — — — D I



MPC7450 RISC Microprocessor Family Software Optimization Guide, Rev. 2

28 Freescale Semiconductor
 

Dispatch Considerations

Instruction 8 stalls in cycle 9 because it needs 2 rename registers, and 15 rename registers are in use (1 for 
the divw, and 2 each for instructions 1 through 7). Since only 16 GPR rename registers are allowed, 
instruction 8 cannot be dispatched until at least one rename is released.

When the div later completes (cycle 27 in example above), rename registers are released during the 
write-back stage, and instruction 8 can thus dispatch in cycle 29.

Note that this code uses lwzu instructions, which require two rename registers, only to shorten the 
contrived code example. In general, sequences of lwzu instructions should be avoided for performance 
reasons, since they throttle dispatch to one lwzu instruction per cycle and completion to two lwzu 
instructions per cycle.

5.2 Dispatching Load/Store Strings and Multiples 
The MPC7450 splits load/store multiple instructions (lmw and stmw) and strings (lsw and stsw) into 
micro-operations at the dispatch point. The processor can dispatch only one micro-operation per cycle, 
which does not use the dispatcher to its full advantage. Using load/store multiple instructions is best 
restricted to cases where minimizing code size is critical or where there are no other available instructions 
to be scheduled, such that the under-utilization of the dispatcher is not a consideration.

Consider the following assembly instruction sequence:

0  lmw  r25,0x00(r1)
1  addi r25,r25,0x01
2  addi r26,r26,0x01
3  addi r27,r27,0x01
4  addi r28,r28,0x01
5  addi r29,r29,0x01
6  addi r30,r30,0x01
7  addi r31,r31,0x01   

The load multiple instruction specified with register 25 loads registers 25–31. The MPC7450 splits this 
instruction into seven micro-operations at dispatch, after which the lmw executes as multiple operations, 
as Table 16 shows. 

Table 16. Load/Store Multiple Micro-Operation Generation Example

Instr.
No.

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0–0 lmw r25,0x00(r1) F1 F2 D I E0 E1 E2 C

0–1 lmw r26,0x04(r1) F1 F2 — D I E0 E1 E2 C

0–2 lmw r27,0x08(r1) F1 F2 — — D I E0 E1 E2 C

0–3 lmw r28,0x0C(r1) F1 F2 — — — D I E0 E1 E2 C

0–4 lmw r29,0x10(r1) F1 F2 — — — — D I E0 E1 E2 C

0–5 lmw r30,0x14(r1) F1 F2 — — — — — D I E0 E1 E2 C

0–6 lmw r31,0x1C(r1) F1 F2 — — — — — — D I E0 E1 E2 C

1 addi r25,r25,0x01 F1 F2 — — — — — — D I E — — C

2 addi r26,r26,0x01 F1 F2 — — — — — — D I E — — C
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Because the MPC7450 can dispatch only one LSU operation per cycle, the lmw is micro-oped at a rate of 
one per cycle and so in this example takes seven cycles to dispatch all the operations. However, when the 
last operation in the multiple is dispatched (cycle 8), instructions 1 and 2 can dispatch along with it.

The use of load/store string instructions is strongly discouraged.

6 Issue Queue Considerations
Instructions cannot be issued unless the specified execution unit is available. The following sections 
describe how to optimize use of the three issue queues.

6.1 General-Purpose Issue Queue (GIQ)
As many as three instructions can be dispatched to the six-entry GPR issue queue (GIQ) per cycle. As 
many as three instructions can be issued in any order to the LSU, IU2, and IU1 reservation stations from 
the bottom three GIQ entries.

Issuing instructions out-of-order can help in a number of situations. For example, if the IU2 is busy and a 
multiply is stalled at the bottom GIQ entry (unable to issue because both IU2 reservation stations are being 
used), instructions in the next two GIQ entries can be issued to LSU or IU1s, bypassing that multiply. 

The following sequence is not well scheduled, but effectively, the MPC7450 micro-architecture 
dynamically reschedules around the potential multiply bottleneck.

0 xxxxxx00 mulhw r10,r20,r21
1 xxxxxx04 mulhw r11,r22,r23
2 xxxxxx08 mulhw r12,r24,r25
3 xxxxxx0C lwzu r13,0x4(r9)
4 xxxxxx10 add r10,r10,r11
5 xxxxxx14 add r13,r13,r25
6 xxxxxx18 add r14,r5,r4
7 xxxxxx20 subf r15,r6,r4

Table 17 shows the timing for the instruction in GIQ entries. Instruction 3 issues out-of-order in cycle 2; 
instructions 4 and 5 issue out-of-order in cycle 3.

Note that instruction 7 (subf) does not issue in cycle 4 because all three IU1 reservation stations have an 
instruction (4, 5, and 6). Instructions 4 and 5 are waiting in the reservation station for their source registers 

3 addi r27,r27,0x01 F1 F2 — — — — — — — D I E — — C

4 addi r28,r28,0x01 F1 F2 — — — — — — D I E — — C

5 addi r29,r29,0x01 F1 F2 — — — — — — D I E — — C

6 addi r30,r30,0x01 F1 F2 — — — — — — — D I E — — C

7 addi r31,r31,0x01 F1 F2 — — — — — — — D I — E — C

Table 16. Load/Store Multiple Micro-Operation Generation Example (continued)

Instr.
No.

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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to be forwarded from the IU2 and LSU, respectively. Because instruction 6 executes immediately after 
issue (in cycle 5), instruction 7 can issue in that cycle.

Similar examples could also be given for loads bypassing adds and multiplies bypassing loads. However, 
the ability to use out-of-order instructions is mostly across functional units and is extended somewhat for 
integer instructions beyond the functionality provided by MPC750 and MPC7400 processors.

6.2 Vector Issue Queue (VIQ)
The four-entry vector issue queue (VIQ) handles all AltiVec computational instructions. Two instructions 
can dispatch to it per cycle, and it can issue two instructions in-order per cycle from its bottom two entries 
if reservation stations are available. The primary check is that a reservation station must be available. 

NOTE

On the MPC7450, the VIQ can issue to any two vector units, as opposed to 
the MPC7400, which only allows pairing between VPU and one other unit.

Table 18 shows two cases where a vector add and a vector multiply-add (vmsummbm) start execution 
simultaneously (cycles 2 and 3). Note that the load-vector instructions go to the GIQ because its address 
source operands (rA and rB) are GPRs. This example also shows the MPC7450 ability to dispatch three 
instructions with vector targets in a cycle (cycles 0 and 1) as well as to retire three instructions with vector 
targets (cycle 7).

Table 17. GIQ Timing Example

Instr.
No.

Instruction 0 1 2 3 4 5 6 7 8 9 10 11

0 mulhw D I E0 E0 E1 F C

1 mulhw D — I — E0 E0 E1 F C

2 mulhw D — — — I — E0 E0 E1 F C

3 lwzu — D I E0 E1 E2 — — — — C

4 add F2 D — I — — — E — — C

5 add F2 D — — — — E — — — — C

6 add F2 — D — I E — — — — — C

7 subf F2 — — D — I E — — — — C

GIQ5

GIQ4 5

GIQ3 4 6

GIQ2 2 3 5 7

GIQ1 1 2 4 6

GIQ0 0 1 2 2 7
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6.3 Floating-Point Issue Queue (FIQ)
The two-entry floating-point issue queue (FIQ) can accept one dispatched instruction per cycle, and if an 
FPU reservation station is available, it can also issue one instruction from the bottom FIQ entry.

7 Completion Queue
The following sections describe the conditions for the completion queue such as the re-order sizing, how 
the instruction sequence is grouped, and the effects of serialization.

7.1 Reorder Size
The completion queue size on the MPC7450 is 16 entries. This means that up to 16 instructions can be in 
the execution window, not counting branches, which execute from the instruction buffer.

7.2 Completion Groupings
The MPC7450 can retire up to three instructions per cycle. Only three rename registers of a given type can 
be retired per cycle. For example, an lwzu, add, subf sequence has four GPR rename targets, which cannot 
all retire in the same cycle. The lwzu and add retire first, and subf retires one cycle later. 

7.3 Serialization Effects
The MPC7450 supports refetch, execution, and store serialization. Store serialization is described in 
Section 9.4, “Store Hit Pipeline.” 

Refetch serialized instructions include isync, rfi, sc, mtspr[XER], and any instruction that toggles 
XER[SO]. Refetch serialization forces a pipeline flush when the instruction is the oldest in the machine. 
These instructions should be avoided in performance-critical code.

Note that XER[SO] is a sticky bit for XER[OV] updates, so avoiding toggling XER[SO] often means 
avoiding these instructions (overflow-record, O form).

Execution-serialized instructions wait until the instruction is the oldest in the machine to begin executing. 
Tables in Appendix A, “MPC7450 Execution Latencies,” list execution-serialized instructions, which 
include mtspr, mfspr, CR logical instructions, and carry consuming instructions (such as adde).

Table 18. VIQ Timing Example 

Instruction 0 1 2 3 4 5 6 7

vaddshs v20,v24,v25 D I E F C

vmsummbm v10,v11,v12,v13 D I E0 E1 E2 E3 C

lvewx v5,r5,r9 D I E0 E1 E2 — C

vmsummbm v11,v11,v14,v15 — D I E0 E1 E2 E3 C

vaddshs v21,v26,v27 D I E F — — C

lvewx v5,r6,r9 D I E0 E1 E2 — C
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Table 19 shows the execution of a carry chain. The addc executes normally and generates a carry. As an 
execution-serialized instruction, adde must become the oldest instruction (cycle 4) before it can execute 
(cycle 5). A long chain of carry generation/carry consumption can execute at a rate of one instruction every 
three cycles.

8 Numeric Execution Units
The following sections describes how to optimize the use of the execution units. 

8.1 IU1 Considerations
Each of the three IU1s has one reservation station in which instructions are held until operands are 
available. The IU1s allow a potentially large window for out-of-order execution. IU1 instructions can 
progress until three IU1 instructions are stuck in the three reservation stations, requiring operands (or until 
the GIQ or dispatcher stalls for other reasons). Table 17 shows a case where although two IU1s are 
blocked, the third makes progress. Also note that some IU1 instructions take more than one cycle and that 
some are not fully pipelined. The most common 2-cycle instructions are sraw and srawi. 

The following instructions are not fully pipelined when their record bit is set: extsb, extsh, rlwimi, 
rlwinm, rlwnm, slw, and srw. These instructions return GPR data after the first cycle but continue 
executing into a second cycle to generate the CR result.

Table 20 shows sraw, extsh, and extsh. latency effects. The two sraw instructions both take 2 cycles of 
execution, blocking the extsh/extsh. pair from issuing until cycle 3 but allowing the dependent add to 
execute in cycle 3 (see Table 46, footnote 3). Note that extsh. takes two cycles to execute but that the 
dependent subf can pick up the forwarded GPR value after the first cycle of execution (cycle 4) and 
execute in cycle 5.

Table 19. Serialization Example 

Instruction 0 1 2 3 4 5 6

addc r11,r21,r23 D I E C

adde r10,r20,r22 D I — — — E C

Table 20. IU1 Timing Example

Instruction 0 1 2 3 4 5 6

sraw r1,r20,r21 D I E E C

sraw r2,r20,r22 D I E E C

add r4,r2,r3 D I — E C

extsh r5,r25, F2 D — I E C

extsh. r6,r26 F2 D — I E E C

subf r7,r5,r6 F2 D — I — E C
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8.2 IU2 Considerations
The IU2 has two reservation station entries. Instruction execution is allowed only from the bottom station. 
Although mtctr/mtlr instructions are execution serialized, if data is available, their values are forwarded 
to the BPU as soon as they are in the bottom reservation station.

Divides, mulhwu, mulhw, and mull are not fully pipelined; they iterate in execution stage 0 and block 
other instructions from entering reservation station 0. For example, in Table 17, the second multiply issues 
to IU2 in cycle 2. Because the first multiply still occupies reservation station 0, the second is issued to 
reservation station 1. When the first multiply enters E1, the second moves down to reservation station 0 
and begins execution.

Note that the IU2 takes an extra cycle beyond the latencies listed in Table 46 to return CR data and finish. 
This implies that, as the example in Section 6.1, “General-Purpose Issue Queue (GIQ),” shows, a 3-cycle 
instruction such as mulhw requires a separate finish stage, even though GPR data is still forwarded and 
used after three execution cycles. In the previous example, instruction 4 executes in cycle 7, the cycle after 
the dependent instruction 2 progressed through its third execution stage.

9 FPU Considerations
The FPU has two reservation station entries. Instruction execution is allowed only from the bottom 
reservation station (reservation station 0).

Like the IU2, the FPU requires a separate finish stage to return CR and FPSCR data, as shown in Table 21. 
However, FPR data produced in E4 (the fifth stage) is ready and can be forwarded directly (if needed) to 
an instruction entering E0 in the next cycle.

The five-stage scalar FPU pipeline has a 5-cycle latency. However, when the pipeline contains instructions 
in stages E0–E3, the pipeline stalls and does not allow a new instruction to start in E0 on the following 
cycle. This bubble limits maximum FPU throughput to four instructions every five cycles, as the following 
code example shows:

xxxxxx00 fadd f10,f20,f21
xxxxxx04 fadd f11,f20,f22
xxxxxx08 fadd f12,f20,f23
xxxxxx0C fadd f13,f20,f24
xxxxxx10 fadd f14,f20,f25
xxxxxx14 fadd f15,f20,f26
xxxxxx18 fadd f16,f20,f27
xxxxxx1C fadd f17,f20,f28
xxxxxx20 fadd f18,f20,f29

Table 21 shows the timing for this sequence. 

