
AN14092
Setting Up VS Code for i.MX 8M Linux User Space Cortex-A Development
Rev. 1 — 3 October 2023 Application note

Document Information
Information Content

Keywords Visual Studio Code, debugging, Real-Time-Edge, i.MX 8M Cortex-A User-Space.

Abstract This document describes how to set up Visual Studio Code for developing and debugging User-
Space Cortex-A applications on i.MX boards running Real-Time Edge software.



NXP Semiconductors AN14092
Setting Up VS Code for i.MX 8M Linux User Space Cortex-A Development

1   Introduction

This document describes how to set up Visual Studio Code for developing and debugging User-Space Cortex-
A applications on i.MX 8MP running Real-Time Edge software from a Windows host, using WSL (Windows
Subsystem for Linux). While this document uses i.MX 8MP, the same process with minor differences works for
the entire i.MX 8M family.

1.1  Steps overview
It is assumed that the host computer has the latest version of Windows 10/11 installed. The main steps to be
followed are:

• Setting up WSL1 on the Windows host.
• Installing the development toolchain.
• Installing and configuring VS Code.
• Configuring the board and test application debugging on the i.MX 8MP.

1.2  Software environment
• Download the Real Time Edge Software 2.6.0 for the i.MX 8MP board archive and extract it.
• Extract the Real-time_Edge_v2.6_IMX8MP-LPDDR4-EVK/real-time-edge/nxp-image-real-
time-edge-imx8mp-lpddr4-evk.wic.zst file to obtain the flashable image.

• Use SD card flashing software such as Balena Etcher to write the nxp-image-real-time-edge-imx8mp-
lpddr4-evk.wic image to the SD card.

1.3  Hardware setup and equipment
• Development kit: NXP i.MX 8MP EVK LPDDR4
• Micro SD card: SanDisk Ultra 32-GB Micro SDHC I Class 10 was used for the current experiment
• USB-C cable for the debug port
• Ethernet cable

2   Prerequisites

Connect the i.MX 8MP platform to the host Windows PC via USB cable between the DEBUG USB-UART
connector and the PC USB connector. Windows finds the serial devices automatically.

Find the COM device with the name COM* to determine your debug port. On the i.MX 8MP, four ports appear.
Of the last two, one port is for the debug messages from the Cortex-A53, and the other is for the Cortex-M7.
The port number is allocated randomly, so opening both is beneficial for development.

The device manager showing the 4 COM ports exposed by i.MX 8MP is presented on Figure 1. The last two
ports highlighted in red are used in this context.

AN14092 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 3 October 2023
2 / 14

https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-SOFTWARE


NXP Semiconductors AN14092
Setting Up VS Code for i.MX 8M Linux User Space Cortex-A Development

Figure 1. Device manager

Open in your preferred serial terminal emulator (for example, PuTTY) the serial device, set the speed to 115,200
bit/s, 8 data bits, 1 stop bit (115200, 8N1), no parity.

Figure 2. Putty configuration for opening the COM14 port on the board

AN14092 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 3 October 2023
3 / 14



NXP Semiconductors AN14092
Setting Up VS Code for i.MX 8M Linux User Space Cortex-A Development

3   Setting up WSL

Windows Subsystem for Linux (WSL) lets developers install and run a Linux distribution under Windows.

3.1  Install WSL
1. On the Windows host, open Windows Features and turn on the Windows Subsystem for Linux feature.

Figure 3. Windows features with WSL enabled
2. Open a CMD window and set the default WSL version to 1:

> wsl --set-default-version 1

3. From the Microsoft Store, search and download the Ubuntu distribution.
4. After it is installed, open it. A terminal window requiring you to set a user name and password opens. After

completing, a bash shell starts.

3.2  Install dependencies
From the opened shell, run the following commands to install the dependencies:

$ sudo apt-get -y update
$ sudo apt-get -y install build-essential gdb gdb-multiarch git

3.3  Installing development toolchain
To cross-compile applications and have access to the board/software specific libraries, a development toolchain
is required. It is obtained from the Real-Time-Edge Yocto project. The project can be set up either on WSL or on
any other Ubuntu host.

• Install the Real Time Edge Software 2.6.0 environment.
AN14092 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 3 October 2023
4 / 14

https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-SOFTWARE


NXP Semiconductors AN14092
Setting Up VS Code for i.MX 8M Linux User Space Cortex-A Development

• Set up the Real-time Edge Yocto environment for the i.MX 8MP. For more details on how to do that, see
Section 3 (for dependencies) and Section 5.5. (build guide) from Real-Time Edge Yocto Project User’s Guide
(document REALTIMEEDGEUG), without running the final bitbake command. Instead, run the following one to
build the SDK, not the flashable image:

$ bitbake nxp-image-real-time-edge -c populate_sdk 

The task produces a shell script that can be used to install the SDK. It is found in <yocto_build_
directory>/tmp/deploy/sdk/.

