
1 Introduction
This document introduces the anti-relay attack using GFSK, focusing on
the multi-link monitoring concepts and applications. It proposes a system
implementation using KW36 or KW38 Wireless MCU.

Kinetis MKW36 or KW38 is a wireless MCU that supports Bluetooth LE v5.0
protocol and Generic FSK (GFSK) modulation.

The readers of this document are expected to have a basic knowledge of Arm®

MCU architecture and radio communication.

2 Use case of anti-relay attack using GFSK
The RSSI-based localization is a simple and effective localization solution. There are two main methods of RSSI-based
localization with Bluetooth LE, connectionless method and connection method. For detailed knowledge and implementation
about RSSI-based localization, see KW36 Localization Based on RSSI Ranging Application (document AN12865) and KW38
Localization Based on RSSI Ranging Application（document AN12977).For the convenience, let's take the car access system as
an example, which is a typical system requiring distance estimation.

Contents

1 Introduction......................................1
2 Use case of anti-relay attack using

GFSK...1
3 Anti-relay attack using GFSK

implementation................................3
4 Setup and results............................ 9
5 Conclusion.....................................13
6 Revision history.............................13

AN12872
Anti-relay Attack Using GFSK
Rev. 1 — 09/2020 Application Note

https://www.nxp.com/docs/en/application-note/AN12865.pdf

Figure 1. Connectionless method or connection method

The connectionless method is realized through the three advertising channels and there is no connection between the devices.
This method is simple to implement and easy to deploy, but cannot prevent replay attacks.

The connection method requires Bluetooth LE connection between devices. If the pairing and bonding are enabled, this method
can achieve anti-relay attacks. However, when there are multiple connections, there are problems such as increased power
consumption, reduced response speed, and difficulty in deployment.

In order to avoid the problems of the above two methods, we propose to use GFSK to prevent relay attacks. This implementation
is valid for a car access system in which there is more than one BLE/GFSK node. In this way, the connection guarantees security
and the monitoring avoids the existence of multi-device connections to reduce system complexity.

NXP Semiconductors
Use case of anti-relay attack using GFSK

Anti-relay Attack Using GFSK, Rev. 1, 09/2020
Application Note 2 / 14

Figure 2. Anti-relay attack using GFSK

3 Anti-relay attack using GFSK implementation
The GFSK protocol enables radio operation using a custom GFSK/GMSK or MSK modulation format achieved by programming a
set of PHY variables, such as, BT product, modulation index, and modulation filter co-efficients. The GFSK can receive Bluetooth
LE packets with proper parameter configurations.

With the use of all channels and the following connection information obtained, we can track the link data of Bluetooth LE according
to the channel selection algorithm.

• Access address

• Connection interval

• Channel hop increment

• CRC seed

Figure 3 is a block diagram of single Bluetooth LE connection. It contains three roles, master, slave and monitor. There is a
Bluetooth LE connection between master and slave, and CAN bus or LIN bus communication between master and monitor. The
Bluetooth LE master connects to the slave and transmits the connection information to the GFSK monitor through the CAN or LIN
bus. Then, the GFSK monitor starts to sniff the air packages through these information.

NXP Semiconductors
Anti-relay attack using GFSK implementation

Anti-relay Attack Using GFSK, Rev. 1, 09/2020
Application Note 3 / 14

Figure 3. Monitoring one connection

3.1 GFSK parameter configuration
Modify the following macro configuration to adapt to the Bluetooth LE parameter requirements.

• #define gGenFskDefaultLengthFieldSize_c (8)/*!< Number of bits in the LENGTH field. */

• #define gGenFskDefaultH1FieldSize_c (0)/*!< Number of bits in the H1 field. */

• #define gGenFskDefaultH0Value_c (0x0000)/*!< H0 field value. */

• #define gGenFskDefaultH0Mask_c 0/*!< Mask to select which bits of H0 must match the h0_match field.
*/

• #define gGenFskDefaultH1Value_c (0x0000)/*!< H1 field value. */

• #define gGenFskDefaultH1Mask_c 0/*!< Mask to select which bits of H1 must match the h1_match field.
*/

3.2 Connection information
The CONNECT_REQ PDU contains the connection information we need above.

Table 1. LLData field structure in CONNECT_REQ PDU’s payload

LLData

AA

(4 octets)

CRCInit

(3 octets)

WinSize

(1 octet)

WinOffset

(2 octets)

Interval

(2 octets)

Latency

(2 octets)

Timeout

(2 octets)

ChM

(5 octets)

Hop

(5 bits)

SCA

(3 bits)

Table 1 is the information obtained from the Air Interface Packets. This information exists in the Data Channel Registers in KW3x.
The master obtains this information and then transmits to the monitor via CAN or LIN.