Table 21. FPU Timing Example

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

fadd D I E0 E1 E2 E3 E4 F C

fadd — D I E0 E1 E2 E3 E4 F C

fadd — — D I E0 E1 E2 E3 E4 F C
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The FPU is also constrained by the number of FPSCR rename registers. The MPC7450 supports four 
outstanding FPSCR updates. An FPSCR is allocated in the E3 FPU stage and deallocated at completion. 
If no FPSCR rename is available, the FPU pipeline stalls. A fully pipelined case such as that in Table 21 
is not affected, but if something blocks completion it can become a bottleneck. Consider the following 
code example:

xxxxxx00l fdu f3,0x8(r9)
xxxxxx04 fadd f11,f20,f22
xxxxxx08 fadd f12,f20,f23
xxxxxx0C fadd f13,f20,f24
xxxxxx10 fadd f14,f20,f25
xxxxxx14 fadd f15,f20,f26
xxxxxx18 fadd f16,f20,f27
xxxxxx1C fadd f17,f20,f28
xxxxxx20 fadd f18,f20,f29

The timing for this sequence in Table 22 assumes that the load misses in the data cache. Here, after the first 
four fadds, the MPC7450 runs out of FPSCR rename registers and the pipeline stalls. When the load 
completes, the pipeline restarts after an additional 2-cycle lag.

Note that denormalized numbers can cause problems for the FPU pipeline, so the normal latencies in 
Table 47 may not apply. Output denormalization in the very unlikely worst case can add as many as three 

fadd — — — D I E0 E1 E2 E3 E4 F C

fadd F2 — — — D I — E0 E1 E2 E3 E4 F C

fadd F2 — — — — D — I E0 E1 E2 E3 E4 F C

fadd F2 — — — — — D — I E0 E1 E2 E3 E4 F C

fadd F2 — — — — — — — D I E0 E1 E2 E3 E4 F C

fadd F1 F2 — — — — — — — D I — E0 E1 E2 E3 E4

Table 22. FPSCR Rename Timing Example

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lfdu D I E0 E1 C

fadd D I E0 E1 E2 E3 E4 F — — — — C

fadd — D I E0 E1 E2 E3 E4 F — — — C

fadd — — D I E0 E1 E2 E3 E4 F — — — C

fadd F2 — — D I E0 E1 E2 E3 E4 F — — C

fadd F2 — — — D I — E0 E1 E2 E3 E4 E4 E4 E4 F

fadd F2 — — — — D — I E0 E1 E2 E3 E3 E3 E3 E4

fadd F2 — — — — — D — I E0 E1 E2 E2 E2 E2 E3

fadd F1 F2 — — — — — — D I E0 E1 E1 E1 E1 E2

Table 21. FPU Timing Example (continued)

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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cycles of latency. Input denormalization takes four to six additional cycles, depending on whether one, 
two, or three input source operands are denormalized.

9.1 Vector Units
On the MPC7450, the four vector execution units are fully independent and fully pipelined. Table 23 
shows the latencies.

VFPU latency is usually four cycles, but some instructions, particularly the vector float compares and 
vector float min/max (see Table 49 to Table 52 for a list) have only a 2-cycle latency. This can create 
competition for the VFPU register forwarding bus. This is solved by forcing a partial stall when a bypass 
is needed. Consider the following code example:

xxxxxx20 vaddfp v10,v11,v12
xxxxxx24 vsubfp v11,v14,v13
xxxxxx28 vaddfp v12,v13,v14
xxxxxx2C vcmpbfp. v13,v18,v19
xxxxxx30 vmaddfp v14,v20,v21,v14

Table 24 shows the timing for this vector compare bypass/stall situation. In cycle 6 the vcmp bypasses 
from E0 to E3, stalling the vsubfp and vlogefp for a cycle in stages E1 and E2. Note that an instruction in 
E1 stalls in E1 under a bypass scenario even if no instruction is in E2.

9.2 Load/Store Unit (LSU)
The LSU has two reservation stations. Instruction execution is allowed only from the bottom reservation 
station (reservation station 0). The 32-Kbyte, 8-way data cache has a cache line size of 32 bytes. The 
replacement algorithm is pseudo-LRU (PLRU). The LSU on the MPC7450 is different from prior designs 
in many ways. The most critical is that load latencies are now one (or two for load-float) cycle longer than 
in previous microprocessors. 

Table 23. Vector Execution Latency Summary

Unit Typical Latency

VIU1 1

VIU2 4

VFPU 4

VPU 2

Table 24. Vector Unit Example

Instruction 0 1 2 3 4 5 6 7 8 9 10

vaddfp D I E0 E1 E2 E3 C

vsubfp D — I E0 E1 E2 E2 E3 C

vlogefp — D — I E0 E1 E1 E2 E3 C

vcmpbfp. — D — — I E0 E3 — — C

vmaddfp F2 — D — — I E0 E1 E2 E3 C
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9.3 Load Hit Pipeline
The following code sequence shows the various normal load latencies: 

xxxxxx00 lfdu f3,0x8(r10)
xxxxxx04 fadd f1,f3,f4
xxxxxx08 lwzu r3,0x4(r11)
xxxxxx0C add r1,r3,r4
xxxxxx10 subf r5,r11,r6
xxxxxx14 lvewx v3,r12,r13
xxxxxx18 vaddsws v1,v3,v4

As Table 25 shows, the load-floating-point latency is four cycles, and the load-integer and load-vector 
latency are each three cycles. Although the load has a 4-cycle latency, it also completes on that fourth 
cycle. The update has an effective latency of one. The lwzu forwards its update target R11 from E0 in cycle 
3 to the subf instruction, such that it executes in cycle 4.

9.4 Store Hit Pipeline
The pipeline for stores before the data is written to the cache includes several different queues. A store 
instruction must go through E0 and E1 to handle address generation and translation. It is then placed in the 
three-entry finished store queue (FSQ). When the store is the oldest instruction, it can access the store data 
and update architecture-defined resources (store serialization). From this point on, the store is considered 
part of the architectural state.

However, before the data reaches the data cache, two write-back stages (WB0 and WB1) are needed to 
acquire the store data and transfer it from the FSQ to the 5-entry committed store queue (CSQ). Arbitration 
into the data cache from the CSQ is pipelined so a throughput of one store per cycle can be maintained. 
During this arbitration and cache write, stores arbitrate into the data cache from the CSQ and stay there for 
at least four cycles. Table 26 shows the pipelining of four stw instructions to the data cache.

Table 25. Load Hit Pipeline Example

Instr.
No.

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 lfdu D I E0 E1 E2 E3/C

1 fadd D I — — — — E0 E1 E2 E3 E4 F C

2 lwzu — D I E0 E1 E2 — — — — — — C

3 add — D I — — — E — — — — — C

4 subf F2 D I — E — — — — — — — — C

5 lvewx F2 — D I E0 E1 E2 — — — — — — C

6 vaddsws F2 — D I — — — E F — — — — C

Table 26.  Store Hit Pipeline Example 

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13

stw D I E0 E1 FSQ0/C WB0 WB1 CSQ0 CSQ0 CSQ0 CSQ0

stw — D I E0 E1 FSQ0/C WB0 WB1 CSQ1 CSQ1 CSQ1 CSQ0



MPC7450 RISC Microprocessor Family Software Optimization Guide, Rev. 2

Freescale Semiconductor 37
 

FPU Considerations

Because floating-point stores are not fully pipelined, the bottleneck is at the FSQ, where only one 
floating-point store can be executed every 3 cycles. See Table 27 for an example execution of four stfd 
instructions. Vector stores do not have this problem and are fully pipelined (similar to the integer stores as 
shown in Table 26).

To avoid floating-point store throughput bottlenecks, strings of back-to-back floating-point stores (like 
that shown in Table 27) should be avoided. Instead, floating-point stores should be mixed with other 
instructions wherever possible. For maximum store throughput, vector stores should be used.

9.5 Store Gathering and Merging
The MPC7450 implements two techniques to improve store performance by coalescing adjacent entries in 
the CSQ. Store gathering refers to coalescing adjacent cache-inhibited or write-through stores; store 
merging refers to coalescing adjacent cacheable write-back stores. Note that these two techniques are used 
only when the bottom CSQ entry is processing a cache miss or sending a store request to the memory 
subsystem. In such a situation, the bottom entry itself is not eligible for any coalescing operations, but all 
other CSQ entries are examined.

The throughput of cache-inhibited or write-through stores is usually limited by the system address bus 
bandwidth. With store gathering enabled (HID0[SGE] = 1), cache-inhibited or write-through stores may 
be combined into larger transactions. If the bottom entry of the CSQ is processing a cacheable store miss 
or sending a store request on to the memory subsystem, the processor examines the remaining CSQ entries 
for store gathering. Any set of adjacent entries in the CSQ are gathered into one transaction if they are 
aligned, the same size, to the same or adjacent addresses, either cache-inhibited or write-through, and the 

stw — — D I E0 E1 FSQ0/C WB0 WB1 CSQ2 CSQ2 CSQ1 CSQ0

stw — — — D I E0 E1 FSQ0/C WB0 WB1 CSQ3 CSQ2 CSQ1 CSQ0

Table 27.  Execution of Four stfd Instructions

Instr.
No.

Instruction
Cycle Number

0 1 2 3 4 5 6 7 8 9

0 stfd D I E0 E1 FSQ0/C WB0 WB1 CSQ0 CSQ0 CSQ0

1 stfd — D I E0 E1 FSQ0 FSQ0 FSQ0/C WB0 WB1

2 stfd — — D I E0 E1 FSQ1 FSQ1 FSQ0 FSQ0

3 stfd — — — D I E0 E1 FSQ2 FSQ1 FSQ1

10 11 12 13 14 15 16 17 18 19

0 stfd CSQ0

1 stfd CSQ1 CSQ0 CSQ0 CSQ0

2 stfd FSQ0/C WB0 WB1 CSQ1 CSQ0 CSQ0 CSQ0

3 stfd FSQ1 FSQ0 FSQ0 FSQ0/C WB0 WB1 CSQ1 CSQ0 CSQ0 CSQ0

Table 26.  Store Hit Pipeline Example  (continued)

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13
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result is aligned. When the MPC7450 is on a system bus supporting the MPX protocol, this gathering may 
continue up to a 32-byte store request. On a 60x bus, the MPC7450 does not gather beyond a 64-bit 
transaction. Under ideal conditions, a stream of write-through or cache-inhibited stores to sequential 
addresses reduces store transactions on the system bus by a factor of four. Note that cache-inhibited 
guarded stores are never gathered.

The throughput of cacheable stores that miss in the L1 is limited by the latency to the L2 or L3 caches and 
the memory latency. When store gathering is enabled (HID0[SGE] = 1), cacheable write-back stores may 
also be combined. If the bottom entry of the CSQ is processing a cacheable store miss or sending a store 
request to the memory subsystem, any other adjacent entries in the CSQ are merged into one transaction 
if they are both to the same 32-byte granule, are both cacheable and write-back, and are waiting to access 
the L1 or have already missed in the L1 cache. For store merging, the size and alignment restrictions are 
relaxed, because cacheable stores are always performed by writing bytes to the L1 (if the data L1 hits) or 
merging bytes with reload data (if the data L1 misses).

9.6 Load/Store Interaction
When loads and stores are intermixed, the stores normally lose arbitration to the cache. A store that 
repeatedly loses arbitration can stay in the CSQ much longer than four cycles, which is not normally a 
performance problem because a store in the CSQ is effectively part of the architecture-defined state. 
However, sometimes—including if the CSQ fills up or if a store causes a pipeline stall (as in a partial 
address alias case of store to load)—the arbiter gives higher priority to the store, guaranteeing forward 
progress.

Also, accesses to the data cache are pipelined (two stages) such that back-to-back loads and back-to-back 
stores are fully pipelined (single-cycle throughput). However, a store followed by a load cannot be 
performed in subsequent clock cycles. Loads have higher priority than stores, and the LSU store queues 
stage store operations until a cache cycle is available. When the LSU store queues become full, stores take 
priority over subsequent loads.

From an architectural perspective, when a load address aliases to a store address the load needs to read the 
store data rather than the data in the cache. A store can forward only after acquiring its data, which means 
forwarding happens only from the CSQ. Additionally, the load address and size must be contained within 
the store address and size for store forwarding to occur. If the alias is only a partial alias (for example a stb 
and a lwz) the load stalls. Table 28 shows a forwardable load/store alias, where the load stalls in E1 for 
three cycles until the store arrives in CSQ0 and can forward its data.

9.7 Misalignment Effects
Misalignment, particularly the back-to-back misalignment of loads, can cause negative performance 
effects. The MPC7450 splits misaligned transactions into two transactions, so misaligned load latency is 
at least one cycle longer than the default latency. On the MPC7450, misalignment typically occurs when 

Table 28. Load/Store Interaction (Assuming Full Alias)

Instruction 0 1 2 3 4 5 6 7 8

stw r3,0x0(r9) E0 E1 FSQ0/C WB0 WB1 CSQ0 CSQ0 CSQ0 CSQ0

lwz r4,0x0(r9) I E0 E1 E1 E1 E1 E2 C
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an access crosses a double-word boundary. Table 29 shows what is considered misaligned based on the EA 
of the access. Accesses marked as misaligned are split into two transactions and incur an extra cycle of 
latency. Accesses that are not marked are considered aligned. Note that vector transactions ignore 
non-size-aligned low-order address bits and so are considered aligned.