• Run the script produced above in WSL to install the SDK:

$ ./nxp-real-time-edge-glibc-x86_64-nxp-image-real-time-edge
-armv8a-imx8mp-lpddr4-evk-toolchain-2.5.sh                   

Note:  The script asks you if you want to change the default install location in /opt/nxp-real-time-
edge/2.5/. For this guide, the default location is assumed.

4   Setting up VS Code

This section describes the details of setting up VS Code.

4.1  Install VS Code
On Windows, install VS Code from the official website.

4.2  Install required extensions
Open VS Code, go to the extensions tab on the left sidebar and install the following extensions:

• C/C++ is the official C/C++ developing extension.
• WSL is used for connecting VS Code to WSL.
• Serial Monitor is used for connecting to the serial port on the board directly from VS Code.

Note:  This step is optional

4.3  Create/Open a project
To create or open a project in VS Code connected to WSL, from a WSL shell navigate to the project directory
and enter the following command:

$ code . 

5   Configure a project for developing and debugging

For this example, a new project for a hello-world problem is used. Then the required configurations for
developing and debugging on the board are made. The basic configuration here is easily transferable to other
projects.

This method requires that the board and the host are connected via a network, since ssh and gdbserver are
used.

AN14092 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 3 October 2023
5 / 14

https://www.nxp.com/doc/REALTIMEEDGEUG
https://code.visualstudio.com/


NXP Semiconductors AN14092
Setting Up VS Code for i.MX 8M Linux User Space Cortex-A Development

5.1  Create a project
Run the following commands to create and open a project:

$ mkdir demo-proj
$ cd demo-proj
$ code .

5.2  Create sources
• In the project, create a hello-world.c file with a simple program:

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
    printf("Hello, World!\n");

    return 0;
}

• Create a simple Makefile with the following contents:

CC ?= gcc

CFLAGS ?= -Wall -Wextra

DEBUGFLAGS = -Og -g

TARGET = hello.bin
SOURCE = hello-world

OBJECTS = $(TARGET).o

.PHONY: all clean

all: $(TARGET)

$(TARGET): $(OBJECTS)
 $(CC) $(CFLAGS) $(DEBUGFLAGS) -o $@ $^

$(OBJECTS): $(SOURCE).c
 $(CC) $(CFLAGS) $(DEBUGFLAGS) -c -o $@ $^ 

The Makefile builds the hello-world.c executable into a binary called hello.bin, using the
environmentally defined compiler (CC) and CFLAGS, falling back on defaults if not set.

5.3  VS Code project configuration
The .vscode folder in the demo-proj project folder contains the project configuration files. If the folder was
not created automatically, do it manually:

$ mkdir .vscode 

Then, create/edit the following files:

AN14092 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 3 October 2023
6 / 14



NXP Semiconductors AN14092
Setting Up VS Code for i.MX 8M Linux User Space Cortex-A Development

• settings.json, this file contains values for variables that are used in configuring the workspace in the
other files.
Contents:

{
 /* Target Device Settings */
 "TARGET_IP":"169.254.158.177",

 /* Project Settings */
 "PROGRAM":"hello.bin",

 /* SDK Configuration */
 "ARCH":"aarch64-poky-linux",
 "OECORE_NATIVE_SYSROOT":"/opt/nxp-real-time-edge/2.5/sysroots/x86_64-pokysdk-
linux",
 "SDKTARGETSYSROOT": "/opt/nxp-real-time-edge/2.5/sysroots/armv8a-poky-linux",

 /* SDK Constants */
 "CC_PREFIX": "${config:OECORE_NATIVE_SYSROOT}/usr/bin/${config:ARCH}/
${config:ARCH}-",
 "CXX": "${config:CC_PREFIX}g++ -march=armv8-a+crc+crypto -fstack-protector-
strong  -O2 -D_FORTIFY_SOURCE=2 -Wformat -Wformat-security -Werror=format-
security --sysroot=${config:SDKTARGETSYSROOT}",
 "CC": "${config:CC_PREFIX}gcc -march=armv8-a+crc+crypto -fstack-protector-
strong  -O2 -D_FORTIFY_SOURCE=2 -Wformat -Wformat-security -Werror=format-
security --sysroot=${config:SDKTARGETSYSROOT}",
 "CPP": "${config:CC_PREFIX}gcc -E -march=armv8-a+crc+crypto -fstack-protector-
strong  -O2 -D_FORTIFY_SOURCE=2 -Wformat -Wformat-security -Werror=format-
security --sysroot=${config:SDKTARGETSYSROOT}",
}   

Where:
– TARGET_IP: is the IP of the i.MX board that we want to debug.
– PROGRAM: is the compiled executable name.
– ARCH: is the architecture that we want to compile for.
– OECORE_NATIVE_SYSROOT: is the location of the native sysroot.
– SDKTARGETSYSROOT: is the location of the target SDK sysroot.
– CC_PREFIX: is the path prefix of the cross-compiler binaries.
– CXX/CC/CPP: is the full path of a cross-compiler binary complete with the default flags set by the SDK’s

environment setup script (/opt/nxp-real-time-edge/2.5/environment-setup-armv8a-poky-
linux).