NXP Semiconductors
Anti-relay attack using GFSK implementation

Anti-relay Attack Using GFSK, Rev. 1, 09/2020
Application Note 4 / 14

Addr 16-bit Addr 32-bit Register name Description

0x80 0x100 CONN_INTERVAL —

0x88 0x110 PDU_ACCESS_ADDR_L_REGIST
ER —

0x8A 0x114 PDU_ACCESS_ADDR_H_REGIST
ER —

0xF4 0x1E8 CONN_PARAM1
Connection parameters, such as, sca, hop_increment,
and crc_init, exchanged in the connect_request of
this connection.

0xF6 0x1EC CONN_PARAM2 Connection parameter, crc_init bits 24:7, exchanged in
the connect_request of this connection.

3.3 Channel selection algorithm
Bluetooth LE uses a frequency hopping transceiver, so to track the air interface package of Bluetooth LE, the monitoring device
should also implement the same frequency hopping algorithm.

Figure 4. Block diagram of data channel selection algorithm

3.4 Interrupt handling
As each connection event contains the master and slave packets, the GFSK interrupt handler needs to be modified to retrieve
these two sets of data. After receiving the master data packet, the timeout timer is no longer cleared, and the Rx is restarted. After
the slave data is received, the timeout timer is cleared and the Rx completion event is set.

#if LINK_MONITOR

#else
 GENFSK_TimeCancelEvent(&rxTimeoutTimer);
 GENFSK->T1_CMP &= ~GENFSK_T1_CMP_T1_CMP_EN_MASK;

NXP Semiconductors
Anti-relay attack using GFSK implementation

Anti-relay Attack Using GFSK, Rev. 1, 09/2020
Application Note 5 / 14

#endif
 if (genfskLocal[mGenfskActiveInstance].packetReceivedCallbackIsr != NULL)
 {
 /* Examine RX buffer in ISR context if CallbackIsr is set */
 GENFSK_RxIsrContext();
 }

 if (genfskLocal[mGenfskActiveInstance].enabledEvents & gGenfskRxEvent)
 {
#if LINK_MONITOR
 uint16_t byteCount = ((GENFSK->RX_WATERMARK & GENFSK_RX_WATERMARK_BYTE_COUNTER_MASK)
>> GENFSK_RX_WATERMARK_BYTE_COUNTER_SHIFT);
 if(packetFromMaster == 1) //master data
 {
 GENFSK->XCVR_CTRL = 5;

 packetFromMaster = 0;
 masterPacketLen = byteCount;
 FLib_MemCpy(masterPacket, (uint8_t*)PACKET_BUFFER_BASE_ADDR, masterPacketLen);
 masterRSSI = (int8_t)((GENFSK->XCVR_STS & GENFSK_XCVR_STS_RSSI_MASK) >>
GENFSK_XCVR_STS_RSSI_SHIFT);
 }
 else //slave data
 {
 slaveRSSI = (int8_t)((GENFSK->XCVR_STS & GENFSK_XCVR_STS_RSSI_MASK) >>
GENFSK_XCVR_STS_RSSI_SHIFT);
 packetFromMaster = 1;
 eventFlags |= gGenfskRxEventFlag_c;

 GENFSK_TimeCancelEvent(&rxTimeoutTimer);
 GENFSK->T1_CMP &= ~GENFSK_T1_CMP_T1_CMP_EN_MASK;
 }
#else
 eventFlags |= gGenfskRxEventFlag_c;
#endif
 }
 else
 {
 /* No notification enabled */
 genfskLocal[mGenfskActiveInstance].genfskState = gGENFSK_LL_Idle;
 }

3.5 Disabling DCOC calibration
For processing data packets received from master and slave, the DC Offset Calibration time is relatively long, so DC Offset
Calibration needs to be disabled.

static void BleGenfskDisableDcocCal(void)
{
 static uint8_t dcoc_cal_enabled = TRUE;
 if(TRUE == dcoc_cal_enabled)
 {
 dcoc_cal_enabled = FALSE;