Future generations of high-performance microprocessors that implement the PowerPC architecture may 
experience greater misalignment penalties.

9.8 Load Miss Pipeline
The MPC7450 supports as many as five outstanding load misses in the load miss queue (LMQ). Table 30 
shows a load followed by a dependent add. Here, the load misses in the data cache, and the full line is 
reloaded from the L2 cache back into the data cache. The load L2 cache hit latency is effectively nine 
cycles.

 

If a load misses in the L1 data cache and in the L2 data cache, critical data forwarding occurs, followed 
shortly by the rest of the line. The following example shows that the load L3 cache hit latency is effectively 
33 cycles. The following L3 parameters are assumed for the example in Table 31:

• DDR SRAM at 4:1 L3 bus ratio 

Table 29. Misaligned Load/Store Detection

Size in Bytes 1 2 4 8 16

EA[29–31] Byte Half Word Integer
Multiple-Integer

(lmw/stmw)
Floating-Point

Single
Floating-Point

Double
 Bus!=60x

000 — — — — — — —

001 — — — Alignment
exception

Alignment
exception

Alignment
exception

Align to QW

010 — — — Alignment
exception

Alignment
exception

Alignment
exception

Align to QW

011 — — — Alignment
exception

Alignment 
exception

Alignment
exception

Align to QW

100 — — — — — Misaligned Align to QW

101 — — Misaligned Alignment
exception

Alignment
exception

Alignment
exception

Align to QW

110 — — Misaligned Alignment
exception

Alignment
exception

Alignment
exception

Align to QW

111 — Misaligned Misaligned Alignment
exception

Alignment
exception

Alignment
exception

Align to QW

Table 30. Data Cache Miss, L2 Cache Hit Timing 

Instruction 0 1 2 3–7 8 9 10

lwz r4,0x0(r9) E0 E1 Miss LMQ0 LMQ0/E2 C

add r5,r4,r3 — — — — — E C
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• L3 clock sample point is 5 clocks

• L3 processor-clock sample point is 0 clocks

Note that the LMQ0 entry for the load remained allocated for four cycles after the critical data arrived in 
cycle 32. This is because with a 4:1 DDR SRAM, there is a 4-cycle gap between critical data and full line 
data, and the LMQ entry is only deallocated when the full line has returned.

If a load/store miss aliases to the same line as a previously outstanding miss, the LSU halts new access 
until this stall condition is resolved. The following example contains a series of loads, where the data starts 
in the L3 cache, with the L3 cache configured similarly to the example in Table 31.

Note that instruction 2 stalls in stage E1 (in the RA latch in Table 32). This stall occurs because the line 
miss caused by instruction 0 is the same line that instruction 2 requires. Instruction 2 does not finish 
execution until cycle 40 (that is, eight cycles after instruction 0). This delay is due to two major 
components. The first delay component is that instruction 0 finished by using critical forwarded data, 
whereas instruction 2 must wait for the full cache line to appear before it can start execution (a 4-cycle 
delay, in this example). The second delay component is also due to the cache being updated and the 
occurrence of a pipeline restart condition.

Table 31. Data Cache Miss, L2 Cache Miss, L3 Cache Hit Timing

Instruction 0 1 2 3–31 32 33 34 35–36

 lwz r4,0x0(r9) E0 E1 Miss  LMQ0 LMQ0/E2 LMQ0/C LMQ0 LMQ0 

 add r5,r4,r3 E C

Table 32. Load Miss Line Alias Example

Cycle Number

Instr.
No.

Instruction 0 1 2 3–31 32 33 34 35–36

0 lwz r3,0x0(r9) E0 E1 Miss LMQ0 LMQ0/E2  LMQ0/C LMQ0 LMQ0

1 add r4,r3,r20 E C

2 lwz r5,0x4(r9) I E0 E1 E1 E1 E1 E1 E1

3 add r6,r5,r4 I

4 lwz r7,0x20(r9) D I E0 E0 E0 E0 E0 E0

5  add r8,r7,r6 D I

37–39 40 41 42 43–61 62 63 64

0 lwz r3,0x0(r9)

1 add r4,r3,r20

2 lwz r5,0x4(r9) E1 E2 C

3 add r6,r5,r4 E C

4 lwz r7,0x20(r9) E0 E1 Miss LMQ0 LMQ0 LMQ0/E2 LMQ0/C LMQ0

5  add r8,r7,r6 E C
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The second issue that this example shows is that the misses are not fully pipelined. Instructions 0 and 4 
miss in the data cache and L2 cache but hit in the L3 cache. The stall caused by the line miss alias between 
instructions 0 and 2 has caused the miss for instruction 4 to delay its access start by many cycles. A simple 
reordering of the code, as shown in the following example, allows the two load misses to pipeline to the 
L3 cache, improving performance by nearly 50 percent.

This type of stall is common in some code examples, including simple data streaming or striding array 
accesses. For example, a long stream of vector loads with addresses incrementing by 16 bytes (a quad 
word) per load results in every other load stalled in this manner, and no miss pipelining occurs. This stall 
causes an even larger performance bottleneck when cache misses are required to go to the system bus and 
when missed opportunities to pipeline system bus misses occur. This performance problem can be solved 
by code reordering as shown in Table 33 or by the use of prefetch instructions (dcbt or dst).

The MPC7450 performs back-end allocation of the L1 data cache, which means that it selects the line 
replacement (and pushes to the six-entry castout queue as needed) only when a cache reload returns. 
Because any new miss transaction may later require a castout, a new miss is not released to the memory 
subsystem until a castout queue slot is guaranteed.

9.9 DST Instructions and the Vector Touch Engine (VTE)
The MPC7450 VTE engine is similar to that on the MPC7400 but can only initiate an access every three 
cycles rather than two. However, due to miss-handling differences described in Section 9.8, “Load Miss 
Pipeline,” the engine may fall behind and conflict with the processor work. Therefore, retuning the dst may 
be necessary to optimize MPC7450 performance as compared to the MPC7400.

Table 33. Load Miss Line Alias Example With Reordered Code

Cycle Number

Instr.
No. Instruction 0 1 2 3 4–31 32 33

0 lwz r3,0x0(r9) E0 E1 Miss LMQ0 LMQ0 LMQ0/E2 LMQ0/C 

1 add r4,r3,r20 E

2 lwz r7,0x20(r9) I E0 E1 Miss LMQ1 LMQ1 LMQ1

3 lwz r5,0x4(r9) D I E0 E1 E1 E1 E1

4 add r6,r5,r4 D I

5 add r8,r7,r6 D I

34 35–36 37–39 40 41 42 43

0 lwz r3,0x0(r9) LMQ0 LMQ0

1 add r4,r3,r20 C

2 lwz r7,0x20(r9)  LMQ1 LMQ1 LMQ1 LMQ1 LMQ1/E2 LMQ1/C  LMQ1

3 lwz r5,0x4(r9) E1 E1 E1 E2 C

4 add r6,r5,r4 E C

5 add r8,r7,r6 E C
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Also, note the information on hardware prefetching in Section 10.4, “Hardware Prefetching.” Although 
hardware prefetching is useful for many general-purpose applications, it may not be the best choice when 
active prefetch control through software is attempted. Hardware prefetching can sometimes interfere with 
the dst engine’s attempt to keep the bus busy with specific prefetch transactions, especially for dst strides 
larger than one cache block or transient dst operations. Experimentation is encouraged, but in this instance 
the best solution may be to disable hardware prefetching.

10 Memory Subsystem (MSS)
The three-level cache implementation affects instruction fetching and the loading and storing of source and 
destination operands, as described in the following sections.

10.1 I/O Access Ordering
The MPC7450 follows the PowerPC architecture in ordering all cache-inhibited guarded loads with 
respect to other cache-inhibited guarded loads. It also orders cache-inhibited guarded stores with respect 
to other cache-inhibited guarded stores and all stores with respect to earlier loads. Cache-inhibited guarded 
loads are normally only ordered with previous cache-inhibited guarded stores if they are to overlapping 
addresses. The eieio instruction forces ordering of cache-inhibited guarded loads with previous 
cache-inhibited guarded stores to different addresses. The best performance of sequences of 
cache-inhibited and guarded ordered accesses is gained when stores are grouped, and a single eieio 
instruction is then used to form a barrier between the group of stores and any subsequent load.

10.2 L2 Cache Effects 
The unified 256-Kbyte on-chip L2 cache has 8-way set associativity and 64-byte lines (with two 
sectors/lines). This implies 4096 lines (256 K/64) and 512 sets (256 Kbyte/64/8). Each line has two sectors 
with one tag per line but separate valid and dirty bits for each sector. Because of the sectoring, code uses 
more of the L2 storage if the spatial locality is characterized by the use of the adjacent 32-byte line.

A load that misses in the L1 but hits in the L2 causes a full line reload. Its latency is ideally nine cycles 
(six more than for an L1 hit), assuming no other higher priority L2 traffic. See Table 30.

An access missing in the L2 goes to the L3 or main memory bus to fetch the needed 32-byte sector.

The L2 cache uses a pseudo-random replacement algorithm. With 8-way set associativity, a miss randomly 
replaces one of eight ways. This works well for smaller working set sizes, but for working set sizes close 
to the size of the cache, the hit rate is not quite as good. Imagine a 64-Kbyte array structure and a byte 
striding access pattern that loops over the array several times. The access of the first 32 Kbytes 
(256-Kbyte/8-way) will miss and load correctly, but the second 32 Kbytes has a one in eight chance per 
set of thrashing with an index of the first 32 Kbytes. This means that the first pass will probabilistically 
leave 93.75 percent of the 64-Kbyte structure in the L2 cache, and a second pass through the 64-Kbyte will 
probabilistically leave 99.8 percent of the 64-Kbyte structure in the L2 cache.

For a 128-Kbyte object, 82.8 percent is left in the L2 cache after one pass, but for a 256-Kbyte object only 
slightly less than two-thirds of the structure is left in the L2 cache. However, in both cases the percentage 
of the structure left in improves with subsequent strides through the data structure.
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10.3 L3 Cache Effects
The L3 cache is an off-chip SRAM with on-chip cache tags. The MPC7450 supports 1- and 2-Mbyte L3 
caches. A 1-Mbyte cache is two-sectored (64-byte lines), and a 2-Mbyte cache is 4-sectored (128-byte 
lines). The L3 is 8-way set associative, implying 16,384 lines (1-Mbyte/64 or 2-Mbyte/128) or 2,048 sets 
(1-Mbyte/64/8 or 2-Mbyte/128/8).

An access missing in the L3 fetches the required 32-byte sector regardless of the L3 line size. Like the L2, 
the L3 uses a random replacement algorithm, the implications of which are described in Section 10.2, “L2 
Cache Effects.”

10.4 Hardware Prefetching
The MPC7450 supports alternate sector prefetching from the L2 cache. Because the L2 cache is 
two-sectored, an access requesting a 32-byte line from the L1 that also misses in the L2 and the L3 can 
generate a prefetch (if enabled) for the alternate sector as needed. As many as three outstanding prefetches 
are allowed. The example shown in Table 32 can also be used to illustrate the benefits of hardware 
prefetching for code when other software techniques are not applied. It shows timing when the loads miss 
all levels of the cache hierarchy and go to the system bus. Hardware prefetching is disabled. The load 
misses to the bus are serialized by the load miss line alias stall (instruction 2 on instruction 0).

However, if hardware prefetching is enabled, the hardware starts prefetching the line desired by instruction 
4 even before instruction 4 accesses (and misses) the L1 data cache, thus parallelizing some serialized bus 
accesses. In Table 35, with prefetching enabled, performance is improved by about 40 percent. In this case, 

Table 34. Timing for Load Miss Line Alias Example

Cycle Number

Instr.
No.

Instruction 0 1 2 3–81 82 83 84 85–99

0 lwz r3,0x0(r9) E0 E1 Miss LMQ0 LMQ0/E2 LMQ0/C LMQ0 LMQ0

1 add r4,r3,r20 E C

2 lwz r5,0x4(r9) I E0 E1 E1 E1 E1 E1 E1

3 add r6,r5,r4 I

4 lwz r7,0x20(r9) D I E0 E0 E0 E0 E0 E0

5 add r8,r7,r6 D I

100–102 103 104 105 106–184 185 186 187

0 lwz r3,0x0(r9)

1 add r4,r3,r20

2 lwz r5,0x4(r9) E1 E2 C

3 add r6,r5,r4 E C

4 lwz r7,0x20(r9) E0 E1 Miss LMQ0 LMQ0 LMQ0/E2 LMQ0/C LMQ0

5 add r8,r7,r6 E C
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the prefetch is not finished when instruction 4 goes to the L2 cache, so the load is forced to stall while the 
prefetch bus access completes. However, in other cases, the hardware prefetch is entirely finished, 
allowing subsequent loads to have the access time of a L2 cache hit. In general, hardware prefetch benefits 
are very dependent on what type of applications are run and how the system is configured.

Hardware prefetching is often preferable. However, sometimes an unnecessary prefetch transaction can 
delay a later-arriving demand transaction and slow down the processor. Also, as described in Section 9.9, 
“DST Instructions and the Vector Touch Engine (VTE),” if software prefetching is used, hardware 
prefetching may sometimes provide more interference than benefit.