They can be modified or removed as needed, except for the sysroot parameter that is required for cross-
compiling.

• c_cpp_properties.json describes the C/C++ extension configuration. Here is the setting of the
IncludePath where IntelliSense looks for header files and the compiler path.

Contents:

{
    "configurations": [
        {
            "name": "Linux",
            "includePath": [
                "${workspaceFolder}/**",
                "${config:SDKTARGETSYSROOT}/usr/include/**"
            ],
            "compilerPath": "${config:CC_PREFIX}gcc",
            "intelliSenseMode": "linux-gcc-arm64",

AN14092 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 3 October 2023
7 / 14



NXP Semiconductors AN14092
Setting Up VS Code for i.MX 8M Linux User Space Cortex-A Development

            "browse": {
                "path": [
                    "${workspaceFolder}/**",
                    "${config:SDKTARGETSYSROOT}/usr/include/**"
                ],
                "limitSymbolsToIncludedHeaders": true
            }
        }
    ],
    "version": 4
}

• tasks.json is used to override or add new tasks. It runs the Makefile when the VS Code build command is
executed and defines the debug task.
Contents:

{
    "version": "2.0.0",
    /* Configure Yocto SDK Constants from settings.json */
    "options": {
        "env": {
            "CXX": "${config:CXX}",
            "CC": "${config:CC}",
            "CPP": "${config:CPP}"
        }
     },
     /* Configure integrated VS Code Terminal */
     "presentation": {
        "echo": false,
        "reveal": "always",
        "focus": true,
        "panel": "dedicated",
        "showReuseMessage": true,
    },
    "tasks": [
        /* Configure launch.json (debug) preLaunchTask Task */
        {
            "label": "imx-deploy-gdb",
            "isBackground": true,
            "problemMatcher":{
                "base": "$gcc",
                "background": {
                    "activeOnStart": true,
                    "beginsPattern":  "Deploying to target",
                    "endsPattern":  "Starting GDB Server on Target"
                }
            },
            "type": "shell",
            "command": "sh",
            "args": [
                "imx-deploy-gdb.sh",
                "${config:TARGET_IP}",
                "${config:PROGRAM}"
            ],
            "dependsOn": ["build"],
        },
        /* Configure Build Task */
        {
            "label": "build",
            "type": "shell",

AN14092 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 3 October 2023
8 / 14



NXP Semiconductors AN14092
Setting Up VS Code for i.MX 8M Linux User Space Cortex-A Development

            "command": "make clean; make -j$(nproc)",
            "problemMatcher": ["$gcc"]
        },
    ]
}                            

Where:
– options.env: sets the environment variables for compilation to the ones that we set in
settings.json.

– tasks[0]: defines the debug task. Runs the build task first, then the imx-deploy-gdb.sh script
described in Section 5.4 to connect to the board and launch the debugging session.

– tasks[1]: defines the build task. This example uses a simple make command but can be edited as
needed to suit other projects.

• launch.json is a VS Code file to configure debug settings. It runs the imx-deploy-gdb task above.

{
    "version": "0.2.0",
    "configurations": [{
        "name": "GDB debug",
        "type": "cppdbg",
        "request": "launch",
        "program": "${config:PROGRAM}",
        "args": [],
        "stopAtEntry": true,
        "cwd": "${workspaceFolder}",
        "environment": [],
        "MIMode": "gdb",
        "targetArchitecture": "arm64",
        "preLaunchTask": "imx-deploy-gdb",
        "setupCommands": [{
            "description": "Enable pretty-printing for gdb",
            "text": "-enable-pretty-printing",
            "ignoreFailures": true
        }],
        "miDebuggerPath": "/usr/bin/gdb-multiarch",
        "miDebuggerServerAddress": "${config:TARGET_IP}:3000",
    }]
} 

Where:
– configurations.program: is the final executable name.
– configurations.args: is arguments to pass to the program on execution.
– configurations.preLaunchTask: is the imx-deploy-gdb task from tasks.json.
– configurations.miDebuggerPath: is the path to the gdb binary that supports the target architecture.
– configurations.miDebuggerServerAddress: is the address and port of the gdb-server (launched by

the deploy script) on the board.