 XCVR_RX_DIG->RX_DIG_CTRL &= ~XCVR_RX_DIG_RX_DIG_CTRL_RX_DCOC_CAL_EN_MASK;
 XCVR_TSM->TIMING36 = 0x3431FFFFU;
 XCVR_TSM->TIMING37 = 0x3231FFFFU;
 XCVR_TSM->TIMING39 = 0x3431FFFFU;
 XCVR_TSM->TIMING14 = 0x34316863U;

NXP Semiconductors
Anti-relay attack using GFSK implementation

Anti-relay Attack Using GFSK, Rev. 1, 09/2020
Application Note 6 / 14

 XCVR_TSM->END_OF_SEQ = 0x34336E67U;
 }
}

3.6 Multi-link monitoring
Figure 5 shows a block diagram of monitoring multiple Bluetooth LE connections. It contains three roles, master, slave and
monitor. There are four Bluetooth LE connections between master and slaves, and CAN bus or LIN bus communication between
master and monitors to transfer connection information.

Figure 5. Monitoring multiple connections

For the monitoring of a single link, we can wait for a valid data packet on a fixed channel. Once the data is received, the next data
can be tracked according to the frequency hopping algorithm. The connection interval is simple but the multi-link monitoring is
relatively complicated because it involves link management.

Figure 6 is a instant timing diagram of a master connected to four slaves. With S1 as the anchor point, the interval between the
device and the next device is fixed to 33 slots (about 20 ms).

NXP Semiconductors
Anti-relay attack using GFSK implementation

Anti-relay Attack Using GFSK, Rev. 1, 09/2020
Application Note 7 / 14

Figure 6. 4-link connection instant timing

We can synchronize the S1 device by monitoring the fixed channel and then use S1 as the anchor point and extend 20 ms in order
to synchronize other devices. Figure 7 is an operation flowchart.

Figure 7. Multi-link monitoring – flow chart

NXP Semiconductors
Anti-relay attack using GFSK implementation

Anti-relay Attack Using GFSK, Rev. 1, 09/2020
Application Note 8 / 14

4 Setup and results
As shown in Figure 8, in order to simplify the setup, we reduce the number of monitors to one. The demo contains one master,
one monitor, and four slaves. The master and slaves are connected through Bluetooth LE. The master and monitor are connected
through CAN or LIN bus.

Figure 8. Setup

4.1 Hardware prerequisites
• Six Mini/micro USB cables.

• Six FRDM-KW36 or FRDM-KW38 boards. Board is simplified as B.

— B1 as master.

— B2 as monitor.

— B3-B6 as slave.

• Personal computer.

• Power adapter 12 V.

• Three Dupont female-to-female wire.

4.2 Board settings
• Connect 12 V adapter to J32 of board B1 or B2.

• Unmount R34 and R27 resistors of board B2.

• Connect J13-1 of the board B1 and B2.

• Connect J13-2 of the board B1 and B2.

• Connect J13-4 of the board B1 and B2.

NXP Semiconductors
Setup and results

Anti-relay Attack Using GFSK, Rev. 1, 09/2020
Application Note 9 / 14

When using the auto baudrate feature, connect J1-5 and J2-9.

 NOTE

Figure 9. Link monitoring setup with four slaves

4.3 Toolchain supported
• IAR Embedded Workbench 8.40.1

4.4 Software prerequisites
Link monitoring demo is based on the Wireless UART demo and genfsk demo for FRDM-KW36 or FRDM-KW38, which can be
found in AN12872SW. In the application, there are three roles, master, slave and monitor.

• The project for master is modified from the wireless_uart project.

• The project for monitor is modified from the genfsk project.

• The slave project is the wireless_uart project.

In the master and Monitor projects, we add the functions of CAN and LIN to realize the transmission of connection information.

NXP Semiconductors
Setup and results

Anti-relay Attack Using GFSK, Rev. 1, 09/2020
Application Note 10 / 14

https://www.nxp.com/docs/en/application-note-software/AN12872SW.zip

There are two ways to evaluate the application, described as below.

• Use the ported SDK directly.

For quick evaluation, AN12872SW includes the SDK that have been ported, SDK_2.2.3_FRDM-KW36 and
SDK_2.6.5_FRDM-KW38, as show in Figure 10.