11 Microprocessor Application to Optimal Code
Although many of the code optimizations described in this document can also be performed by hand in 
assembly language, this section focuses on improving the code performance on an established compiler 
tool chain. If the goal is instead to build a compiler for the PowerPC architecture, a useful (but outdated) 
document is the PowerPC Compiler Writer’s Guide. However, many of the code sequences suggested in 
that document are no longer optimal, especially for the MPC7450.

There are multiple locations in the compiler tool chain, independent of the source language used, in which 
code can be transformed to better exploit the architecture and microarchitecture. The optimizations in this 
chapter are loosely classified into expected work and benefit. The actual work depends on the compiler 
tool chain infrastructure.

Table 35. Hardware Prefetching Enable Example

Cycle Number

Instr.
No.

Instruction 0 1 2 3–81 82 83 84 85–99

0 lwz r3,0x0(r9) E0 E1 Miss LMQ0 LMQ0 LMQ0/E2 LMQ0/C LMQ0

1 add r4,r3,r20 E C

2 lwz r5,0x4(r9) I E0 E1 E1 E1 E1 E1 E1

3 add r6,r5,r4 I

4 lwz r7,0x20(r9) D I E0 E0 E0 E0 E0 E0

5 add r8,r7,r6 D I

100–102 103 104 105 106–133 134 135 136

0 lwz r3,0x0(r9)

1 add r4,r3,r20

2 lwz r5,0x4(r9) E1 E2 C

3 add r6,r5,r4 E C

4 lwz r7,0x20(r9) E0 E1 Miss LMQ0 LMQ0 LMQ0/E2 LMQ0/C LMQ0

5 add r8,r7,r6 E C
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11.1 Optimizations to Exploit the MPC7450 Microprocessor
Compared with previous microprocessors that implement the PowerPC architecture, the MPC7450 
microprocessor has more functional units and extends the basic pipeline. Running code on an MPC7450 
that was targeted or optimized for a previous microprocessor may leave some functional units idle and may 
cause the pipeline to stall more often. Although the MPC7450 attempts to dynamically reorder code, a 
compiler can often do a much better job.

This section describes several optimizations that take advantage of features of the MPC7450 processor. 
Instruction scheduling is likely to provide the largest performance impact. Also, due to the deeper 
MPC7450 pipeline, some serializing instructions have a higher performance penalty than on previous 
processors; their use should be carefully examined to see if an alternate instruction will suffice. Finally, 
because some instruction timings have changed, some commonly used code sequences can be modified to 
run faster.

11.1.1 Instruction Scheduling
To get good performance, the compiler must schedule the code for the target microprocessor. A good first 
approximation at an optimal schedule can be obtained by modeling the number of instructions that can be 
issued per clock, the number and types of functional units, the pipeline stages for each type of instruction 
and the number of cycles spent in each stage, as well as the overall latency of the instruction. More 
sophisticated scheduling models may incorporate the issue and completion queue sizes. The details 
necessary for modifying the internal scheduling models can be found in the preceding chapters.

11.1.2 Instruction Form Selection
There are several instructions that cause execution serialization, either always (for example, carry 
consuming instructions like adde and subfe), or under certain conditions (such as 
overflow-recording-form instructions that change XER[SO]). As the pipeline gets longer, the potential 
loss of performance due to serialization gets higher. Care should be exercised during instruction selection 
to avoid those serializations in the final code. A general set of rules is given below. Although these rules 
are generally reliable, there are always a few cases where it makes sense to break them.

• Use the load update and store update forms to merge a subsequent pointer update instruction with 
the access. Note that excessive use of the load-update form (three load-update instructions in a row) 
can cause dispatch and retirement stalls. See Section 5, “Dispatch Considerations,” and 
Section 7.2, “Completion Groupings,” for more details.

• Avoid carry consumers (instructions like adde that require the XER[CA] as an input) except when 
doing more than 32-bit arithmetic.

• Use carry generating instructions such as addc and subfc only when they are needed to generate 
XER[CA].

• Use the record form of instructions only when needed.

• Avoid toggling XER[SO]; see Section 7.3, “Serialization Effects.”
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11.1.3 Optimal Code Sequences
Programming languages are implemented such that applications repeatedly use smaller sequences of code 
for common operations. Some examples are absolute value, minimum and maximum of two numbers and 
bit manipulations. For those simple functions it is worthwhile to find the set of MPC7450 instructions that 
has the best performance and use these instructions during code generation, writing peephole 
optimizations where necessary. 12, “Optimized Code Sequences,” lists a number of such known functions 
and respective optimal instruction sequences.

11.1.4 Conversion of Control Path into Data Path
Some control path problems can be converted to data path problems (predication). This includes the use 
of instructions like fsel or vsel, or groups of instructions on the integer side to emulate a conditional integer 
select. This approach should be taken only after careful analysis. It is typically useful if the branch is 
difficult to predict or the computation overhead of the predicated code is very small.

Note that as pipelines get longer and mispredicts get more expensive, converting control path problems to 
data path problems becomes an increasingly favored solution.

11.2 Optimizations to Exploit the Branch Unit
Because the MPC7450 microprocessor has higher branch penalties and a hardware link stack, the compiler 
tool chain should consider some measures to improve branch performance.

11.2.1 Bias Towards CTR for Loops 
Using the CTR is generally preferable over pairing compare/branch instructions. This has been a guideline 
for prior implementations, but the possible penalty of using an add/compare/branch instead of the 
CTR-based branch-and-decrement is greater than on previous processors.

See Section 4.3.2, “Branch Loop Example,” for an example of how CTR-based loops can be better.

11.2.2 Using the Link Register 
The CTR instruction pair mtctr/bcctr should be used for all computed branches. This includes case 
statement jumps and all indirect function calls. Note that to save the return address on indirect function 
calls, the link form of the bcctr instruction (bcctrl) should be used. The LR-based indirect branch (bclr) 
should be used only for subroutine call/return. Misusing the LR and CTR can corrupt the hardware link 
stack such that several future branches are mispredicted. See Section 4.5, “Using the Link Register (LR) 
Versus the Count Register (CTR) for Branch Indirect Instructions.” 

11.2.3 Branch Bubbles
Where possible, branches should be biased as fall-through. This is because taken branches can interrupt 
the fetch supply. On the MPC7450, a taken branch incurs a 1–2 cycle fetch bubble. A 1-cycle bubble 
occurs for a b or bc with a BTIC hit. A 2-cycle bubble occurs for a BTIC miss or for branches that cannot 
use the BTIC (bcctr, bclr). The 2-cycle fetch bubble is due to the 2-cycle fetch latency to the instruction 
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cache. Section 4.2.1, “Fetch Alignment Example,” and Section 4.2.2, “Branch-Taken Bubble Example,” 
show how the fetch supply works and why it is useful to bias branches to the not-taken case.

11.2.4 Branch Dependencies
The availability of eight CR fields in the PowerPC architecture means that multiple condition checks can 
effectively occur simultaneously. Some scenarios can take advantage of this to handle branch-dependent 
indicators such that the branch resolves before it would be predicted, eliminating the cost of misprediction. 
Even if the branch is mispredicted, having data earlier may allow the mispredict recovery to occur earlier.

Issuing a mtctr or mtlr instruction well ahead of its dependent branch instruction can often help avoid 
stalls or mispredictions as well.

11.3 Optimizations to Exploit the Memory Hierarchy
Memory considerations can also affect code performance. This section describes several areas where there 
is opportunity for optimization.

11.3.1 Data Alignment
Any data cache access crossing a double-word boundary (with the exception of vectors, which are 
naturally quad-word based accesses) causes misalignment and incurs at least one additional cycle of 
latency. See Section 9.7, “Misalignment Effects,” for more MPC7450 specific information. Note that 
misalignment penalties may increase on future high-performance microprocessors.

11.3.2 Instruction Code Alignment
Aligning a branch target can be useful to the fetch supply. Preferred alignment for a MPC7450 should be 
such that the first four instructions of a branch target be in the same cache block. See Section 4.2.1, “Fetch 
Alignment Example,” for more information.

In future high performance processors that implement the PowerPC architecture, the preferred instruction 
alignment will be that the branch target be the first instruction in a quad word (target address = 
0xxxxx_xxx0).

11.3.3 Load Hoisting
Load hoisting refers to the general technique of increasing the load-to-use distance. Increasing the time 
between when a load is executed and the operand is needed reduces stalls waiting for the load to complete 
(although a balance must be struck against the increased register pressure). Note that typical MPC7450 
load latencies are longer than in prior microprocessors (see the code in Section 4.2.1, “Fetch Alignment 
Example”), increasing the benefit of load hoisting.

Some possible load hoisting optimizations include scheduling, moving loads from basic blocks to previous 
basic blocks, and moving loads from the bodies of if-then statements or from loops when the analysis 
indicates it is safe.
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One potential situation that may prevent load hoisting is the possibility of pointer aliasing between a load 
and some store operations. Careful analysis of such situations may show that performance would improve 
if the code was compiled assuming no aliases between these accesses, with a check and a branch at the 
beginning of this code to fix-up code or an alternate version of the code that handles the aliasing case.

The following example shows a function modify_a_b that can be optimized to perform run-time 
checking of aliasing.

C Source Code:

void modify_a_b(int *a, int *b) {
*a += 5;
*b &= 0xff;
*a += *b;
...

}

Assembly code:

lwz 9,0(3)
addi 9,9,5
stw 9,0(3)
lbz 11,3(4)
stw 11,0(4)
lwz 0,0(3)
add 0,0,11
stw 0,0(3)
...
blr

Here is the C and assembly code of the function after inserting a run-time alias check. Note that within the 
first block the pointers are only dereferenced once for loads and once for stores.

void modify_a_b_smart(int *a, int *b) {
if (a != b) {

int aval = *a;
int bval = *b;
aval += 5;
bval &= 0xff;
aval += bval;
...
*a = aval;
*b = bval;

} else {
*a += 5;
*b &= 0xff;
*a += *b;
...

}
}

Assembly code:

cmpw 0,3,4
beq alias_case
lwz 9,0(3)
lbz 0,3(4)
addi 9,9,5
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add 9,9,0
...
stw 9,0(3)
stw 0,0(4)
blr

alias_case:
lwz 9,0(3)
addi 9,9,5
rlwinm 9,9,0,23,30
...
stw 9,0(3)
blr

Note that the new code has higher performance in both the non-alias and alias cases. In the non-alias case, 
only one load and store per pointer is needed; in the alias case, because the compiler knows that the two 
pointers point to the same location, only a single load and store is needed. Also note that in the alias case, 
additional optimizations may now be possible. Here, the AND operation on b and the add to a can now be 
merged into a single rlwinm instruction since a and b are now known to be the same memory location.

11.4 Other Optimizations Worth Investigating
As the complexity of architecture design increases, each new processor relies more on the compiler 
toolchain to perform complex analysis and code transformations to fully use the architecture features. The 
following sections describe some optimizations that are significant for the MPC7450 and are likely to be 
more important on future microprocessors:

11.4.1 Software-Controlled Data Prefetching 
On the MPC7450, care should be taken to allow the microprocessor to pipeline data cache misses. For 
some applications, pipelining cache misses to lower levels of the memory hierarchy is key to achieving 
high performance. Because the MPC7450 stalls on multiple load misses to the same cache block, it is often 
necessary to clump miss accesses together when trying to achieve high bandwidth.

For example, when it is known (or strongly suspected) that a 128-byte array structure is not in the data 
cache, it is often not a good idea to load it in by using a looped series of lwzu rx, 0x4(ry) instructions. Note 
that 128 bytes is equal to four cache blocks on the MPC750/MPC7400/MPC7450, because all three 
microprocessors have 32-byte cache blocks. 

The second (and subsequent) loads stall until the first gets its data from memory. When the 9th,17th, and 
25th loads miss, the 10th, 18th, and 26th loads collide on them and again stall the pipe. Better bandwidth 
can be achieved if the four cache block misses are allowed to go out in parallel, which requires that each 
of the first four accesses be to one of the four lines that needs loading.

Determining whether this is best done with loads, dcbt instructions, a dst, or a combination of the above, 
can be complicated. In the above scenario, one load and three dcbt instructions may be the best solution. 
Generally, dcbt instructions are best used to prefetch a few cache blocks of information, but dst 
instructions are best used when pulling in a larger amount of information. However, the trade-offs are often 
application dependent.

The VTE engine on the MPC7450 can initiate a prefetch once every three cycles. Because the engine can 
sometimes fall behind actual code execution and thus become useless, one useful trick can be to prefetch 
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less data with a particular dst, and then refresh the dst every so often with a new block to prefetch. 
Determining the amount of data to prefetch with a particular dst and the refresh rate is often very 
application (also platform/environment) dependent, and usually requires some trial and error 
experimentation. See Section 5.2.1.8 “Stream Usage Notes,” in the AltiVec Technology Programming 
Environments Manual for additional reasons why numerous small dst operations are likely to provide 
better performance than a few large dst operations.

The following code shows pseudo-code for two loops. The first loop performs a single dst operation for 
the entire data stream, while the second performs several smaller dst operations. If the VTE engine falls 
behind for the first loop, it provides no benefit from that time forward. If the VTE engine in the second 
loop falls behind the computation, it is likely that in the next iteration of the outer loop, the VTE engine 
will again be prefetching useful data, as the VTE engine is reprogrammed to prefetch what is going to be 
required next.