5.4  Debugger deploy script
Create the imx-deploy-gdb.sh script in the root of the project that has the following contents:

#!/bin/bash
readonly TARGET_IP="$1"
readonly PROGRAM="$2"
readonly TARGET_DIR="/home/root"

# Must match startsPattern in tasks.json

AN14092 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 3 October 2023
9 / 14



NXP Semiconductors AN14092
Setting Up VS Code for i.MX 8M Linux User Space Cortex-A Development

echo "Deploying to target"

# kill gdbserver on target and delete old binary
ssh root@${TARGET_IP} "sh -c '/usr/bin/killall -q gdbserver; rm -rf
 ${TARGET_DIR}/${PROGRAM}  exit 0'"

# send the program to the target
scp ${PROGRAM} root@${TARGET_IP}:${TARGET_DIR}

# Must match endsPattern in tasks.json
echo "Starting GDB Server on Target"

# start gdbserver on target
ssh -t root@${TARGET_IP} "sh -c 'cd ${TARGET_DIR}; gdbserver localhost:3000
 ${PROGRAM}'" 

The final file structure of the project is shown on Figure 4.

Figure 4. Final demo project structure

5.5  Setup and target configuration
• Connect the board and the PC via Ethernet, connect the serial port to the PC.
• After a few moments, the i.MX board must have an IP address on the connected interface. You can check it

by running the following command via the serial terminal and checking the Ethernet address:

[I.MX Board Serial]
$ ip a s

• The IP address of the board must match the one we have configured in settings.json. For this example,
manually set the board IP to the one in settings.json, but any other method should work. To set the IP of
the board, run the following command:

[I.MX Board Serial]
$ ifconfig eth0 169.254.158.177

• Test the connection between the PC and the board by using ping and then confirm that ssh is working. Run
these commands on WSL:

[WSL]
$ ping 169.254.158.177
$ ssh root@169.254.158.177

AN14092 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 3 October 2023
10 / 14



NXP Semiconductors AN14092
Setting Up VS Code for i.MX 8M Linux User Space Cortex-A Development

5.6  Debugging your program
• Set a breakpoint in the main function of the hello-world.c file.
• From the top bar, press Run -> Start Debugging.
• VS Code compiles the executable, sends it to the board and launches a debugging session that stops at the

set breakpoint, as shown on Figure 5:

Figure 5. Demo application remote debugging session

6   Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2023 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

AN14092 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 3 October 2023
11 / 14



NXP Semiconductors AN14092
Setting Up VS Code for i.MX 8M Linux User Space Cortex-A Development

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

7   Revision history

Table 1 summarizes the revisions to this document.

Revision number Release date Description

1 03 October 2023 Initial public release

Table 1. Revision history

AN14092 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 3 October 2023
12 / 14



NXP Semiconductors AN14092
Setting Up VS Code for i.MX 8M Linux User Space Cortex-A Development

8   Legal information

8.1  Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

8.2  Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. - NXP B.V. is not an operating company and it does not distribute
or sell products.

8.3  Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.
i.MX — is a trademark of NXP B.V.

AN14092 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 3 October 2023
13 / 14

mailto:PSIRT@nxp.com


NXP Semiconductors AN14092
Setting Up VS Code for i.MX 8M Linux User Space Cortex-A Development

Contents
1 Introduction ......................................................... 2
1.1 Steps overview .................................................. 2
1.2 Software environment ........................................2
1.3 Hardware setup and equipment ........................ 2
2 Prerequisites ........................................................2
3 Setting up WSL ................................................... 4
3.1 Install WSL ........................................................ 4
3.2 Install dependencies ..........................................4
3.3 Installing development toolchain ........................4
4 Setting up VS Code ............................................ 5
4.1 Install VS Code ..................................................5
4.2 Install required extensions .................................5
4.3 Create/Open a project ....................................... 5
5 Configure a project for developing and

debugging ............................................................ 5
5.1 Create a project .................................................6
5.2 Create sources .................................................. 6
5.3 VS Code project configuration ...........................6
5.4 Debugger deploy script ......................................9
5.5 Setup and target configuration ........................ 10
5.6 Debugging your program .................................11
6 Note about the source code in the

document ........................................................... 11
7 Revision history ................................................ 12
8 Legal information ..............................................13

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2023 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 3 October 2023
Document identifier: AN14092


	1  Introduction
	1.1  Steps overview
	1.2  Software environment
	1.3  Hardware setup and equipment

	2  Prerequisites
	3  Setting up WSL
	3.1  Install WSL
	3.2  Install dependencies
	3.3  Installing development toolchain

	4  Setting up VS Code
	4.1  Install VS Code
	4.2  Install required extensions
	4.3  Create/Open a project

	5  Configure a project for developing and debugging
	5.1  Create a project
	5.2  Create sources
	5.3  VS Code project configuration
	5.4  Debugger deploy script
	5.5  Setup and target configuration
	5.6  Debugging your program

	6  Note about the source code in the document
	7  Revision history
	8  Legal information
	Contents