Figure 10. Porting the code using proted SDK

— The w_uart_linkMonitor project – For B1 as master, located at
SDK\boards\frdmkw36\wireless_examples\bluetooth\w_uart_linkMonitor\freertos.

— The conn_test_linkMonitor project - For B2 as monitor, located at
SDK\boards\frdmkw36\wireless_examples\genfsk\conn_test_linkMonitor\freertos.

— The w_uart project – For B3-B6 as slave, located at
SDK\boards\frdmkw36\wireless_examples\bluetooth\w_uart\freertos.

• Port the code to the SDK.

The AN12872 software package also contains source files and header files, as shown in Figure 11.

Figure 11. Porting the code by yourself

Perform the following steps to create new demo projects in IAR Embedded Workbench and replace the source and header
files modified for the demo.

1. Place conn_test_linkMonitor to the directory of SDK\boards\frdmkw3x\wireless_examples\genfsk.

2. Place w_uart_linkMonitor to the directory of SDK\boards\frdmkw3x\wireless_examples\bluetooth.

3. Replace five files in the following directory:

NXP Semiconductors
Setup and results

Anti-relay Attack Using GFSK, Rev. 1, 09/2020
Application Note 11 / 14

https://www.nxp.com/docs/en/application-note-software/AN12872SW.zip

— middleware/wireless/bluetooth_x.x.x/application/common/ble_conn_manager.c

— middleware/wireless/bluetooth_x.x.x/application/common/ble_conn_manager.h

— middleware/wireless/framework_x.x.x/SerialManager/Source/UART_Adapter.c

— middleware/wireless/genfsk_x.x.x/source/genfsk_isr.c

— middleware/wireless/genfsk_x.x.x/source/genfsk_ll.c

The project created above is based on SDK 2.2.3 (released 2020-04-30) for KW36, SDK 2.6.5 (released
2020-05-07) for KW38. If you are using other versions of the SDK, please modify the project files accordingly.

 NOTE

4.5 Testing method
1. Download the program to the target boards.

2. Connect a micro USB cable between the PC and the OpenSDA USB port on the board B1 and B2.

3. Open a serial terminal on PC for OpenSDA serial device with these settings:

• 115200 baud rate

• 8 data bits

• No parity

• One stop bit

• No flow control

4. Power on B3-B6, switch roles, and start advertising.

5. Press SW2 on board B1 to start scanning, connection, and monitoring.

4.6 Testing results
Figure 12 shows the test result, including link data and RSSI value from master and slave. As expected, all the information is found
due to the GFSK monitoring.

NXP Semiconductors
Setup and results

Anti-relay Attack Using GFSK, Rev. 1, 09/2020
Application Note 12 / 14

Figure 12. Test results

5 Conclusion
Through GFSK, we can effectively monitor the connection of Bluetooth LE and combine with the high-precision RSSI detection
capability of KW36/38. It is feasible and effective to realize the ranging with anti-relay attack through KW36 or KW38.

6 Revision history
Table 2. Revision history

Rev. Date Description

0 07/2020 Initial release

1 09/2020 • Updated Figure 1, Figure 2, Figure 3, Figure 9, and Figure 12

• Added Figure 5 and Figure 8

NXP Semiconductors
Conclusion

Anti-relay Attack Using GFSK, Rev. 1, 09/2020
Application Note 13 / 14

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application
or use of any product or circuit, and specifically disclaims any and all liability, including
without limitation consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in different applications,
and actual performance may vary over time. All operating parameters, including “typicals,”
must be validated for each customer application by customer's technical experts. NXP does
not convey any license under its patent rights nor the rights of others. NXP sells products
pursuant to standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP
B.V. All other product or service names are the property of their respective owners. AMBA,
Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,
µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries)
in the US and/or elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and
the Power and Power.org logos and related marks are trademarks and service marks licensed
by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 09/2020
Document identifier: AN12872

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Use case of anti-relay attack using GFSK
	3 Anti-relay attack using GFSK implementation
	3.1 GFSK parameter configuration
	3.2 Connection information
	3.3 Channel selection algorithm
	3.4 Interrupt handling
	3.5 Disabling DCOC calibration
	3.6 Multi-link monitoring

	4 Setup and results
	4.1 Hardware prerequisites
	4.2 Board settings
	4.3 Toolchain supported
	4.4 Software prerequisites
	4.5 Testing method
	4.6 Testing results

	5 Conclusion
	6 Revision history