/* Single dst for entire array. */
vec_dst(a, <256 blocks of 32 byte size>)
for (i=0; i<2048; i++) {

total += A[i];
}
/* Series of smaller dsts. */
for (i=0; i<2048; i+=64) {/* 32 iterations of this loop. */

vec_dst(a[i], <8 blocks of 32 byte size>)
for (j=i; j<i+64; j++) {

total += A[j];
}

}

For example, assume that the VTE engine only prefetches the first four blocks in the dst before falling 
behind. In the first loop, only 4 out of 256 blocks are prefetched. In the second loop, the first four blocks 
in each iteration of the outer loop are prefetched in time, for a total of 128 blocks usefully prefetched.

11.4.2 Software Pipelining
With longer pipelines, more functional units, and higher instruction issue rate, the MPC7450 can provide 
more instruction level parallelism (ILP) than previous microprocessors. Loops that have long dependency 
chains may benefit from software pipelining. On those loops, software pipelining increases ILP by 
executing several iterations of the loop in parallel.

11.4.3 Loop Unrolling for Long Pipelines 
Small body inner loops may benefit from unrolling on the MPC7450 more than on prior microprocessors 
that implement the PowerPC architecture. By increasing the number of instructions in a loop and reducing 
the number of times the loop needs to execute, possible stalls are minimized. The drawback of this 
technique is the increased instruction space size required to hold the information. In some cases, increased 
code size can result in more instruction cache misses, which may cost more performance than the loop 
unrolling gained. The costs of setting up and fixing up code may also affect the loop unrolling trade-off.

To further extend the code example first used in Section 4.2, “Fetching,” loop unrolling can be applied. 
Because every taken branch on the MPC7450 represents at least one cycle of lost fetch opportunity, it can 
often be more advantageous to unroll loops than it has been in the past. The following code assumes that 
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it is permitted to loop unroll four times (that is, the loop size is evenly divisible by four) and that a value 
of loopsize/4 was previously loaded into the CTR (rather than the prior two examples, which assumed the 
loop size was loaded into the CTR).

xxxxxx00 loop: lwzu r10,0x4(r9)
xxxxxx04 add r11,r11,r10
xxxxxx08 lwzu r10,0x4(r9)
xxxxxx0C add r11,r11,r10
xxxxxx10 lwzu r10,0x4(r9)
xxxxxx14 add r11,r11,r10
xxxxxx18 lwzu r10,0x4(r9)
xxxxxx1C add r11,r11,r10
xxxxxx20 bdnz loop

Table 36 shows that the fetch supply is no longer the bottleneck for the above code sequence. At this point, 
the limiting bottleneck becomes the single cache port. For this code, one effective iteration (lwzu/add) 
completes per cycle. Loop unrolling doubles the performance of the aligned example case.

11.4.4 Vectorization 
Transforming code to reference vector data as opposed to scalar data can produce significant performance 
benefits for certain types of code. The MPC7400 and MPC7450 support the AltiVec extension to the 
PowerPC architecture, which enables vector SIMD computing.

The analysis required to automatically vectorize scalar applications is quite sophisticated and requires 
significant infrastructure to incorporate into a compiler. Note that it is possible to create a preprocessor that 
takes a C file, performs auto-vectorization using the AltiVec programming interface, and outputs a vector 
version of the C file. Now the file can be compiled using any AltiVec-enabled compiler and no 
modifications to the compiler itself were required. The AltiVec Programming Interface Manual, available 
at the web site listed on the back cover of this document, contains information on the AltiVec programming 
interface.

Table 36. MPC7450 Execution of One—Two Iterations of Code Loop Example

Instruction 0 1 2 3 4 5 6 7 8 9

lwzu (1) D I E0 E1 E2 C

add (1) D I — — — E C

lwzu (2) — D I E0 E1 E2 C

add (2) — D I — — — E C

lwzu (3) — D I E0 E1 E2 C

add (3) — D I — — — E C

lwzu (4) — — D I E0 E1 E2 C

add (4) — — D I — — — E C

bdnz BE D — — — — — C

lwzu (5) D I E0 E1 E2 C

add (5) D I — — — E
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To take the example in Section 11.4.3, “Loop Unrolling for Long Pipelines,” one step further, this code 
sequence could also be vectorized. Table 37 is a vectorized (and loop unrolled) version of the following 
code sequence. This code assumes that the data is aligned on a 128-bit boundary. Note that the lack of a 
vector update form means a few extra integer registers must be reserved for holding constants, but because 
the primary computation is now in the vector registers, this should not be a problem. A vector sum across 
(vsumsws) is needed after the loop body to sum the four words within the vector into a single final result.

xxxxxx00 loop: lvx v10,r8,r9
xxxxxx04 vaddsws v11,v11,v10
xxxxxx08 lvx v10,r7,r9
xxxxxx0C vaddsws v11,v11,v10
xxxxxx10 lvx v10,r6,r9
xxxxxx14 vaddsws v11,v11,v10
xxxxxx18 lvx v10,r5,r9
xxxxxx1C vaddsws v11,v11,v10
xxxxxx20 addi r9,r9,0x10
xxxxxx24 bdnz loop
xxxxxx28 vsumsws v11,v11,v0

Table 37 shows that the code has been vastly accelerated from the original example. For this code, four 
effective iterations (lwz/add) complete per cycle. Vectorization quadruples performance over the loop 
unrolled example and provides a full 12x performance increase from the original example in Table 1.

12 Optimized Code Sequences
Many of the code sequences given in the PowerPC Compiler Writer’s Guide as optimal code sequences 
are no longer optimal for current microprocessors. The main problem with the sequences suggested in the 
PowerPC Compiler Writer’s Guide is that they use carry forwarding, and the execution serialization of 
carry consumers on the MPC7450 has often made the suggested sequence inferior to alternatives. This 
section provides better optimized code sequences.

Table 37. MPC7450 Execution of 1–2 Iterations of Code Loop Example

Instruction 0 1 2 3 4 5 6 7 8 9

lvx (1-4) D I E0 E1 E2 C

vaddsws (1-4) D I — — — E C

lvx (5-8)) — D I E0 E1 E2 C

vaddsws (5-8) — D I — — — E C

lvx (9-12) — D I E0 E1 E2 C

vaddsws (9-12) — D I — — — E C

lvx (13-16) — — D I E0 E1 E2 C

vaddsws (13-16)) — — D I — — — E C

addi — D I E — — — C

bdnz BE — D — — — — C

lwzu (5) D I E0 E1 E2 —

add (5) D I — — — E
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Compiler writers and programmers should carefully evaluate the given options for each sequence—often, 
a longer set of instructions may execute faster than a sequence containing fewer instructions. However, the 
additional instruction cache space requirements and register usage must be taken into account to determine 
which sequence is better in a given case. For code sequences where a cycle count is given, that cycle count 
is for the case where the instructions in question are the only instructions executing on the machine. This 
assumes that all execution units of the processor are available and that certain instructions may execute in 
parallel. For cases where the cycle count is equal for the PowerPC Compiler Writer’s Guide sequence and 
the MPC7450 sequence, the MPC7450 sequence is recommended because it is more likely to do well when 
dynamic scheduling occurs.

The tables that follow give the standard recommended code sequence for each operation, along with a 
MPC7450-specific recommended sequence, where applicable. The standard recommended code 
sequences were taken from the Compiler Writer’s Guide and are located in the columns titled Compiler 
Writer’s Guide code. For each code sequence, the input variables are allocated to registers r3, r4, and 
possibly r5, depending on the number of arguments. The highest-numbered register used is allocated to the 
result. All registers between those used for the arguments and the results hold temporary values.

The future designs mentioned in this document refer to future high performance designs that implement 
the PowerPC architecture. The statements may not apply to all future designs.

12.1 Signed Division Sequences
The entries in Table 38 originally come from Section 3.2.3.5 of the PowerPC Compiler Writer’s Guide. 
The argument is assumed to be in r3.

12.2 Comparisons and Comparisons Against Zero
Table 39 shows the code sequences from Section D.1 of the PowerPC Compiler Writer’s Guide. In each 
example, v0 is located in r3 and v1 is located in r4.

Table 38. Signed Division Sequences

Operation
Compiler Writer’s 

Guide code
MPC7450 Code

(If Different)
Comments

Signed divide by 2 srawi r4,r3,1
addze r4,r4

Cycles: 5

srwi r4,r3,31
add r5,r4,r3
srawi r6,r5,1

Cycles: 3

The MPC7450 sequence takes 4 cycles to complete, 
but the GPR result in r6 is available after 3 cycles. Since 
it is the only part of the result that is used, the sequence 
is assumed to take 3 cycles.

Signed divide by 4 srawi r4,r3,2
addze r4,r4

Cycles: 5

srawi r4,r3,k
srwi r5,r4,30
add r6,r5,r3
srawi r7,r6,2

Cycles: 4

k = any constant between 1 and 3. The purpose of the 
first srawi is to provide a duplicate copy of the sign bit, 
so any amount of shifting that results in at least 2 copies 
of the sign bit will suffice.
The MPC7450 sequence avoids execution serialization 
and is more likely to run well on future designs.
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Table 39. Comparisons and Comparisons Against Zero

Operation
Compiler Writer’s 

Guide Code
MPC7450 Code

(If Different) Comments

eq

r = (v0 == v1)

subf r5,r3,r4
cntlzw r6,r5
srwi r7,r6,5

Cycles: 3

ne

r = (v0 != v1)

subf r5,r3,r4

addic r6,r5,-1

subfe r7,r6,r5

Cycles: 5

subf r5,r3,r4
subf r6,r4,r3
or r7,r6,r5
srwi r8,r7,31

Cycles: 3

The MPC7450 sequence 
avoids the 
execution-serializing addic 
and subfe pair. Additionally, 
the first 2 instructions may 
execute in parallel in the 2 
integer units.

les/ges

(r = (signed_word) v0 <= (signed_word) v1) 
(r = (signed_word) v1>= (signed_word) v0)

srwi r5,r3,31
srawi r6,r4,31
subfc r7,r3,r4
adde r8,r6,r5

Cycles: 5

srawi r6,r4,31

subfc r7,r3,r4
srwi r5,r3,31
adde r8,r6,r5

Cycles: 5

The MPC7450 sequence 
reorders the instructions to 
increase the likelihood of 
better performance in 
real-world scenarios and on 
future processors.

leu/geu

r = (unsigned_word) v0 <= (unsigned_word) v1

r = (unsigned_word) v1 >= (unsigned_word) v0;

li r6,-1
subfc r5,r3,r4
subfze r7,r6

Cycles: 4

subf r5,r3,r4
orc r7,r4,r3
srwi r6,r5,1
subf r8,r6,r7
srwi r9,r8,31

Cycles: 4

With good scheduling and 
register allocation, the 
MPC7450 sequence is more 
likely to perform well on future 
processors. If instruction 
cache usage or register usage 
is an issue, the PowerPC 
Compiler Writer’s Guide 
sequence is preferred.

lts/gts

r = (signed_word) v0 < (signed_word ) v;

r = (signed_word) v1 > (signed_word) v0;

subfc r5,r4,r3
eqv r6,r4,r3
srwi r7,r6,31
addze r8,r7
rlwinm r9,r8,0,31,31

Cycles: 6

xor r5,r4,r3
srawi r6,r5,31
or r7,r6,r3
subf r8,r4,r7
srwi r9,r8,31

Cycles: 5

ltu/gtu

r = (unsigned_word) v0 < (unsigned_word) v1

r = (unsigned_word) v1 > (unsigned_word) v0;

subfc r5,r4,r3
subfe r6,r6,r6
neg r7,r6

Cycles: 5

xor r5,r4,r3
cntlzw r6,r5
slw r7,r4,r6
srwi r8,r7,31

Cycles: 4

eq0

r = (v0 == 0);

subfic r4,r3,0
adde r5,r4,r3

Cycles: 4

cntlzw r4,r3
srwi r5,r4,5

Cycles: 2

Both sequences are listed in 
the PowerPC Compiler 
Writer’s Guide, with the subfic 
and adde sequence being 
first. The cntlzw and srwi 
sequence is preferred.
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12.3 Negated Comparisons and Negated Comparisons Against Zero
Table 40 shows the code sequences from Section D.2 of the PowerPC Compiler Writer’s Guide. In each 
example, v0 is located in r3 and v1 is located in r4.

ne0

r = (v0 != 0);

addic r4,r3,-1
subfe r5,r4,r3

Cycles: 4

neg r4,r3
or r5,r4,r3
srwi r6,r5,31

Cycles: 3

les0

r = (signed_word) v0 <= 0

neg r4,r3
orc r5,r3,r4
srwi r6,r5,31

Cycles: 3

li r4,1
cntlzw r5,r3
rlwnm r6,r4,r5,31,31

Cycles: 2

ges0 

r = (signed_word) v0 >= 0;

srwi r4,r3,31
xori r5,r4,1

Cycles: 2

lts0

r = (signed_word) v0 < 0;

srwi r4,r3,31

Cycles: 1

gts0

r = (signed_word) v0 > 0;

neg r4,r3
andc r5,r4,r3
srwi r6,r5,31

Cycles: 3

Table 40. Negative Comparisons and Negative Comparisons Against Zero

Operation
Compiler Writer’s 

Guide Code
MPC7450 Code

(If Different)
Comments

neq

r = –(v0 == v1)

subf r5,r4,r3
addic r6,r5,-1
subfe r7,r7,r7

Cycles: 5

subf r5,r3,r4
subf r6,r4,r3
nor r7,r6,r5
srawi r8,r7,31

Cycles: 3

The MPC7450 sequence takes 4 
cycles to complete, but the GPR 
result in r8 is available after 3 
cycles. Since this is the only part 
of the result that is used, the 
sequence is assumed to take 3 
cycles.

nne

r = –(v0 != v1)

subf r5,r4,r3
subfic r6,r5,0
subfe r7,r7,r7

Cycles: 5

subf r5,r3,r4
subf r6,r4,r3
or r7,r6,r5
srawi r8,r7,31

Cycles: 3

The MPC7450 sequence takes 4 
cycles to complete, but the GPR 
result in r8 is available after 3 
cycles. Since this is the only part 
of the result that is used, the 
sequence is assumed to take 3 
cycles.

Table 39. Comparisons and Comparisons Against Zero (continued)

Operation
Compiler Writer’s 

Guide Code
MPC7450 Code

(If Different)
Comments
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nles/nges

r = –((signed_word) v0 <= (signed_word) v1)

r = –((signed_word)v1 >= (signed_word) v0)

xoris r5,r3,0x8000
subf r6,r3,r4
addc r7,r6,r5
subfe r8,r8,r8

Cycles: 5

nleu/ngeu 

r = –((unsigned_word) v0 <= (unsigned_word) v1)

r = –((unsigned_word) v1 >= (unsigned_word) v0)

subfc r5,r3,r4
addze r6,r3
subf r7,r6,r3

Cycles: 5

nlts/ngts

r = –((signed_word) v0 < (signed_word) v1);

r = –((signed_word) v1 > (signed_word) v0)

subfc r5,r4,r3
srwi r6,r4,31
srwi r7,r3,31
subfe r8,r7,r6

Cycles: 4

nltu/ngtu

r = –((unsigned_word) v0 < (unsigned_word) v1)

r = –((unsigned_word) v1 > (unsigned_word) v0)

subfc r5,r3,r3
subfe r6,r6,r6

Cycles: 4

neq0

r = –(v0 == 0)

addic r4,r3,-1
subfe r5,r5,r5

Cycles: 4

cntlzw r4,r3
srwi r5,r4,5
neg r6,r5

Cycles: 3

nne0

r = –(v0 != 0)

subfic r4,r3,0
subfe r5,r5,r5

Cycles: 4

neg r4,r3
or r5,r4,r3
srawi r6,r5,31

Cycles: 3

The MPC7450 sequence takes 4 
cycles to complete, but the GPR 
result in r6 is available after 3 
cycles. Since this is the only part 
of the result that is used, the 
sequence is assumed to take 3 
cycles.

nles0 

r = –((signed_word) v0 <= 0);

addic r4,r3,-1
srwi r5,r3,31
subfze r6,r5

Cycles: 4

neg r4,r3
orc r5,r3,r4
srawi r6,r5,31

Cycles: 3

The MPC7450 sequence takes 4 
cycles to complete, but the GPR 
result in r6 is available after 3 
cycles. Since this is the only part 
of the result that is used, the 
sequence is assumed to take 3 
cycles.

nges0

r = –((signed_word) v1 >= 0);

srwi r4,r3,31
addi r5,r4,-1

Cycles: 2

Table 40. Negative Comparisons and Negative Comparisons Against Zero (continued)

Operation
Compiler Writer’s 

Guide Code
MPC7450 Code

(If Different)
Comments
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12.4 Comparisons with Addition
Table 41 shows the code sequences from Section D.5 of the PowerPC Compiler Writer’s Guide. It is 
assumed that there are three arguments for each operation. The v0 and v1 are the two arguments that are 
used in the comparison and v2 is added depending on the result of the comparison. The register 
assumptions are v0 in r3, v1 in r4, v2 in r5. For the cases where the second operand is assumed to be 0 such 
as eq0+, assume that v0 is in r3 and v2 is in r4. The argument v1 is assumed to be 0 for these cases and 
does not require a register.

nlts0

r = –((signed_word) v0 < 0)

srawi r4,r3,31

Cycles: 1

The srawi produces a GPR result 
in 1 cycle, even though the 
instruction does not complete 
and produces a carry until after 2 
cycles. Since the carry is not 
used, the instruction is assumed 
to complete in 1 cycle.

ngts0

r = –((signed_word) v0 > 0)

subfic r4,r3,0
srwi r5,r3,31
addme r6,r5

Cycles: 4

neg r4,r3
andc r5,r4,r3
srawi r6,r5,31

Cycles: 3

The MPC7450 sequence takes 4 
cycles to complete, but the GPR 
result in r6 is available after 3 
cycles. Since this is the only part 
of the result that is used, the 
sequence is assumed to take 3 
cycles.

Table 41. Comparisons with Addition

Operation
Compiler Writer’s 

Guide Code
MPC7450 Code

(If Different)
Comments

eq+

r = (v0 == v1) + v2;

subf r6,r3,r4
subfic r7,r6,0
addze r8,r5

Cycles: 5

xor r6,r3,r4
cntlzw r6,r6
rlwinm r6,r6,27,31,31
add r7,r5,r6

Cycles: 4

ne+

r = (v0 != v1) + v2;

subf r6,r3,r4
addic r7,r6,-1
addze r8,r5

Cycles: 5

les+/ges+

r = ((signed_word) v0 <= (signed_word) v1) + v2;

r = (signed_word) v1 >= (signed_word) v0) + v2;

xoris r6,r3,0x8000
xoris r7,r4,0x8000
subfc r8,r6,r7
addze r9,r5

Cycles: 5

Table 40. Negative Comparisons and Negative Comparisons Against Zero (continued)

Operation
Compiler Writer’s 

Guide Code
MPC7450 Code

(If Different)
Comments
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leu+/geu+

r = ((unsigned_word) v0 <= (unsigned_word) v1) + v2;

r = (unsigned_word) v1 >= (unsigned_word) v0) + v2;

subfc r6,r3,r4
addze r7,r5

Cycles: 4

lts+/gts+

r = ((signed_word) v0 < (signed_word) v1) + v2;

r = (signed_word) v1 > (signed_word) v0) + v2;

subf r6,r4,r3
xoris r7,r4,0x8000
addc r8,r7,r6
addze r9.r5

Cycles: 5

ltu+/gtu+

r = ((unsigned_word) v0 < (unsigned_word) v1) + v2;

r = (unsigned_word) v1 > (unsigned_word) v0) + v2;

subfc r6,r4,r3
subfze r7,r5
neg r8,r7

Cycles: 5

eq0+

r = (v0 == 0) + v1;

subfic r5,r3,0
addze r6,r4

Cycles: 4

cntlzw r5,r3
srwi r6,r5,5
add r7,r6,r4

Cycles: 3

ne0+

r = (v0 != 0) + v1

addic r5,r3,-1
addze r6,r4

Cycles: 4

neg r5,r3
or r6,r5,r3
srwi r7,r6,31
add r8,r7,r4

Cycles: 4

les0+

r = ((signed_word) v0 <= 0) + v1

subfic r5,r3,0
srwi r6,r3,31
adde r7,r6,r4

Cycles: 4

cntlzw r6,r3
li r5,1
srw r7,r5,r6
add r8,r7,r4

Cycles: 3

ges0+

r = ((signed_word) v0 >= 0) + v1

addi r5,r4,1
srwi r6,r3,31
subf r7,r6,r5

Cycles: 2

srwi r6,r3,31
addi r5,r4,1
subf r7,r6,r5

Cycles: 2

The MPC7450 
sequence simply 
reorders the first 2 
instructions. This is 
likely to result in better 
performance on future 
processors.

Table 41. Comparisons with Addition (continued)

Operation
Compiler Writer’s 

Guide Code
MPC7450 Code

(If Different)
Comments
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lts0+

r = ((signed_word) v0 < 0) + v1

srwi r5,r3,31
add r6,r5,r4

Cycles: 2

gts0+

r = ((signed_word) v0 > 0) + v1

neg r5,r3
srawi r6,r5,31
addze r7,r4

Cycles: 6

neg r5,r3
andc r6,r5,r3
srwi r7,r6,31
add r8,r7,r4

Cycles: 4

Table 41. Comparisons with Addition (continued)

Operation
Compiler Writer’s 

Guide Code
MPC7450 Code

(If Different)
Comments
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Appendix AMPC7450 Execution Latencies
13 MPC7450 Execution Latencies

This appendix lists the MPC750, MPC7400, and MPC7450 instruction execution latencies. Instructions 
are sorted by mnemonic, primary, extend, form, unit, and cycle. A high-level summary of execution 
latencies is given in Table 42. In particular, note that MPC7450 load latencies are 1–2 cycles longer than 
MPC750/MPC7400 latencies. The MPC7450 has higher clock frequencies than the MPC750 and 
MPC7400. Also, the execution latencies for the FPU and VPU are significantly longer.

Some unit assignments have changed between designs. The reorganization of the assignments of 
SRU/IU1/IU2 in the MPC750/MPC7400 to IU1/IU2 in the MPC7450 is a major change. Some MPC7400 
vector instructions executed by the VSIU of the VALU have also moved for the MPC7450; vsl and vsr are 
now executed by the VPU, and mfvscr, mtvscr, vcmpbfp, vcmpeqfp, vcmpgefp, vcmpgtfp, vmaxfp, 
and vminfp are now executed by the VFPU. Note that on the MPC7450, the single field form of mtcrf is 
executed by the IU1 and is no longer serialized, which should make it much more useful.

The following tables specify unit assignments, latencies/throughput, and serialization issues for each 
branch instruction. Note the following:

• Pipelined load/store and floating-point instructions are shown with cycles of total latency and 
throughput cycles separated by a colon (3:2 means 3-cycle latency with throughput of 1 every 2 
cycles). Floating-point instructions with a single entry in the cycles column are not pipelined.

• The variable b represents the processor/system-bus clock ratio.

• The term ‘broadcast’ indicates a bus broadcast that has a minimum value of 3*b.

Table 42. Execution Latency in Processor Clock Cycle

Instruction MPC750  MPC7400 MPC7450

Add, shift, rotate, logical 1 1 1

Multiply (32-bit) 6 6 4

Divide 19 19 23

Load int 2 2 3

Load float 2 2 4

Load vector — 2 3

Floating-point single (add, mul, madd) 3 3 5

Floating-point single (divide) 17 17 21

Floating-point double (add) 3 3 5

Floating-point double (mul, madd) 4 3 5

Floating-point double (divide) 31 31 35

Vector simple — 1 1

Vector permute — 1 2

Vector complex — 3 4

Vector floating-point — 4 4
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• Additional cycles due to serialization are indicated in the cycles column with the following:

— c (completion serialization)

— s (store serialization)

— y (sync serialization)

— e (execution serialization) 

— r (refetch serialization)

NOTE

Branch execution takes at least 1 cycle, but if a branch executes before 
reaching the dispatch point, it appears to execute in 0 cycles. On the 
MPC7450, a conditional bclr instruction takes 2 cycles to execute.

Table 44 lists system operation instruction latencies.
 

Table 43. Branch Operation Execution Latencies

Mnemonic Unit Cycles 

b[l][a] BPU 11

bc[l][a] BPU 1 1

1  Branches that do not modify the LR or CTR can 
be folded and not dispatched. Branches that are 
dispatched go only to the CQ. 

bcctr[l] BPU 11

bclr[l] BPU 1,21

Table 44. System Operation Instruction Execution Latencies

Mnemonic
MPC750 MPC7400 MPC7450

Unit Cycles Unit Cycles Unit Cycles

eieio SRU 1 LSU 2:3*b {y} LSU 3:5 {s}

isync SRU 2 {c,r} SRU 2 {c,r} — 1 0{r}

mfmsr SRU 1 SRU 1 IU2 3-2

mfspr (DBATs) SRU 3 {e} SRU 3 {e} IU2 4:3{e}

mfspr (IBATs) SRU 3 SRU 3 IU2 4:3

mfspr (MSS) N/A N/A N/A N/A IU2 5{e} 2

mfspr (other) SRU 1 {e} SRU 1 {e} IU2 3{e}

mfspr (Time Base) SRU 1 SRU 1 IU2 5{e}

mfspr (VRSAVE) N/A N/A SRU 1 {e} IU2 3:2

mfsr SRU 3 SRU 3 IU2 4:3

mfsrin SRU 3 {e} SRU 3 {e} IU2 4:3

mftb SRU 1 SRU 1 IU2 5{e}
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Table 45 lists condition register logical instruction latencies.

mtmsr SRU 1 {e} SRU 1 {e} IU2 2{e}

mtspr (DBATs) SRU 2 {e} SRU 2 {e} IU2 2{e}

mtspr (IBATs) SRU 2 {e} SRU 2 {e} IU2 2{e}

mtspr (MSS) N/A N/A N/A N/A IU2 5{e}

mtspr (other) SRU 2 {e} SRU 2 {e} IU2 2{e}

mtspr (XER) SRU 1 {e} SRU 1 {e} IU2 2{e,r}1

mtsr SRU 2 {e} SRU 2 {e} IU2 2{e}

mtsrin SRU 2 {e} SRU 3 {e} IU2 2{e}

mttb SRU 1 {e} SRU 1 {e} IU2 5{e}

rfi SRU 2 {c,r} SRU 2 {c,r} —1 0{r}

sc SRU 2 {c,r} SRU 2 {c,r} —1 0{r}

sync SRU 3 LSU 8+broadcast {y} LSU 35 3{e,s}

tlbsync NULL — LSU 8+broadcast {y} LSU 3:5{s}

1  Refetch serialized instructions (if marked with a 0-cycle execution time) do not have an execute 
stage, and all refetch serialized instructions have 1 cycle between the time they are completed and 
the time the target/sequential instruction enters the fetch1 stage.

2  Memory subsystem SPRs are implementation specific and are described in the MPC7450 RISC 
Microprocessor Family User’s Manual.

3  Assuming a 5:1 processor to clock ratio.

Table 45. Condition Register Logical Execution Latencies

Mnemonic
MPC750,MPC7400 MPC7450

Unit Cycles Unit Cycles

crand SRU 1 {e} IU2 2{e}

crandc SRU 1 {e} IU2 2{e}

creqv SRU 1 {e} IU2 2{e}

crnand SRU 1 {e} IU2 2{e}

crnor SRU 1 {e} IU2 2{e}

cror SRU 1 {e} IU2 2{e}

crorc SRU 1 {e} IU2 2{e}

crxor SRU 1 {e} IU2 2{e}

mcrf SRU 1 {e} IU2 2{e}

Table 44. System Operation Instruction Execution Latencies (continued)

Mnemonic
MPC750 MPC7400 MPC7450

Unit Cycles Unit Cycles Unit Cycles
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The single field mtcrf executes significantly faster on the MPC7450 than on previous designs. If a small 
number of fields (2 or 3) need to be moved, it is often advantageous to issue two or three single field moves 
rather than one multi-field move. With three instruction-wide dispatch/complete and three IU1s, even 
performing eight single-field moves may sometimes be a win over the execution of a serialized multi-field 
move. Table 46 lists integer unit instruction latencies.

mcrxr SRU 1 {e} IU2 2{e}

mfcr SRU 1 {e} IU2 2{e}

mtcrf SRU 1 {e} IU2/IU1 2{e}/1 1

1  mtcrf of a single field is executed by an IU1 in a single cycle and is not 
serialized.

Table 46. Integer Unit Execution Latencies

Mnemonic
MPC750/MPC7400 MPC7450

Unit Cycles Unit Cycles

addc[o][.] IU1/IU2 1 IU1 1

adde[o][.] IU1/IU2 1 {e} IU1 1 {e}

addi IU1/IU2 1 IU1 1

addic IU1/IU2 1 IU1 1

addic. IU1/IU2 1 IU1 1

addis IU1/IU2 1 IU1 1

addme[o][.] IU1/IU2 1 {e} IU1 1 {e}

addze[o][.] IU1/IU2 1 {e} IU1 1 {e}

add[o][.] IU1/IU2 1 IU1 1

andc[.] IU1/IU2 1 IU1 1

andi. IU1/IU2 1 IU1 1

andis. IU1/IU2 1 IU1 1

and[.] IU1/IU2 1 IU1 1

cmp IU1/IU2 1 IU1 1

cmpi IU1/IU2 1 IU1 1

cmpl IU1/IU2 1 IU1 1

cmpli IU1/IU2 1 IU1 1

cntlzw[.] IU1/IU2 1 IU1 1

divwu[o][.] IU2 19 IU2 23

Table 45. Condition Register Logical Execution Latencies (continued)

Mnemonic
MPC750,MPC7400 MPC7450

Unit Cycles Unit Cycles
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divw[o][.] IU2 19 IU2 23

eqv[.] IU1/IU2 1 IU1 1

extsb[.] IU1/IU2 1 IU1 1 1

extsh[.] IU1/IU2 1 IU1 1 1

mulhwu[.] IU1 2,3,4,5,6 IU2 4:2 2

mulhw[.] IU1 2,3,4,5 IU2 4:2 2

mulli IU1 2,3 IU2 3:1

mull[o][.] IU1 2,3,4,5 IU2 4:2 2

nand[.] IU1/IU2 1 IU1 1

neg[o][.] IU1/IU2 1 IU1 1

nor[.] IU1/IU2 1 IU1 1

orc[.] IU1/IU2 1 IU1 1

ori IU1/IU2 1 IU1 1

oris IU1/IU2 1 IU1 1

or[.] IU1/IU2 1 IU1 1

rlwimi[.] IU1/IU2 1 IU1 1 1

rlwinm[.] IU1/IU2 1 IU1 1 1

rlwnm[.] IU1/IU2 1 IU1 1 1

slw[.] IU1/IU2 1 IU1 1 1

srawi[.] IU1/IU2 IU1 2 3

sraw[.] IU1/IU2 1 IU1 2 3

srw[.] IU1/IU2 1 IU1 11

subfc[o][.] IU1/IU2 1 IU1 1

subfe[o][.] IU1/IU2 1 {e} IU1 1(e}

subfic IU1/IU2 1 IU1 1

subfme[o][.] IU1/IU2 1 {e} IU1 1(e}

subfze[o][.] IU1/IU2 1 {e} IU1 1(e}

subf[.] IU1/IU2 1 IU1 1

tw IU1/IU2 2 IU1 2

twi IU1/IU2 2 IU1 2

xori IU1/IU2 1 IU1 1

Table 46. Integer Unit Execution Latencies (continued)

Mnemonic
MPC750/MPC7400 MPC7450

Unit Cycles Unit Cycles
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Table 47 shows latencies for FPU instructions. Instructions with a single entry in the cycles column are not 
pipelined; all FPU stages are busy for the full duration of instruction execution and are unavailable to 
subsequent instructions. Floating-point arithmetic instructions execute in the FPU; floating-point loads 
and stores execute in the LSU.

For pipelined instructions, two numbers are shown separated by a colon. The first shows the number of 
cycles required to fill the pipeline. The second is the throughput once the pipeline is full. For example, 
fabs[.] passes through five stages with a 1-cycle throughput.

xoris IU1/IU2 1 IU1 1

xor[.] IU1/IU2 1 IU1 1

1  If the record bit is set, the GPR result is available in 1 cycle, and the CR result is 
available in the second cycle.

2  32*32-bit multiplication has an early exit condition. If the 15 most-significant bits 
of the B operand are either all set or all cleared, the multiply finishes with a latency 
of 3 and a throughput of 1.

3  srawi[.] and sraw[.] produce a GPR result in 1 cycle, but the full results, including 
the CA, OV, CR results, are available in 2 cycles.

Table 47. Floating-Point Unit (FPU) Execution Latencies

Mnemonic
MPC750 MPC7400 MPC7450

Unit Cycles Unit Cycles Unit Cycles

fabs[.] FPU 3:1 FPU 3:1 FPU 5:1 

fadds[.] FPU 3:1 FPU 3:1 FPU 5:1 

fadd[.] FPU 3:1 FPU 3:1 FPU 5:1 

fcmpo FPU 3:1 FPU 3:1 FPU 5:1 

fcmpu FPU 3:1 FPU 3:1 FPU 5:1 

fctiwz[.] FPU 3:1 FPU 3:1 FPU 5:1 

fctiw[.] FPU 3:1 FPU 3:1 FPU 5:1 

fdivs[.] FPU 17 FPU 17 FPU 21

fdiv[.] FPU 31 FPU 31 FPU 35

fmadds[.] FPU 4:2 FPU 3:1 FPU 5:1 

fmadd[.] FPU 3:1 FPU 3:1 FPU 5:1 

fmr[.] FPU 3:1 FPU 3:1 FPU 5:1 

fmsubs[.] FPU 4:2 FPU 3:1 FPU 5:1 

fmsub[.] FPU 3:1 FPU 3:1 FPU 5:1 

Table 46. Integer Unit Execution Latencies (continued)

Mnemonic
MPC750/MPC7400 MPC7450

Unit Cycles Unit Cycles
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Table 48 shows load and store instruction latencies. Load/store multiple and string instruction cycles are 
represented as a fixed number of cycles plus a variable number of cycles, where n = the number of words 
accessed by the instruction. Pipelined load/store instructions are shown with total latency and throughput 
separated by a colon.

fmuls[.] FPU 4:2 FPU 3:1 FPU 5:1 

fmul[.] FPU 3:1 FPU 3:1 FPU 5:1 

fnabs[.] FPU 3:1 FPU 3:1 FPU 5:1 

fneg[.] FPU 3:1 FPU 3:1 FPU 5:1 

fnmadds[.] FPU 4:2 FPU 3:1 FPU 5:1 

fnmadd[.] FPU 3:1 FPU 3:1 FPU 5:1 

fnmsubs[.] FPU 4:2 FPU 3:1 FPU 5:1 

fnmsub[.] FPU 3:1 FPU 3:1 FPU 5:1 

fres[.] FPU 10 FPU 10 FPU 14

frsp[.] FPU 3:1 FPU 3:1 FPU 5:1 

frsqrte[.] FPU 3:1 FPU 3:1 FPU 5:1 

fsel[.] FPU 3:1 FPU 3:1 FPU 5:1 

fsubs[.] FPU 3:1 FPU 3:1 FPU 5:1 

fsub[.] FPU 3:1 FPU 3:1 FPU 5:1 

mcrfs FPU 3 {e} FPU 3:1 {e} FPU 5{e}

mffs[.] FPU 3 {e} FPU 3 {e} FPU 5{e}

mtfsb0[.] FPU 3 FPU 3 {e} FPU 5{e}

mtfsb1[.] FPU 3 FPU 3 {e} FPU 5{e}

mtfsfi[.] FPU 3 FPU 3 {e} FPU 5{e}

mtfsf[.] FPU 3 FPU 3 {e} FPU 5{e}

Table 48. Store Unit (LSU) Instruction Latencies

Mnemonic  Class
MPC750 MPC7400 MPC7450

Unit Cycles Unit Cycles Unit Cycles

dcba N/A N/A N/A LSU 2:3 {s} LSU 3:1 {s}

dcbf N/A LSU 3:5 {e} LSU 2:3*b {s} LSU 3:11 {s}

dcbi N/A LSU 3:3 LSU 2:3*b {s} LSU 3:11 {s}

dcbst N/A LSU 3:5 {e} LSU 2:3*b {s} LSU 3:11 {s}

Table 47. Floating-Point Unit (FPU) Execution Latencies (continued)

Mnemonic
MPC750 MPC7400 MPC7450

Unit Cycles Unit Cycles Unit Cycles
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dcbt N/A LSU 2:1 LSU 2:1 LSU 3:1

dcbtst N/A LSU 2:1 LSU 2:1 LSU 3:1

dcbz N/A LSU 3:6(M=0) LSU 2:3 {s} LSU 3:1 {s}

dss N/A N/A N/A LSU 2:1 LSU 3:1

dssall N/A N/A N/A LSU 2:1 LSU 3:1

dsts[t] N/A N/A N/A LSU 2:2 LSU 3:1

dst[t] N/A N/A N/A LSU 2:2 LSU 3:1

eciwx N/A LSU 2:1 LSU 2:1 LSU 3:1

icbi N/A LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

lbz N/A LSU 3:4 LSU 2:3*b {s} LSU 3:1

lbzu GPR LSU 2:1 LSU 2:1 LSU 3:1

lbzux GPR LSU 2:1 LSU 2:1 LSU 3:1

lbzx GPR LSU 2:1 LSU 2:1 LSU 3:1

lfd Float LSU 2:1 LSU 2:1 LSU 4:1

lfdu Float LSU 2:1 LSU 2:1 LSU 4:1

lfdux Float LSU 2:1 LSU 2:1 LSU 4:1

lfdx Float LSU 2:1 LSU 2:1 LSU 4:1

lfs Float LSU 2:1 LSU 2:1 LSU 4:1

lfsu Float LSU 2:1 LSU 2:1 LSU 4:1

lfsux Float LSU 2:1 LSU 2:1 LSU 4:1

lfsx Float LSU 2:1 LSU 2:1 LSU 4:1

lha GPR LSU 2:1 LSU 2:1 LSU 3:1

lhau GPR LSU 2:1 LSU 2:1 LSU 3:1

lhaux GPR LSU 2:1 LSU 2:1 LSU 3:1

lhax GPR LSU 2:1 LSU 2:1 LSU 3:1

lhbrx GPR LSU 2:1 LSU 2:1 LSU 3:1

lhz GPR LSU 2:1 LSU 2:1 LSU 3:1

lhzu GPR LSU 2:1 LSU 2:1 LSU 3:1

lhzux GPR LSU 2:1 LSU 2:1 LSU 3:1

lhzx GPR LSU 2:1 LSU 2:1 LSU 3:1

lmw GPR LSU 2+n {c,e} LSU 2+n {c,e} LSU 3 + n 

Table 48. Store Unit (LSU) Instruction Latencies (continued)

Mnemonic  Class
MPC750 MPC7400 MPC7450

Unit Cycles Unit Cycles Unit Cycles
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lswi GPR LSU 2+n {c,e} LSU 2+n {c,e} LSU 3 + n 

lswx GPR LSU 2+n {c,e} LSU 2+n {c,e} LSU 3 + n 

lvebx Vector N/A N/A LSU 2:1 LSU 3:1

lvehx Vector N/A N/A LSU 2:1 LSU 3:1

lvewx Vector N/A N/A LSU 2:1 LSU 3:1

lvsl Vector N/A N/A LSU 2:1 LSU 3:1

lvsr Vector N/A N/A LSU 2:1 LSU 3:1

lvx Vector N/A N/A LSU 2:1 LSU 3:1

lvxl Vector N/A N/A LSU 2:1 LSU 3:1

lwarx GPR LSU 3:1 {e} LSU 3:3 {e} LSU 3{e}

lwbrx GPR LSU 2:1 LSU 2:1 LSU 3:1

lwz GPR LSU 2:1 LSU 2:1 LSU 3:1

lwzu GPR LSU 2:1 LSU 2:1 LSU 3:1

lwzux GPR LSU 2:1 LSU 2:1 LSU 3:1

lwzx GPR LSU 2:1 LSU 2:1 LSU 3:1

stb GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

stbu GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

stbux GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

stbx GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

stfd Float LSU 2:1 LSU 2:1 ? LSU 3:3{s}2

stfdu Float LSU 2:1 LSU 2:1 ? LSU 3:3{s}2

stfdux Float LSU 2:1 LSU 2:1 {s} LSU 3:3{s}2

stfdx Float LSU 2:1 LSU 2:1 {s} LSU 3:3{s}2

stfiwx Float LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

stfs Float LSU 2:1 LSU 2:1  ? LSU 3:3{s} 1

stfsu Float LSU 2:1 LSU 2:1 ? LSU 3:3{s}2

stfsux Float LSU 2:1 LSU 2:1 {s} LSU 3:3{s}2

stfsx Float LSU 2:1 LSU 2:1 {s} LSU 3:3{s} 2

sth GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

sthbrx GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

sthu GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

Table 48. Store Unit (LSU) Instruction Latencies (continued)

Mnemonic  Class
MPC750 MPC7400 MPC7450

Unit Cycles Unit Cycles Unit Cycles
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Table 49 lists vector simple integer instruction latencies. This simple integer unit is called the VSIU in the 
MPC7400 and the VIU1 in the MPC7450. 

 

sthux GPR LSU 2:1 LSU 2:1 {s} LSU 3:1 {s}

sthx GPR LSU 2:1 LSU 2:1 {s} LSU 3:1 {s}

stmw N/A LSU 2+n {e} LSU 2+n {e} LSU 3 + n{s}

stswi GPR LSU 2+n {e} LSU 2+n {e} LSU 3+ n{s}

stswx GPR LSU 2+n {e} LSU 2+n {e} LSU 3 + n{s}

stvebx Vector N/A N/A LSU 2:1 LSU 3:1{s}

stvehx Vector N/A N/A LSU 2:1 LSU 3:1{s}

stvewx Vector N/A N/A LSU 2:1 LSU 3:1{s}

stvx Vector N/A N/A LSU 2:1 LSU 3:1{s}

stvxl Vector N/A N/A LSU 2:1 {s} LSU 3:1{s}

stw GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

stwbrx GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

stwcx. GPR LSU 8:8 {e} LSU 5:5 {s} LSU 3:1{s}

stwu GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

stwux GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

stwx GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

tlbie N/A LSU 3:4 LSU 2:3*b {s} LSU 3:1{s}

tlbld N/A N/A N/A N/A N/A LSU 3{e}

tlbli N/A N/A N/A N/A N/A LSU 3{e}

1  For cache operations, the first number indicates the latency for finishing a single 
instruction, and the second number indicates the throughput for a large number of 
back-to-back cache operations. The throughput cycle may be larger than the initial 
latency because more cycles may be needed for the data to reach the cache. If the 
cache remains busy, subsequent cache operations cannot execute. 

2  Floating-point stores may take as many as 24 additional cycles if the value being 
stored is a denormalized number.

Table 49. AltiVec Operations—Vector Simple Integer Unit

Mnemonic
MPC7400 MPC7450

Unit Cycles Unit Cycles

vaddcuw VALU-VSIU 1 VIU1 1

vaddsbs VALU-VSIU 1 VIU1 1

Table 48. Store Unit (LSU) Instruction Latencies (continued)

Mnemonic  Class
MPC750 MPC7400 MPC7450

Unit Cycles Unit Cycles Unit Cycles
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vaddshs VALU-VSIU 1 VIU1 1

vaddsws VALU-VSIU 1 VIU1 1

vaddubm VALU-VSIU 1 VIU1 1

vaddubs VALU-VSIU 1 VIU1 1

vadduhm VALU-VSIU 1 VIU1 1

vadduhs VALU-VSIU 1 VIU1 1

vadduwm VALU-VSIU 1 VIU1 1

vadduws VALU-VSIU 1 VIU1 1

vand VALU-VSIU 1 VIU1 1

vandc VALU-VSIU 1 VIU1 1

vavgsb VALU-VSIU 1 VIU1 1

vavgsh VALU-VSIU 1 VIU1 1

vavgsw VALU-VSIU 1 VIU1 1

vavgub VALU-VSIU 1 VIU1 1

vavguh VALU-VSIU 1 VIU1 1

vavguw VALU-VSIU 1 VIU1 1

vcmpequb[.] VALU-VSIU 1 VIU1 1

vcmpequh[.] VALU-VSIU 1 VIU1 1

vcmpequw[.] VALU-VSIU 1 VIU1 1

vcmpgtsb[.] VALU-VSIU 1 VIU1 1

vcmpgtsh[.] VALU-VSIU 1 VIU1 1

vcmpgtsw[.] VALU-VSIU 1 VIU1 1

vcmpgtub[.] VALU-VSIU 1 VIU1 1

vcmpgtuh[.] VALU-VSIU 1 VIU1 1

vcmpgtuw[.] VALU-VSIU 1 VIU1 1

vmaxsb VALU-VSIU 1 VIU1 1

vmaxsh VALU-VSIU 1 VIU1 1

vmaxsw VALU-VSIU 1 VIU1 1

vmaxub VALU-VSIU 1 VIU1 1

vmaxuh VALU-VSIU 1 VIU1 1

vmaxuw VALU-VSIU 1 VIU1 1

Table 49. AltiVec Operations—Vector Simple Integer Unit (continued)

Mnemonic
MPC7400 MPC7450

Unit Cycles Unit Cycles
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vminsb VALU-VSIU 1 VIU1 1

vminsh VALU-VSIU 1 VIU1 1

vminsw VALU-VSIU 1 VIU1 1

vminub VALU-VSIU 1 VIU1 1

vminuh VALU-VSIU 1 VIU1 1

vminuw VALU-VSIU 1 VIU1 1

vnor VALU-VSIU 1 VIU1 1

vor VALU-VSIU 1 VIU1 1

vrlb VALU-VSIU 1 VIU1 1

vrlh VALU-VSIU 1 VIU1 1

vrlw VALU-VSIU 1 VIU1 1

vsel VALU-VSIU 1 VIU1 1

vslb VALU-VSIU 1 VIU1 1

vslh VALU-VSIU 1 VIU1 1

vslw VALU-VSIU 1 VIU1 1

vsrab VALU-VSIU 1 VIU1 1

vsrah VALU-VSIU 1 VIU1 1

vsraw VALU-VSIU 1 VIU1 1

vsrb VALU-VSIU 1 VIU1 1

vsrh VALU-VSIU 1 VIU1 1

vsrw VALU-VSIU 1 VIU1 1

vsubcuw VALU-VSIU 1 VIU1 1

vsubsbs VALU-VSIU 1 VIU1 1

vsubshs VALU-VSIU 1 VIU1 1

vsubsws VALU-VSIU 1 VIU1 1

vsububm VALU-VSIU 1 VIU1 1

vsububs VALU-VSIU 1 VIU1 1

vsubuhm VALU-VSIU 1 VIU1 1

vsubuhs VALU-VSIU 1 VIU1 1

vsubuwm VALU-VSIU 1 VIU1 1

Table 49. AltiVec Operations—Vector Simple Integer Unit (continued)

Mnemonic
MPC7400 MPC7450

Unit Cycles Unit Cycles
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Table 50 lists vector complex integer instruction latencies. This complex integer unit is called the VCIU 
in the MPC7400 and the VIU2 in the MPC7450. 

vsubuws VALU-VSIU 1 VIU1 1

vxor VALU-VSIU 1 VIU1 1

Table 50. AltiVec Operations—Vector Complex Integer Unit

Mnemonic
MPC7400 MPC7450

Unit Cycles Unit Cycles

vmhaddshs VALU-VCIU 3:1 VIU2 4:1

vmhraddshs VALU-VCIU 3:1 VIU2 4:1

vmladduhm VALU-VCIU 3:1 VIU2 4:1

vmsummbm VALU-VCIU 3:1 VIU2 4:1

vmsumshm VALU-VCIU 3:1 VIU2 4:1

vmsumshs VALU-VCIU 3:1 VIU2 4:1

vmsumubm VALU-VCIU 3:1 VIU2 4:1

vmsumuhm VALU-VCIU 3:1 VIU2 4:1

vmsumuhs VALU-VCIU 3:1 VIU2 4:1

vmulesb VALU-VCIU 3:1 VIU2 4:1

vmulesh VALU-VCIU 3:1 VIU2 4:1

vmuleub VALU-VCIU 3:1 VIU2 4:1

vmuleuh VALU-VCIU 3:1 VIU2 4:1

vmulosb VALU-VCIU 3:1 VIU2 4:1

vmulosh VALU-VCIU 3:1 VIU2 4:1

vmuloub VALU-VCIU 3:1 VIU2 4:1

vmulouh VALU-VCIU 3:1 VIU2 4:1

vsum2sws VALU-VCIU 3:1 VIU2 4:1

vsum4sbs VALU-VCIU 3:1 VIU2 4:1

vsum4shs VALU-VCIU 3:1 VIU2 4:1

vsum4ubs VALU-VCIU 3:1 VIU2 4:1

vsumsws VALU-VCIU 3:1 VIU2 4:1

Table 49. AltiVec Operations—Vector Simple Integer Unit (continued)

Mnemonic
MPC7400 MPC7450

Unit Cycles Unit Cycles
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Table 51 lists vector floating-point (VFPU) instruction latencies. 

Table 51. AltiVec Operations—Vector Floating-Point Unit

Mnemonic
MPC7400 MPC7450

Unit Cycles Unit Cycles

mfvscr VALU-VSIU 1 {e} VFPU 2 {e}

mtvscr VALU-VSIU 1 {e} VFPU 2 {e}

vaddfp VALU-VFPU 4:1 1

1  In Java mode, MPC7400 VFPU instructions need a fifth cycle of 
execution (5:1), but data dependencies are still forwarded from the end 
of the fourth cycle as in non-Java mode.

VFPU 4:1

vcmpbfp[.] VALU-VSIU 1 VFPU 2:1

vcmpeqfp[.] VALU-VSIU 1 VFPU 2:1

vcmpgefp[.] VALU-VSIU 1 VFPU 2:1

vcmpgtfp[.] VALU-VSIU 1 VFPU 2:1

vcfsx VALU-VFPU 4:11 VFPU 4:1

vcfux VALU-VFPU 4:11 VFPU 4:1

vctsxs VALU-VFPU 4:11 VFPU 4:1

vctuxs VALU-VFPU 4:11 VFPU 4:1

vexptefp VALU-VFPU 4:11 VFPU 4:1

vlogefp VALU-VFPU 4:11 VFPU 4:1

vmaddfp VALU-VFPU 4:11 VFPU 4:1

vmaxfp VALU-VSIU 1 VFPU 2:1

vminfp VALU-VSIU 1 VFPU 2:1

vnmsubfp VALU-VFPU 4:11 VFPU 4:1

vrefp VALU-VFPU 4:11 VFPU 4:1

vrfim VALU-VFPU 4:11 VFPU 4:1

vrfin VALU-VFPU 4:11 VFPU 4:1

vrfip VALU-VFPU 4:11 VFPU 4:1

vrfiz VALU-VFPU 4:11 VFPU 4:1

vrsqrtefp VALU-VFPU 4:11 VFPU 4:1

vsubfp VALU-VFPU 4:11 VFPU 4:1
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Table 52 lists vector permute (VPU) instruction latencies.

Table 52. AltiVec Operations—Vector Permute Unit

Mnemonic
MPC7400 MPC7450

Unit Cycles Unit Cycles

vmrghb VPU 1 VPU 2:1

vmrghh VPU 1 VPU 2:1

vmrghw VPU 1 VPU 2:1

vmrglb VPU 1 VPU 2:1

vmrglh VPU 1 VPU 2:1

vmrglw VPU 1 VPU 2:1

vperm VPU 1 VPU 2:1

vpkpx VPU 1 VPU 2:1

vpkshss VPU 1 VPU 2:1

vpkshus VPU 1 VPU 2:1

vpkswss VPU 1 VPU 2:1

vpkswus VPU 1 VPU 2:1

vpkuhum VPU 1 VPU 2:1

vpkuhus VPU 1 VPU 2:1

vpkuwum VPU 1 VPU 2:1

vpkuwus VPU 1 VPU 2:1

vsl VALU-VSIU 1 VPU 2:1

vsldoi VPU 1 VPU 2:1

vslo VPU 1 VPU 2:1

vspltb VPU 1 VPU 2:1

vsplth VPU 1 VPU 2:1

vspltisb VPU 1 VPU 2:1

vspltish VPU 1 VPU 2:1

vspltisw VPU 1 VPU 2:1

vspltw VPU 1 VPU 2:1

vsr VALU-VSIU 1 VPU 2:1

vsro VPU 1 VPU 2:1

vupkhpx VPU 1 VPU 2:1

vupkhsb VPU 1 VPU 2:1

vupkhsh VPU 1 VPU 2:1
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Appendix B Revision History
14 Revision History

Table 53 provides a revision history for this application note.

vupklpx VPU 1 VPU 2:1

vupklsb VPU 1 VPU 2:1

vupklsh VPU 1 VPU 2:1

Table 53. Revision History

Rev. No. Substantive Change(s)

0 Initial release, 11/01

1 In Section 4.5, third sentence in the third paragraph, “MPC7400” is replaced with “MPC7450.”

2 Minor edits throughout; trademarking updated. No substantive changes.

Table 52. AltiVec Operations—Vector Permute Unit (continued)

Mnemonic
MPC7400 MPC7450

Unit Cycles Unit Cycles
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